-
1
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251-257 https://doi.org/10.1016/0893-6080(91) 90009-T
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
2
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature 521, 436-444 https://doi.org/10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
3
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. (2015) Deep learning in neural networks: An overview. Neural Networks 61, 85-117 https://doi.org/10.1016/j.neunet.2014.09.003
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
4
-
-
84980022857
-
Deep learning for computational biology
-
Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O. (2016) Deep learning for computational biology. Mol. Syst. Biol. 12, 878 https://doi.org/10. 15252/msb.20156651
-
(2016)
Mol. Syst. Biol
, vol.12
, pp. 878
-
-
Angermueller, C.1
Pärnamaa, T.2
Parts, L.3
Stegle, O.4
-
5
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
Alipanahi, B., Delong, A., Weirauch, M.T. and Frey, B.J. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831-838 https://doi.org/10.1038/nbt.3300
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
6
-
-
84976908652
-
Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
-
Kelley, D.R., Snoek, J. and Rinn, J.L. (2016) Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990-999 https://doi.org/10.1101/gr.200535.115
-
(2016)
Genome Res
, vol.26
, pp. 990-999
-
-
Kelley, D.R.1
Snoek, J.2
Rinn, J.L.3
-
7
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931-934 https://doi.org/10.1038/nmeth.3547
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
8
-
-
85096132725
-
Understanding sequence conservation with deep learning
-
bioRxiv 103929
-
Li, Y., Quang, D. and Xie, X. (2017) Understanding sequence conservation with deep learning. bioRxiv 103929 https://doi.org/10.1101/103929
-
(2017)
-
-
Li, Y.1
Quang, D.2
Xie, X.3
-
9
-
-
85011697811
-
Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
-
Umarov, R.K. and Solovyev, V.V. (2017) Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS ONE 12, e0171410 https://doi.org/10.1371/journal.pone.0171410
-
(2017)
PLoS ONE
, vol.12
, pp. e0171410
-
-
Umarov, R.K.1
Solovyev, V.V.2
-
10
-
-
85013296094
-
DeepEnhancer: Predicting enhancers by convolutional neural networks
-
Shenzhen, China
-
Min, X., Chen, N., Chen, T. and Jiang, R. (2016) DeepEnhancer: Predicting enhancers by convolutional neural networks. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, pp. 637-644
-
(2016)
2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
, pp. 637-644
-
-
Min, X.1
Chen, N.2
Chen, T.3
Jiang, R.4
-
11
-
-
85032446969
-
Predicting the impact of non-coding variants on DNA methylation
-
Zeng, H. and Gifford, D.K. (2017) Predicting the impact of non-coding variants on DNA methylation. Nucleic Acids Res. 45, e99 https://doi.org/10. 1093/nar/gkx177
-
(2017)
Nucleic Acids Res
, vol.45
, pp. e99
-
-
Zeng, H.1
Gifford, D.K.2
-
12
-
-
85096122299
-
TIDE: Predicting translation initiation sites by deep learning
-
bioRxiv 103374
-
Zhang, S., Hu, H., Jiang, T., Zhang, L. and Zeng, J. (2017) TIDE: Predicting translation initiation sites by deep learning. bioRxiv 103374 https://doi.org/10.1101/103374
-
(2017)
-
-
Zhang, S.1
Hu, H.2
Jiang, T.3
Zhang, L.4
Zeng, J.5
-
13
-
-
85030676904
-
Predicting enhancer-promoter interaction from genomic sequence with deep neural networks
-
bioRxiv 085241
-
Singh, S., Yang, Y., Poczos, B. and Ma, J. (2016) Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. bioRxiv 085241 https://doi.org/10.1101/085241
-
(2016)
-
-
Singh, S.1
Yang, Y.2
Poczos, B.3
Ma, J.4
-
14
-
-
85014167143
-
Imputation for transcription factor binding predictions based on deep learning
-
Qin, Q. and Feng, J. (2017) Imputation for transcription factor binding predictions based on deep learning. PLoS Comput. Biol. 13, e1005403 https://doi.org/10.1371/journal.pcbi.1005403
-
(2017)
PLoS Comput. Biol
, vol.13
, pp. e1005403
-
-
Qin, Q.1
Feng, J.2
-
15
-
-
84979968560
-
Denoising genome-wide histone ChIP-seq with convolutional neural networks
-
Koh, P.W., Pierson, E. and Kundaje, A. (2017) Denoising genome-wide histone ChIP-seq with convolutional neural networks. bioRXiv https://doi.org/10. 1101/052118
-
(2017)
bioRXiv
-
-
Koh, P.W.1
Pierson, E.2
Kundaje, A.3
-
16
-
-
85028411342
-
FIDDLE: An integrative deep learning framework for functional genomic data inference
-
bioRxiv 081380
-
Eser, U. and Churchman, L.S. (2016) FIDDLE: An integrative deep learning framework for functional genomic data inference. bioRxiv 081380 https://doi.org/10.1101/081380
-
(2016)
-
-
Eser, U.1
Churchman, L.S.2
-
17
-
-
84990888204
-
Deepchrome: Deep-learning for predicting gene expression from histone modifications
-
Singh, R., Lanchantin, J., Robins, G. and Qi, Y. (2016) Deepchrome: Deep-learning for predicting gene expression from histone modifications. Bioinformatics 32, i639-i648 https://doi.org/10.1093/bioinformatics/btw427
-
(2016)
Bioinformatics
, vol.32
, pp. i639-i648
-
-
Singh, R.1
Lanchantin, J.2
Robins, G.3
Qi, Y.4
-
18
-
-
85042353227
-
Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture
-
bioRxiv 103614
-
Schreiber, J., Libbrecht, M., Bilmes, J. and Noble, W. (2017) Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture. bioRxiv 103614 https://doi.org/10.1101/103614
-
(2017)
-
-
Schreiber, J.1
Libbrecht, M.2
Bilmes, J.3
Noble, W.4
-
19
-
-
85018466550
-
DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning
-
Angermueller, C., Lee, H.J., Reik, W. and Stegle, O. (2017) DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 https://doi.org/10.1186/s13059-017-1189-z
-
(2017)
Genome Biol
, vol.18
, pp. 67
-
-
Angermueller, C.1
Lee, H.J.2
Reik, W.3
Stegle, O.4
-
20
-
-
84960503750
-
A deep learning framework for modeling structural features of RNA-binding protein targets
-
Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C. et al. (2016) A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44, e32 https://doi.org/10.1093/nar/gkv1025
-
(2016)
Nucleic Acids Res
, vol.44
, pp. e32
-
-
Zhang, S.1
Zhou, J.2
Hu, H.3
Gong, H.4
Chen, L.5
Cheng, C.6
-
21
-
-
85014099241
-
RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach
-
Pan, X. and Shen, H.-B. (2017) RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinformatics 18, 136 https://doi.org/10.1186/s12859-017-1561-8
-
(2017)
BMC Bioinformatics
, vol.18
, pp. 136
-
-
Pan, X.1
Shen, H.-B.2
-
22
-
-
84976420628
-
Gene expression inference with deep learning
-
Chen, Y., Li, Y., Narayan, R., Subramanian, A. and Xie, X. (2016) Gene expression inference with deep learning. Bioinformatics 32, 1832-1839 https://doi.org/10.1093/bioinformatics/btw074
-
(2016)
Bioinformatics
, vol.32
, pp. 1832-1839
-
-
Chen, Y.1
Li, Y.2
Narayan, R.3
Subramanian, A.4
Xie, X.5
-
23
-
-
84975746111
-
PEDLA: Predicting enhancers with a deep learning-based algorithmic framework
-
Liu, F., Li, H., Ren, C., Bo, X. and Shu, W. (2016) PEDLA: Predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep. 6, 28517 https://doi.org/10.1038/srep28517
-
(2016)
Sci. Rep
, vol.6
, pp. 28517
-
-
Liu, F.1
Li, H.2
Ren, C.3
Bo, X.4
Shu, W.5
-
24
-
-
85019671854
-
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
-
bioRxiv 041616
-
Li, Y., Shi, W. and Wasserman, W.W. (2016) Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. bioRxiv 041616 https://doi.org/10.1101/041616
-
(2016)
-
-
Li, Y.1
Shi, W.2
Wasserman, W.W.3
-
25
-
-
84962045150
-
Deep learning for population genetic inference
-
Sheehan, S. and Song, Y.S. (2016) Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845 https://doi.org/10.1371/journal. pcbi.1004845
-
(2016)
PLoS Comput. Biol
, vol.12
, pp. e1004845
-
-
Sheehan, S.1
Song, Y.S.2
-
26
-
-
80054915847
-
A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data
-
Li, H. (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993 https://doi.org/10.1093/bioinformatics/btr509
-
(2011)
Bioinformatics
, vol.27
, pp. 2987-2993
-
-
Li, H.1
-
27
-
-
77956295988
-
The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
-
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A. et al. (2010) The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 https://doi.org/10.1101/gr.107524.110
-
(2010)
Genome Res
, vol.20
, pp. 1297-1303
-
-
McKenna, A.1
Hanna, M.2
Banks, E.3
Sivachenko, A.4
Cibulskis, K.5
Kernytsky, A.6
-
28
-
-
84975795680
-
An integrated map of genetic variation from 1, 092 human genomes
-
1000 Genomes Project Consortium
-
1000 Genomes Project Consortium, Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M. et al. (2012) An integrated map of genetic variation from 1, 092 human genomes. Nature 491, 56-65 https://doi.org/10.1038/nature11632
-
(2012)
Nature
, vol.491
, pp. 56-65
-
-
Abecasis, G.R.1
Auton, A.2
Brooks, L.D.3
DePristo, M.A.4
Durbin, R.M.5
-
29
-
-
85045199690
-
Training genotype callers with neural networks
-
bioRxiv 097469
-
Torracinta, R. and Campagne, F. (2016) Training genotype callers with neural networks. bioRxiv 097469 https://doi.org/10.1101/097469
-
(2016)
-
-
Torracinta, R.1
Campagne, F.2
-
30
-
-
85042112630
-
Adaptive somatic mutations calls with deep learning and semi-simulated data
-
bioRxiv 079087
-
Torracinta, R., Mesnard, L., Levine, S., Shaknovich, R., Hanson, M. and Campagne, F. (2016) Adaptive somatic mutations calls with deep learning and semi-simulated data. bioRxiv 079087 https://doi.org/10.1101/079087
-
(2016)
-
-
Torracinta, R.1
Mesnard, L.2
Levine, S.3
Shaknovich, R.4
Hanson, M.5
Campagne, F.6
-
31
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Las Vegas, USA
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016) Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
32
-
-
85024497415
-
Creating a universal SNP and small indel variant caller with deep neural networks
-
bioRxiv 092890
-
Poplin, R., Newburger, D., Dijamco, J., Nguyen, N., Loy, D., Gross, S. et al. (2016) Creating a universal SNP and small indel variant caller with deep neural networks. bioRxiv 092890 https://doi.org/10.1101/092890
-
(2016)
-
-
Poplin, R.1
Newburger, D.2
Dijamco, J.3
Nguyen, N.4
Loy, D.5
Gross, S.6
-
33
-
-
85020469555
-
Deepnano: Deep recurrent neural networks for base calling in MinION nanopore reads
-
Boža, V., Brejová, B. and Vinar T. (2017) Deepnano: Deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE 12, e0178751 https://doi.org/10.1371/journal.pone.0178751
-
(2017)
PLoS ONE
, vol.12
, pp. e0178751
-
-
Boža, V.1
Brejová, B.2
Vinar, T.3
-
34
-
-
84976413226
-
DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
-
Quang, D. and Xie, X. (2016) DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 https://doi.org/10.1093/nar/gkw226
-
(2016)
Nucleic Acids Res
, vol.44
, pp. e107
-
-
Quang, D.1
Xie, X.2
-
37
-
-
85046711933
-
Reverse-complement parameter sharing improves deep learning models for genomics
-
bioRxiv 103663
-
Shrikumar, A., Greenside, P. and Kundaje, A. (2017) Reverse-complement parameter sharing improves deep learning models for genomics. bioRxiv 103663 https://doi.org/10.1101/103663
-
(2017)
-
-
Shrikumar, A.1
Greenside, P.2
Kundaje, A.3
-
38
-
-
84976884426
-
JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles
-
Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.-Y., Denay, G., Lee, J. et al. (2016) JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110-D115 https://doi.org/10.1093/nar/gkv1176
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D110-D115
-
-
Mathelier, A.1
Fornes, O.2
Arenillas, D.J.3
Chen, C.-Y.4
Denay, G.5
Lee, J.6
-
39
-
-
84907413210
-
Determination and inference of eukaryotic transcription factor sequence specificity
-
Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P. et al. (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431-1443 https://doi.org/10.1016/j.cell.2014.08.009
-
(2014)
Cell
, vol.158
, pp. 1431-1443
-
-
Weirauch, M.T.1
Yang, A.2
Albu, M.3
Cote, A.G.4
Montenegro-Montero, A.5
Drewe, P.6
-
40
-
-
85017162272
-
Impact of regulatory variation across human iPSCs and differentiated cells
-
bioRxiv 091660
-
Banovich, N.E., Li, Y.I., Raj, A., Ward, M.C., Greenside, P., Calderon, D. et al. (2016) Impact of regulatory variation across human iPSCs and differentiated cells. bioRxiv 091660 https://doi.org/10.1101/091660
-
(2016)
-
-
Banovich, N.E.1
Li, Y.I.2
Raj, A.3
Ward, M.C.4
Greenside, P.5
Calderon, D.6
-
41
-
-
85009806478
-
-
Shrikumar, A., Greenside, P., Shcherbina, A. and Kundaje, A. (2016) Not just a black box: Learning important features through propagating activation differences. https://arxiv.org/abs/1605.01713
-
(2016)
Not just a black box: Learning important features through propagating activation differences
-
-
Shrikumar, A.1
Greenside, P.2
Shcherbina, A.3
Kundaje, A.4
-
42
-
-
33845792555
-
CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
-
Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O. et al. (2006) CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 https://doi.org/10.1186/gb-2006-7-10-r100
-
(2006)
Genome Biol
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
Clarke, C.4
Kang, I.H.5
Friman, O.6
-
43
-
-
77951959633
-
EBImage-an R package for image processing with applications to cellular phenotypes
-
Pau, G., Fuchs, F., Sklyar, O., Boutros, M. and Huber, W. (2010) EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979-981 https://doi.org/10.1093/bioinformatics/btq046
-
(2010)
Bioinformatics
, vol.26
, pp. 979-981
-
-
Pau, G.1
Fuchs, F.2
Sklyar, O.3
Boutros, M.4
Huber, W.5
-
44
-
-
84862520770
-
Fiji: An open-source platform for biological-image analysis
-
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T. et al. (2012) Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676-682 https://doi.org/10.1038/nmeth.2019
-
(2012)
Nat. Methods
, vol.9
, pp. 676-682
-
-
Schindelin, J.1
Arganda-Carreras, I.2
Frise, E.3
Kaynig, V.4
Longair, M.5
Pietzsch, T.6
-
45
-
-
26444512083
-
Toward automatic phenotyping of developing embryos from videos
-
Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L. and Barbano, P.E. (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14, 1360-1371 https://doi.org/10.1109/TIP.2005.852470
-
(2005)
IEEE Trans. Image Process
, vol.14
, pp. 1360-1371
-
-
Ning, F.1
Delhomme, D.2
LeCun, Y.3
Piano, F.4
Bottou, L.5
Barbano, P.E.6
-
46
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
(Pereira, F., Burges, C.J.C., Bottou, L. and Weinberger, K.Q., eds), Curran Associates, Inc
-
Ciresan, D., Giusti, A., Gambardella, L.M. and Schmidhuber, J. (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in Neural Information Processing Systems 25 (Pereira, F., Burges, C.J.C., Bottou, L. and Weinberger, K.Q., eds), pp. 2843-2851, Curran Associates, Inc.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
47
-
-
84999836246
-
Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
-
Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice, M.M. et al. (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12, e1005177 https://doi.org/10.1371/journal.pcbi.1005177
-
(2016)
PLoS Comput. Biol
, vol.12
, pp. e1005177
-
-
Van Valen, D.A.1
Kudo, T.2
Lane, K.M.3
Macklin, D.N.4
Quach, N.T.5
DeFelice, M.M.6
-
48
-
-
84951834022
-
U-Net: Convolutional networks for biomedical image segmentation
-
(Navab, N., Hornegger, J., Wells, W.M. and Frangi, A.F., eds), Springer, CRC Press
-
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 (Navab, N., Hornegger, J., Wells, W.M. and Frangi, A.F., eds), pp. 234-241, Springer, CRC Press. https://www.crcpress.com/Phenomics/Hancock/p/book/9781466590953
-
(2015)
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
49
-
-
84996483314
-
3D U-Net: Learning dense volumetric segmentation from sparse annotation
-
Springer, Cham, Switzerland
-
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T. and Ronneberger, O. (2016) 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, pp. 424-432, Springer, Cham, Switzerland
-
(2016)
In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016
, pp. 424-432
-
-
Çiçek, Ö.1
Abdulkadir, A.2
Lienkamp, S.S.3
Brox, T.4
Ronneberger, O.5
-
50
-
-
85011298810
-
V-Net: Fully convolutional neural networks for volumetric medical image segmentation
-
Stanford University, California, USA
-
Milletari, F., Navab, N. and Ahmadi, S.A. (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV), Stanford University, California, USA, pp. 565-571
-
(2016)
2016 Fourth International Conference on 3D Vision (3DV)
, pp. 565-571
-
-
Milletari, F.1
Navab, N.2
Ahmadi, S.A.3
-
51
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
-
Greenspan, H., van Ginneken, B. and Summers, R.M. (2016) Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153-1159 https://doi.org/10.1109/TMI.2016.2553401
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1153-1159
-
-
Greenspan, H.1
van Ginneken, B.2
Summers, R.M.3
-
53
-
-
85026529300
-
A survey on deep learning in medical image analysis
-
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M. et al. (2017) A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60-88 https://doi.org/10.1016/j.media.2017.07.005
-
(2017)
Med. Image Anal
, vol.42
, pp. 60-88
-
-
Litjens, G.1
Kooi, T.2
Bejnordi, B.E.3
Setio, A.A.A.4
Ciompi, F.5
Ghafoorian, M.6
-
54
-
-
85000705097
-
Systematic cell phenotyping
-
(John M. Hancock, ed)
-
Hériché, J.-K. (2014) Systematic cell phenotyping. In Phenomics (John M. Hancock, ed.), pp. 86-110
-
(2014)
Phenomics
, pp. 86-110
-
-
Hériché, J.-K.1
-
55
-
-
45049083228
-
WND-CHARM: Multi-purpose image classification using compound image transforms
-
Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M. and Goldberg, I.G. (2008) WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29, 1684-1693 https://doi.org/10.1016/j.patrec.2008.04.013
-
(2008)
Pattern Recognit. Lett
, vol.29
, pp. 1684-1693
-
-
Orlov, N.1
Shamir, L.2
Macura, T.3
Johnston, J.4
Eckley, D.M.5
Goldberg, I.G.6
-
56
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong, Y.T., Koh, J.L.Y., Friesen, H., Duffy, S.K., Cox, M.J., Moses A. et al. (2015) Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161, 1413-1424 https://doi.org/10.1016/j.cell.2015.04.051
-
(2015)
Cell
, vol.161
, pp. 1413-1424
-
-
Chong, Y.T.1
Koh, J.L.Y.2
Friesen, H.3
Duffy, S.K.4
Cox, M.J.5
Moses, A.6
-
57
-
-
84925264979
-
Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images
-
Handfield, L.-F., Strome, B., Chong, Y.T. and Moses, A.M. (2015) Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images. Bioinformatics 31, 940-947 https://doi.org/10.1093/bioinformatics/btu759
-
(2015)
Bioinformatics
, vol.31
, pp. 940-947
-
-
Handfield, L.-F.1
Strome, B.2
Chong, Y.T.3
Moses, A.M.4
-
58
-
-
84979520423
-
An unsupervised kNN method to systematically detect changes in protein localization in high-throughput microscopy images
-
Lu, A.X. and Moses, A.M. (2016) An unsupervised kNN method to systematically detect changes in protein localization in high-throughput microscopy images. PLoS ONE 11, e0158712 https://doi.org/10.1371/journal.pone.0158712
-
(2016)
PLoS ONE
, vol.11
, pp. e0158712
-
-
Lu, A.X.1
Moses, A.M.2
-
59
-
-
85020120388
-
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping
-
bioRxiv 053033
-
Pound, M.P., Burgess, A.J., Wilson, M.H., Atkinson, J.A., Griffiths, M., Jackson, A.S. et al. (2016) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv 053033 https://doi.org/10.1101/053033
-
(2016)
-
-
Pound, M.P.1
Burgess, A.J.2
Wilson, M.H.3
Atkinson, J.A.4
Griffiths, M.5
Jackson, A.S.6
-
60
-
-
85019234865
-
Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
-
Pärnamaa, T. and Parts, L. (2017) Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. G3 7, 1385-1392 https://doi.org/10.1534/g3.116.033654
-
(2017)
G3
, vol.7
, pp. 1385-1392
-
-
Pärnamaa, T.1
Parts, L.2
-
61
-
-
84976510674
-
Classifying and segmenting microscopy images with deep multiple instance learning
-
Kraus, O.Z., Ba, J.L. and Frey, B.J. (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52-i59 https://doi.org/10.1093/bioinformatics/btw252
-
(2016)
Bioinformatics
, vol.32
, pp. i52-i59
-
-
Kraus, O.Z.1
Ba, J.L.2
Frey, B.J.3
-
62
-
-
85072663709
-
-
Richmond, D., Jost, A.P.-T., Lambert, T., Waters, J. and Elliott, H. (2017) DeadNet: Identifying phototoxicity from label-free microscopy images of cells using Deep ConvNets. https://arxiv.org/abs/1701.06109
-
(2017)
DeadNet: Identifying phototoxicity from label-free microscopy images of cells using Deep ConvNets
-
-
Richmond, D.1
Jost, A.P.-T.2
Lambert, T.3
Waters, J.4
Elliott, H.5
-
63
-
-
85027508892
-
Deep learning for imaging flow cytometry: Cell cycle analysis of Jurkat cells
-
bioRxiv 081364
-
Eulenberg, P., Koehler, N., Blasi, T., Filby, A., Carpenter, A.E., Rees, P. et al. (2016) Deep learning for imaging flow cytometry: Cell cycle analysis of Jurkat cells. bioRxiv 081364 https://doi.org/10.1101/081364
-
(2016)
-
-
Eulenberg, P.1
Koehler, N.2
Blasi, T.3
Filby, A.4
Carpenter, A.E.5
Rees, P.6
-
64
-
-
85013149570
-
Prospective identification of hematopoietic lineage choice by deep learning
-
Buggenthin, F., Buettner, F., Hoppe, P.S., Endele, M., Kroiss, M., Strasser, M. et al. (2017) Prospective identification of hematopoietic lineage choice by deep learning. Nat. Methods 14, 403-406 https://doi.org/10.1038/nmeth.4182
-
(2017)
Nat. Methods
, vol.14
, pp. 403-406
-
-
Buggenthin, F.1
Buettner, F.2
Hoppe, P.S.3
Endele, M.4
Kroiss, M.5
Strasser, M.6
-
65
-
-
85030094149
-
Automating morphological profiling with generic deep convolutional networks
-
bioRxiv 085118
-
Pawlowski, N., Caicedo, J.C., Singh, S., Carpenter, A.E. and Storkey, A. (2016) Automating morphological profiling with generic deep convolutional networks. bioRxiv 085118 https://doi.org/10.1101/085118
-
(2016)
-
-
Pawlowski, N.1
Caicedo, J.C.2
Singh, S.3
Carpenter, A.E.4
Storkey, A.5
-
66
-
-
85078537727
-
Classification of schizophrenia versus normal subjects using deep learning
-
New York, NY, U.S.A. ACM, 28:1-28:6
-
Patel, P., Aggarwal, P. and Gupta, A. (2016) Classification of schizophrenia versus normal subjects using deep learning. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, New York, NY, U.S.A. ACM, pp. 28:1-28:6
-
(2016)
Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing
-
-
Patel, P.1
Aggarwal, P.2
Gupta, A.3
-
67
-
-
85011067231
-
A deep learning-based segmentation method for brain tumor in MR images
-
Atlanta, USA
-
Xiao, Z., Huang, R., Ding, Y., Lan, T., Dong, R., Qin, Z. et al. (2016) A deep learning-based segmentation method for brain tumor in MR images. 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Atlanta, USA
-
(2016)
2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)
-
-
Xiao, Z.1
Huang, R.2
Ding, Y.3
Lan, T.4
Dong, R.5
Qin, Z.6
-
68
-
-
84968572894
-
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
Kallenberg, M., Petersen, K., Nielsen, M., Ng, A.Y., Diao, P., Igel, C. et al. (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35, 1322-1331 https://doi.org/10.1109/TMI.2016.2532122
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1322-1331
-
-
Kallenberg, M.1
Petersen, K.2
Nielsen, M.3
Ng, A.Y.4
Diao, P.5
Igel, C.6
-
69
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
-
Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C. et al. (2016) Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 https://doi.org/10.1038/srep24454
-
(2016)
Sci. Rep
, vol.6
, pp. 24454
-
-
Cheng, J.-Z.1
Ni, D.2
Chou, Y.-H.3
Qin, J.4
Tiu, C.-M.5
Chang, Y.-C.6
-
70
-
-
84988000506
-
Early-stage atherosclerosis detection using deep learning over carotid ultrasound images
-
Menchón-Lara, R.-M., Sancho-Gómez, J.-L. and Bueno-Crespo, A. (2016) Early-stage atherosclerosis detection using deep learning over carotid ultrasound images. Appl. Soft Comput. 49, 616-628 https://doi.org/10.1016/j.asoc.2016.08.055
-
(2016)
Appl. Soft Comput
, vol.49
, pp. 616-628
-
-
Menchón-Lara, R.-M.1
Sancho-Gómez, J.-L.2
Bueno-Crespo, A.3
-
71
-
-
84937522268
-
Going deeper with convolutions
-
(IEEE), Boston, USA
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D. et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE), Boston, USA, pp. 1-9
-
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
-
72
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M. et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115-118 https://doi.org/10.1038/nature21056
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
-
73
-
-
85045203801
-
Leveraging uncertainty information from deep neural networks for disease detection
-
bioRxiv 084210
-
Leibig, C., Allken, V., Berens, P. and Wahl, S. (2016) Leveraging uncertainty information from deep neural networks for disease detection. bioRxiv 084210 https://doi.org/10.1101/084210
-
(2016)
-
-
Leibig, C.1
Allken, V.2
Berens, P.3
Wahl, S.4
-
74
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
75
-
-
85009070519
-
Application of semi-supervised deep learning to lung sound analysis
-
Orlando, FL, USA
-
Chamberlain, D., Kodgule, R., Ganelin, D., Miglani, V. and Fletcher, R.R. (2016) Application of semi-supervised deep learning to lung sound analysis. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA
-
(2016)
2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
-
-
Chamberlain, D.1
Kodgule, R.2
Ganelin, D.3
Miglani, V.4
Fletcher, R.R.5
-
76
-
-
85008256518
-
Efficient diagnosis system for Parkinson's disease using deep belief network
-
Vancouver, Canada
-
Al-Fatlawi, A.H., Jabardi, M.H. and Ling, S.H. (2016) Efficient diagnosis system for Parkinson's disease using deep belief network. 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada
-
(2016)
2016 IEEE Congress on Evolutionary Computation (CEC)
-
-
Al-Fatlawi, A.H.1
Jabardi, M.H.2
Ling, S.H.3
-
80
-
-
84976407069
-
Deep biomarkers of human aging: Application of deep neural networks to biomarker development
-
Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A. et al. (2016) Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging 8, 1021-1033 https://doi.org/10.18632/aging.100968
-
(2016)
Aging
, vol.8
, pp. 1021-1033
-
-
Putin, E.1
Mamoshina, P.2
Aliper, A.3
Korzinkin, M.4
Moskalev, A.5
Kolosov, A.6
-
81
-
-
85029799678
-
-
Nie, D., Trullo, R., Petitjean, C., Ruan, S. and Shen, D. (2016) Medical image synthesis with context-aware generative adversarial networks. https://arxiv. org/abs/1612.05362
-
(2016)
Medical image synthesis with context-aware generative adversarial networks
-
-
Nie, D.1
Trullo, R.2
Petitjean, C.3
Ruan, S.4
Shen, D.5
-
82
-
-
84937849144
-
-
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. et al. (2014) Generative adversarial networks. https://arxiv.org/abs/1406.2661
-
(2014)
Generative adversarial networks
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
-
83
-
-
85029767500
-
Doctor AI: Predicting clinical events via recurrent neural networks
-
Northeastern University, Boston, MA, USA
-
Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F. and Sun, J. (2016) Doctor AI: Predicting clinical events via recurrent neural networks. Proceedings of the 1st Machine Learning for Healthcare Conference, Northeastern University, Boston, MA, USA, pp. 301-318
-
(2016)
Proceedings of the 1st Machine Learning for Healthcare Conference
, pp. 301-318
-
-
Choi, E.1
Bahadori, M.T.2
Schuetz, A.3
Stewart, W.F.4
Sun, J.5
-
84
-
-
84968813824
-
Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
-
Miotto, R., Li, L., Kidd, B.A. and Dudley, J.T. (2016) Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 https://doi.org/10.1038/srep26094
-
(2016)
Sci. Rep
, vol.6
, pp. 26094
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
85
-
-
84959421866
-
Deep learning approach for active classification of electrocardiogram signals
-
Al Rahhal, M.M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F. and Yager R.R. (2016) Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340-354 https://doi.org/10.1016/j.ins.2016.01.082
-
(2016)
Inf. Sci
, vol.345
, pp. 340-354
-
-
Al Rahhal, M.M.1
Bazi, Y.2
AlHichri, H.3
Alajlan, N.4
Melgani, F.5
Yager, R.R.6
-
86
-
-
85010198893
-
Recurrent convolutional neural network regression for continuous pain intensity estimation in video
-
Las Vegas, USA
-
Zhou, J., Hong, X., Su, F. and Zhao, G. (2016) Recurrent convolutional neural network regression for continuous pain intensity estimation in video. 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, USA
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
-
-
Zhou, J.1
Hong, X.2
Su, F.3
Zhao, G.4
-
87
-
-
85027881492
-
Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
-
Lee, C.S., Baughman, D.M. and Lee, A.Y. (2017) Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retina 1, 322-327 https://doi.org/10.1016/j.oret.2016.12.009
-
(2017)
Ophthalmol. Retina
, vol.1
, pp. 322-327
-
-
Lee, C.S.1
Baughman, D.M.2
Lee, A.Y.3
-
88
-
-
84990193991
-
Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
-
Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C. et al. (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci. 57, 5200-5206 https://doi.org/10.1167/iovs.16-19964
-
(2016)
Invest. Ophthalmol. Vis. Sci
, vol.57
, pp. 5200-5206
-
-
Abràmoff, M.D.1
Lou, Y.2
Erginay, A.3
Clarida, W.4
Amelon, R.5
Folk, J.C.6
-
89
-
-
85012297277
-
A deep learning approach for the analysis of masses in mammograms with minimal user intervention
-
Dhungel, N., Carneiro, G. and Bradley, A.P. (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal. 37, 114-128 https://doi.org/10.1016/j.media.2017.01.009
-
(2017)
Med. Image Anal
, vol.37
, pp. 114-128
-
-
Dhungel, N.1
Carneiro, G.2
Bradley, A.P.3
-
91
-
-
84980350859
-
Large scale deep learning for computer aided detection of mammographic lesions
-
Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R. et al. (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303-312 https://doi.org/10.1016/j.media.2016.07.007
-
(2017)
Med. Image Anal
, vol.35
, pp. 303-312
-
-
Kooi, T.1
Litjens, G.2
van Ginneken, B.3
Gubern-Mérida, A.4
Sánchez, C.I.5
Mann, R.6
-
92
-
-
84973442994
-
Brain tumor segmentation with deep neural networks
-
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y. et al. (2017) Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18-31 https://doi.org/10.1016/j.media.2016.05.004
-
(2017)
Med. Image Anal
, vol.35
, pp. 18-31
-
-
Havaei, M.1
Davy, A.2
Warde-Farley, D.3
Biard, A.4
Courville, A.5
Bengio, Y.6
-
93
-
-
84968610616
-
Brain tumor segmentation using convolutional neural networks in MRI images
-
Pereira, S., Pinto, A., Alves, V. and Silva, C.A. (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240-1251 https://doi.org/10.1109/TMI.2016.2538465
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1240-1251
-
-
Pereira, S.1
Pinto, A.2
Alves, V.3
Silva, C.A.4
-
94
-
-
85019258762
-
Detecting cardiovascular disease from mammograms with deep learning
-
Wang, J., Ding, H., Bidgoli, F.A., Zhou, B., Iribarren, C., Molloi, S. et al. (2017) Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 36, 1172-1181 https://doi.org/10.1109/TMI.2017.2655486
-
(2017)
IEEE Trans. Med. Imaging
, vol.36
, pp. 1172-1181
-
-
Wang, J.1
Ding, H.2
Bidgoli, F.A.3
Zhou, B.4
Iribarren, C.5
Molloi, S.6
-
95
-
-
85027857164
-
DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI
-
bioRxiv 070441
-
Sarraf, S., DeSouza, D.D., Anderson, J. and Tofighi, G. (2017) DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI. bioRxiv 070441 https://doi.org/10.1101/070441
-
(2017)
-
-
Sarraf, S.1
DeSouza, D.D.2
Anderson, J.3
Tofighi, G.4
-
99
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, USA
-
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770-778
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
100
-
-
85018293362
-
Automated analysis of high-content microscopy data with deep learning
-
Kraus, O.Z., Grys, B.T., Ba, J., Chong, Y., Frey, B.J., Boone, C. et al. (2017) Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. 13, 924 https://doi.org/10.15252/msb.20177551
-
(2017)
Mol. Syst. Biol
, vol.13
, pp. 924
-
-
Kraus, O.Z.1
Grys, B.T.2
Ba, J.3
Chong, Y.4
Frey, B.J.5
Boone, C.6
-
101
-
-
78650904464
-
Learning Deep Architectures for AI
-
Now Publishers Inc. 101 Zhang, S., Hu, H., Zhou, J., He, X., Jiang, T. and Zeng, J. (2016) ROSE: A deep learning based framework for predicting ribosome stalling. bioRxiv
-
Bengio, Y. (2009) Learning Deep Architectures for AI. Now Publishers Inc. 101 Zhang, S., Hu, H., Zhou, J., He, X., Jiang, T. and Zeng, J. (2016) ROSE: A deep learning based framework for predicting ribosome stalling. bioRxiv https://doi.org/10.1101/067108
-
(2009)
-
-
Bengio, Y.1
-
102
-
-
84960077322
-
De novo identification of replication-timing domains in the human genome by deep learning
-
Liu, F., Ren, C., Li, H., Zhou, P., Bo, X. and Shu, W. (2016) De novo identification of replication-timing domains in the human genome by deep learning. Bioinformatics 32, 641-649 https://doi.org/10.1093/bioinformatics/btv643
-
(2016)
Bioinformatics
, vol.32
, pp. 641-649
-
-
Liu, F.1
Ren, C.2
Li, H.3
Zhou, P.4
Bo, X.5
Shu, W.6
-
104
-
-
84894193223
-
Compression of structured high-throughput sequencing data
-
Campagne, F., Dorff, K.C., Chambwe, N., Robinson, J.T. and Mesirov. J.P. (2013) Compression of structured high-throughput sequencing data. PloS One 8, e79871 https://doi.org/10.1371/journal.pone.0079871
-
(2013)
PloS One
, vol.8
, pp. e79871
-
-
Campagne, F.1
Dorff, K.C.2
Chambwe, N.3
Robinson, J.T.4
Mesirov, J.P.5
-
105
-
-
84996486562
-
Deep retinal image understanding
-
(Ourselin S., Joskowicz L., Sabuncu M., Unal G., Wells W., eds) Springer
-
Maninis, K.-K., Pont-Tuset, J., Arbeláez, P. and Van Gool, L. (2016) Deep retinal image understanding. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, (Ourselin S., Joskowicz L., Sabuncu M., Unal G., Wells W., eds) vol 9901. Springer https://doi.org/10.1007/978-3-319-46723-8_17
-
(2016)
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science
, vol.9901
-
-
Maninis, K.-K.1
Pont-Tuset, J.2
Arbeláez, P.3
Van Gool, L.4
-
106
-
-
85029673464
-
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
-
Cole, J.H., Poudel, R.P.K., Tsagkrasoulis, D., Caan, M.W.A., Steves, C., Spector, T.D. and Montana, G. (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163, 115-124
-
(2017)
NeuroImage
, vol.163
, pp. 115-124
-
-
Cole, J.H.1
Poudel, R.P.K.2
Tsagkrasoulis, D.3
Caan, M.W.A.4
Steves, C.5
Spector, T.D.6
Montana, G.7
-
107
-
-
85000788384
-
Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
-
Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Wei, J. and Cha, K. (2016) Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Med. Phys. 43, 6654 https://doi.org/10.1118/1.4967345
-
(2016)
Med. Phys
, vol.43
, pp. 6654
-
-
Samala, R.K.1
Chan, H.-P.2
Hadjiiski, L.3
Helvie, M.A.4
Wei, J.5
Cha, K.6
-
108
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A. and Mougiakakou, S. (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207-1216 https://doi.org/10.1109/TMI.2016.2535865
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
109
-
-
85014941777
-
Multi-source transfer learning with convolutional neural networks for lung pattern analysis
-
Christodoulidis, S., Anthimopoulos, M., Ebner, L., Christe, A. and Mougiakakou, S. (2017) Multi-source transfer learning with convolutional neural networks for lung pattern analysis. IEEE J. Biomed. Health Informatics 21, 76-84 https://doi.org/10.1109/JBHI.2016.2636929
-
(2017)
IEEE J. Biomed. Health Informatics
, vol.21
, pp. 76-84
-
-
Christodoulidis, S.1
Anthimopoulos, M.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
110
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I. et al. (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285-1298 https://doi.org/10.1109/TMI.2016.2528162
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1285-1298
-
-
Shin, H.-C.1
Roth, H.R.2
Gao, M.3
Lu, L.4
Xu, Z.5
Nogues, I.6
-
111
-
-
85026291246
-
Fusing deep learned and hand-crafted features of appearance, shape, and dynamics for automatic pain estimation
-
(FG 2017)
-
Egede, J., Valstar, M. and Martinez, B. (2017) Fusing deep learned and hand-crafted features of appearance, shape, and dynamics for automatic pain estimation. 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) https://doi.org/10.1109/fg.2017.87
-
(2017)
2017 12th IEEE International Conference on Automatic Face & Gesture Recognition
-
-
Egede, J.1
Valstar, M.2
Martinez, B.3
|