메뉴 건너뛰기




Volumn 1, Issue 3, 2017, Pages 257-274

Computational biology: Deep learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOINFORMATICS; DEEP LEARNING;

EID: 85044299745     PISSN: 23978554     EISSN: 23978562     Source Type: Journal    
DOI: 10.1042/ETLS20160025     Document Type: Review
Times cited : (74)

References (111)
  • 1
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251-257 https://doi.org/10.1016/0893-6080(91) 90009-T
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 2
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning. Nature 521, 436-444 https://doi.org/10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 3
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. (2015) Deep learning in neural networks: An overview. Neural Networks 61, 85-117 https://doi.org/10.1016/j.neunet.2014.09.003
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 5
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M.T. and Frey, B.J. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831-838 https://doi.org/10.1038/nbt.3300
    • (2015) Nat. Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 6
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley, D.R., Snoek, J. and Rinn, J.L. (2016) Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990-999 https://doi.org/10.1101/gr.200535.115
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 7
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931-934 https://doi.org/10.1038/nmeth.3547
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 8
    • 85096132725 scopus 로고    scopus 로고
    • Understanding sequence conservation with deep learning
    • bioRxiv 103929
    • Li, Y., Quang, D. and Xie, X. (2017) Understanding sequence conservation with deep learning. bioRxiv 103929 https://doi.org/10.1101/103929
    • (2017)
    • Li, Y.1    Quang, D.2    Xie, X.3
  • 9
    • 85011697811 scopus 로고    scopus 로고
    • Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
    • Umarov, R.K. and Solovyev, V.V. (2017) Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS ONE 12, e0171410 https://doi.org/10.1371/journal.pone.0171410
    • (2017) PLoS ONE , vol.12 , pp. e0171410
    • Umarov, R.K.1    Solovyev, V.V.2
  • 11
    • 85032446969 scopus 로고    scopus 로고
    • Predicting the impact of non-coding variants on DNA methylation
    • Zeng, H. and Gifford, D.K. (2017) Predicting the impact of non-coding variants on DNA methylation. Nucleic Acids Res. 45, e99 https://doi.org/10. 1093/nar/gkx177
    • (2017) Nucleic Acids Res , vol.45 , pp. e99
    • Zeng, H.1    Gifford, D.K.2
  • 12
    • 85096122299 scopus 로고    scopus 로고
    • TIDE: Predicting translation initiation sites by deep learning
    • bioRxiv 103374
    • Zhang, S., Hu, H., Jiang, T., Zhang, L. and Zeng, J. (2017) TIDE: Predicting translation initiation sites by deep learning. bioRxiv 103374 https://doi.org/10.1101/103374
    • (2017)
    • Zhang, S.1    Hu, H.2    Jiang, T.3    Zhang, L.4    Zeng, J.5
  • 13
    • 85030676904 scopus 로고    scopus 로고
    • Predicting enhancer-promoter interaction from genomic sequence with deep neural networks
    • bioRxiv 085241
    • Singh, S., Yang, Y., Poczos, B. and Ma, J. (2016) Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. bioRxiv 085241 https://doi.org/10.1101/085241
    • (2016)
    • Singh, S.1    Yang, Y.2    Poczos, B.3    Ma, J.4
  • 14
    • 85014167143 scopus 로고    scopus 로고
    • Imputation for transcription factor binding predictions based on deep learning
    • Qin, Q. and Feng, J. (2017) Imputation for transcription factor binding predictions based on deep learning. PLoS Comput. Biol. 13, e1005403 https://doi.org/10.1371/journal.pcbi.1005403
    • (2017) PLoS Comput. Biol , vol.13 , pp. e1005403
    • Qin, Q.1    Feng, J.2
  • 15
    • 84979968560 scopus 로고    scopus 로고
    • Denoising genome-wide histone ChIP-seq with convolutional neural networks
    • Koh, P.W., Pierson, E. and Kundaje, A. (2017) Denoising genome-wide histone ChIP-seq with convolutional neural networks. bioRXiv https://doi.org/10. 1101/052118
    • (2017) bioRXiv
    • Koh, P.W.1    Pierson, E.2    Kundaje, A.3
  • 16
    • 85028411342 scopus 로고    scopus 로고
    • FIDDLE: An integrative deep learning framework for functional genomic data inference
    • bioRxiv 081380
    • Eser, U. and Churchman, L.S. (2016) FIDDLE: An integrative deep learning framework for functional genomic data inference. bioRxiv 081380 https://doi.org/10.1101/081380
    • (2016)
    • Eser, U.1    Churchman, L.S.2
  • 17
    • 84990888204 scopus 로고    scopus 로고
    • Deepchrome: Deep-learning for predicting gene expression from histone modifications
    • Singh, R., Lanchantin, J., Robins, G. and Qi, Y. (2016) Deepchrome: Deep-learning for predicting gene expression from histone modifications. Bioinformatics 32, i639-i648 https://doi.org/10.1093/bioinformatics/btw427
    • (2016) Bioinformatics , vol.32 , pp. i639-i648
    • Singh, R.1    Lanchantin, J.2    Robins, G.3    Qi, Y.4
  • 18
    • 85042353227 scopus 로고    scopus 로고
    • Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture
    • bioRxiv 103614
    • Schreiber, J., Libbrecht, M., Bilmes, J. and Noble, W. (2017) Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture. bioRxiv 103614 https://doi.org/10.1101/103614
    • (2017)
    • Schreiber, J.1    Libbrecht, M.2    Bilmes, J.3    Noble, W.4
  • 19
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller, C., Lee, H.J., Reik, W. and Stegle, O. (2017) DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 https://doi.org/10.1186/s13059-017-1189-z
    • (2017) Genome Biol , vol.18 , pp. 67
    • Angermueller, C.1    Lee, H.J.2    Reik, W.3    Stegle, O.4
  • 20
    • 84960503750 scopus 로고    scopus 로고
    • A deep learning framework for modeling structural features of RNA-binding protein targets
    • Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C. et al. (2016) A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44, e32 https://doi.org/10.1093/nar/gkv1025
    • (2016) Nucleic Acids Res , vol.44 , pp. e32
    • Zhang, S.1    Zhou, J.2    Hu, H.3    Gong, H.4    Chen, L.5    Cheng, C.6
  • 21
    • 85014099241 scopus 로고    scopus 로고
    • RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach
    • Pan, X. and Shen, H.-B. (2017) RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinformatics 18, 136 https://doi.org/10.1186/s12859-017-1561-8
    • (2017) BMC Bioinformatics , vol.18 , pp. 136
    • Pan, X.1    Shen, H.-B.2
  • 22
    • 84976420628 scopus 로고    scopus 로고
    • Gene expression inference with deep learning
    • Chen, Y., Li, Y., Narayan, R., Subramanian, A. and Xie, X. (2016) Gene expression inference with deep learning. Bioinformatics 32, 1832-1839 https://doi.org/10.1093/bioinformatics/btw074
    • (2016) Bioinformatics , vol.32 , pp. 1832-1839
    • Chen, Y.1    Li, Y.2    Narayan, R.3    Subramanian, A.4    Xie, X.5
  • 23
    • 84975746111 scopus 로고    scopus 로고
    • PEDLA: Predicting enhancers with a deep learning-based algorithmic framework
    • Liu, F., Li, H., Ren, C., Bo, X. and Shu, W. (2016) PEDLA: Predicting enhancers with a deep learning-based algorithmic framework. Sci. Rep. 6, 28517 https://doi.org/10.1038/srep28517
    • (2016) Sci. Rep , vol.6 , pp. 28517
    • Liu, F.1    Li, H.2    Ren, C.3    Bo, X.4    Shu, W.5
  • 24
    • 85019671854 scopus 로고    scopus 로고
    • Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
    • bioRxiv 041616
    • Li, Y., Shi, W. and Wasserman, W.W. (2016) Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. bioRxiv 041616 https://doi.org/10.1101/041616
    • (2016)
    • Li, Y.1    Shi, W.2    Wasserman, W.W.3
  • 25
    • 84962045150 scopus 로고    scopus 로고
    • Deep learning for population genetic inference
    • Sheehan, S. and Song, Y.S. (2016) Deep learning for population genetic inference. PLoS Comput. Biol. 12, e1004845 https://doi.org/10.1371/journal. pcbi.1004845
    • (2016) PLoS Comput. Biol , vol.12 , pp. e1004845
    • Sheehan, S.1    Song, Y.S.2
  • 26
    • 80054915847 scopus 로고    scopus 로고
    • A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data
    • Li, H. (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993 https://doi.org/10.1093/bioinformatics/btr509
    • (2011) Bioinformatics , vol.27 , pp. 2987-2993
    • Li, H.1
  • 27
    • 77956295988 scopus 로고    scopus 로고
    • The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
    • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A. et al. (2010) The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 https://doi.org/10.1101/gr.107524.110
    • (2010) Genome Res , vol.20 , pp. 1297-1303
    • McKenna, A.1    Hanna, M.2    Banks, E.3    Sivachenko, A.4    Cibulskis, K.5    Kernytsky, A.6
  • 28
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1, 092 human genomes
    • 1000 Genomes Project Consortium
    • 1000 Genomes Project Consortium, Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M. et al. (2012) An integrated map of genetic variation from 1, 092 human genomes. Nature 491, 56-65 https://doi.org/10.1038/nature11632
    • (2012) Nature , vol.491 , pp. 56-65
    • Abecasis, G.R.1    Auton, A.2    Brooks, L.D.3    DePristo, M.A.4    Durbin, R.M.5
  • 29
    • 85045199690 scopus 로고    scopus 로고
    • Training genotype callers with neural networks
    • bioRxiv 097469
    • Torracinta, R. and Campagne, F. (2016) Training genotype callers with neural networks. bioRxiv 097469 https://doi.org/10.1101/097469
    • (2016)
    • Torracinta, R.1    Campagne, F.2
  • 30
    • 85042112630 scopus 로고    scopus 로고
    • Adaptive somatic mutations calls with deep learning and semi-simulated data
    • bioRxiv 079087
    • Torracinta, R., Mesnard, L., Levine, S., Shaknovich, R., Hanson, M. and Campagne, F. (2016) Adaptive somatic mutations calls with deep learning and semi-simulated data. bioRxiv 079087 https://doi.org/10.1101/079087
    • (2016)
    • Torracinta, R.1    Mesnard, L.2    Levine, S.3    Shaknovich, R.4    Hanson, M.5    Campagne, F.6
  • 32
    • 85024497415 scopus 로고    scopus 로고
    • Creating a universal SNP and small indel variant caller with deep neural networks
    • bioRxiv 092890
    • Poplin, R., Newburger, D., Dijamco, J., Nguyen, N., Loy, D., Gross, S. et al. (2016) Creating a universal SNP and small indel variant caller with deep neural networks. bioRxiv 092890 https://doi.org/10.1101/092890
    • (2016)
    • Poplin, R.1    Newburger, D.2    Dijamco, J.3    Nguyen, N.4    Loy, D.5    Gross, S.6
  • 33
    • 85020469555 scopus 로고    scopus 로고
    • Deepnano: Deep recurrent neural networks for base calling in MinION nanopore reads
    • Boža, V., Brejová, B. and Vinar T. (2017) Deepnano: Deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE 12, e0178751 https://doi.org/10.1371/journal.pone.0178751
    • (2017) PLoS ONE , vol.12 , pp. e0178751
    • Boža, V.1    Brejová, B.2    Vinar, T.3
  • 34
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • Quang, D. and Xie, X. (2016) DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 https://doi.org/10.1093/nar/gkw226
    • (2016) Nucleic Acids Res , vol.44 , pp. e107
    • Quang, D.1    Xie, X.2
  • 37
    • 85046711933 scopus 로고    scopus 로고
    • Reverse-complement parameter sharing improves deep learning models for genomics
    • bioRxiv 103663
    • Shrikumar, A., Greenside, P. and Kundaje, A. (2017) Reverse-complement parameter sharing improves deep learning models for genomics. bioRxiv 103663 https://doi.org/10.1101/103663
    • (2017)
    • Shrikumar, A.1    Greenside, P.2    Kundaje, A.3
  • 38
    • 84976884426 scopus 로고    scopus 로고
    • JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles
    • Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.-Y., Denay, G., Lee, J. et al. (2016) JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110-D115 https://doi.org/10.1093/nar/gkv1176
    • (2016) Nucleic Acids Res , vol.44 , pp. D110-D115
    • Mathelier, A.1    Fornes, O.2    Arenillas, D.J.3    Chen, C.-Y.4    Denay, G.5    Lee, J.6
  • 39
    • 84907413210 scopus 로고    scopus 로고
    • Determination and inference of eukaryotic transcription factor sequence specificity
    • Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P. et al. (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431-1443 https://doi.org/10.1016/j.cell.2014.08.009
    • (2014) Cell , vol.158 , pp. 1431-1443
    • Weirauch, M.T.1    Yang, A.2    Albu, M.3    Cote, A.G.4    Montenegro-Montero, A.5    Drewe, P.6
  • 40
    • 85017162272 scopus 로고    scopus 로고
    • Impact of regulatory variation across human iPSCs and differentiated cells
    • bioRxiv 091660
    • Banovich, N.E., Li, Y.I., Raj, A., Ward, M.C., Greenside, P., Calderon, D. et al. (2016) Impact of regulatory variation across human iPSCs and differentiated cells. bioRxiv 091660 https://doi.org/10.1101/091660
    • (2016)
    • Banovich, N.E.1    Li, Y.I.2    Raj, A.3    Ward, M.C.4    Greenside, P.5    Calderon, D.6
  • 42
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
    • Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O. et al. (2006) CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 https://doi.org/10.1186/gb-2006-7-10-r100
    • (2006) Genome Biol , vol.7 , pp. R100
    • Carpenter, A.E.1    Jones, T.R.2    Lamprecht, M.R.3    Clarke, C.4    Kang, I.H.5    Friman, O.6
  • 43
    • 77951959633 scopus 로고    scopus 로고
    • EBImage-an R package for image processing with applications to cellular phenotypes
    • Pau, G., Fuchs, F., Sklyar, O., Boutros, M. and Huber, W. (2010) EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979-981 https://doi.org/10.1093/bioinformatics/btq046
    • (2010) Bioinformatics , vol.26 , pp. 979-981
    • Pau, G.1    Fuchs, F.2    Sklyar, O.3    Boutros, M.4    Huber, W.5
  • 46
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • (Pereira, F., Burges, C.J.C., Bottou, L. and Weinberger, K.Q., eds), Curran Associates, Inc
    • Ciresan, D., Giusti, A., Gambardella, L.M. and Schmidhuber, J. (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in Neural Information Processing Systems 25 (Pereira, F., Burges, C.J.C., Bottou, L. and Weinberger, K.Q., eds), pp. 2843-2851, Curran Associates, Inc.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2843-2851
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 47
    • 84999836246 scopus 로고    scopus 로고
    • Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
    • Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice, M.M. et al. (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12, e1005177 https://doi.org/10.1371/journal.pcbi.1005177
    • (2016) PLoS Comput. Biol , vol.12 , pp. e1005177
    • Van Valen, D.A.1    Kudo, T.2    Lane, K.M.3    Macklin, D.N.4    Quach, N.T.5    DeFelice, M.M.6
  • 48
    • 84951834022 scopus 로고    scopus 로고
    • U-Net: Convolutional networks for biomedical image segmentation
    • (Navab, N., Hornegger, J., Wells, W.M. and Frangi, A.F., eds), Springer, CRC Press
    • Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 (Navab, N., Hornegger, J., Wells, W.M. and Frangi, A.F., eds), pp. 234-241, Springer, CRC Press. https://www.crcpress.com/Phenomics/Hancock/p/book/9781466590953
    • (2015) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 50
    • 85011298810 scopus 로고    scopus 로고
    • V-Net: Fully convolutional neural networks for volumetric medical image segmentation
    • Stanford University, California, USA
    • Milletari, F., Navab, N. and Ahmadi, S.A. (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV), Stanford University, California, USA, pp. 565-571
    • (2016) 2016 Fourth International Conference on 3D Vision (3DV) , pp. 565-571
    • Milletari, F.1    Navab, N.2    Ahmadi, S.A.3
  • 51
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
    • Greenspan, H., van Ginneken, B. and Summers, R.M. (2016) Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153-1159 https://doi.org/10.1109/TMI.2016.2553401
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1153-1159
    • Greenspan, H.1    van Ginneken, B.2    Summers, R.M.3
  • 54
    • 85000705097 scopus 로고    scopus 로고
    • Systematic cell phenotyping
    • (John M. Hancock, ed)
    • Hériché, J.-K. (2014) Systematic cell phenotyping. In Phenomics (John M. Hancock, ed.), pp. 86-110
    • (2014) Phenomics , pp. 86-110
    • Hériché, J.-K.1
  • 55
    • 45049083228 scopus 로고    scopus 로고
    • WND-CHARM: Multi-purpose image classification using compound image transforms
    • Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M. and Goldberg, I.G. (2008) WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29, 1684-1693 https://doi.org/10.1016/j.patrec.2008.04.013
    • (2008) Pattern Recognit. Lett , vol.29 , pp. 1684-1693
    • Orlov, N.1    Shamir, L.2    Macura, T.3    Johnston, J.4    Eckley, D.M.5    Goldberg, I.G.6
  • 56
    • 84930684870 scopus 로고    scopus 로고
    • Yeast proteome dynamics from single cell imaging and automated analysis
    • Chong, Y.T., Koh, J.L.Y., Friesen, H., Duffy, S.K., Cox, M.J., Moses A. et al. (2015) Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161, 1413-1424 https://doi.org/10.1016/j.cell.2015.04.051
    • (2015) Cell , vol.161 , pp. 1413-1424
    • Chong, Y.T.1    Koh, J.L.Y.2    Friesen, H.3    Duffy, S.K.4    Cox, M.J.5    Moses, A.6
  • 57
    • 84925264979 scopus 로고    scopus 로고
    • Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images
    • Handfield, L.-F., Strome, B., Chong, Y.T. and Moses, A.M. (2015) Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images. Bioinformatics 31, 940-947 https://doi.org/10.1093/bioinformatics/btu759
    • (2015) Bioinformatics , vol.31 , pp. 940-947
    • Handfield, L.-F.1    Strome, B.2    Chong, Y.T.3    Moses, A.M.4
  • 58
    • 84979520423 scopus 로고    scopus 로고
    • An unsupervised kNN method to systematically detect changes in protein localization in high-throughput microscopy images
    • Lu, A.X. and Moses, A.M. (2016) An unsupervised kNN method to systematically detect changes in protein localization in high-throughput microscopy images. PLoS ONE 11, e0158712 https://doi.org/10.1371/journal.pone.0158712
    • (2016) PLoS ONE , vol.11 , pp. e0158712
    • Lu, A.X.1    Moses, A.M.2
  • 59
    • 85020120388 scopus 로고    scopus 로고
    • Deep machine learning provides state-of-the-art performance in image-based plant phenotyping
    • bioRxiv 053033
    • Pound, M.P., Burgess, A.J., Wilson, M.H., Atkinson, J.A., Griffiths, M., Jackson, A.S. et al. (2016) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv 053033 https://doi.org/10.1101/053033
    • (2016)
    • Pound, M.P.1    Burgess, A.J.2    Wilson, M.H.3    Atkinson, J.A.4    Griffiths, M.5    Jackson, A.S.6
  • 60
    • 85019234865 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
    • Pärnamaa, T. and Parts, L. (2017) Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. G3 7, 1385-1392 https://doi.org/10.1534/g3.116.033654
    • (2017) G3 , vol.7 , pp. 1385-1392
    • Pärnamaa, T.1    Parts, L.2
  • 61
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O.Z., Ba, J.L. and Frey, B.J. (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52-i59 https://doi.org/10.1093/bioinformatics/btw252
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 63
    • 85027508892 scopus 로고    scopus 로고
    • Deep learning for imaging flow cytometry: Cell cycle analysis of Jurkat cells
    • bioRxiv 081364
    • Eulenberg, P., Koehler, N., Blasi, T., Filby, A., Carpenter, A.E., Rees, P. et al. (2016) Deep learning for imaging flow cytometry: Cell cycle analysis of Jurkat cells. bioRxiv 081364 https://doi.org/10.1101/081364
    • (2016)
    • Eulenberg, P.1    Koehler, N.2    Blasi, T.3    Filby, A.4    Carpenter, A.E.5    Rees, P.6
  • 64
    • 85013149570 scopus 로고    scopus 로고
    • Prospective identification of hematopoietic lineage choice by deep learning
    • Buggenthin, F., Buettner, F., Hoppe, P.S., Endele, M., Kroiss, M., Strasser, M. et al. (2017) Prospective identification of hematopoietic lineage choice by deep learning. Nat. Methods 14, 403-406 https://doi.org/10.1038/nmeth.4182
    • (2017) Nat. Methods , vol.14 , pp. 403-406
    • Buggenthin, F.1    Buettner, F.2    Hoppe, P.S.3    Endele, M.4    Kroiss, M.5    Strasser, M.6
  • 65
    • 85030094149 scopus 로고    scopus 로고
    • Automating morphological profiling with generic deep convolutional networks
    • bioRxiv 085118
    • Pawlowski, N., Caicedo, J.C., Singh, S., Carpenter, A.E. and Storkey, A. (2016) Automating morphological profiling with generic deep convolutional networks. bioRxiv 085118 https://doi.org/10.1101/085118
    • (2016)
    • Pawlowski, N.1    Caicedo, J.C.2    Singh, S.3    Carpenter, A.E.4    Storkey, A.5
  • 68
    • 84968572894 scopus 로고    scopus 로고
    • Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
    • Kallenberg, M., Petersen, K., Nielsen, M., Ng, A.Y., Diao, P., Igel, C. et al. (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35, 1322-1331 https://doi.org/10.1109/TMI.2016.2532122
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1322-1331
    • Kallenberg, M.1    Petersen, K.2    Nielsen, M.3    Ng, A.Y.4    Diao, P.5    Igel, C.6
  • 69
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C. et al. (2016) Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 https://doi.org/10.1038/srep24454
    • (2016) Sci. Rep , vol.6 , pp. 24454
    • Cheng, J.-Z.1    Ni, D.2    Chou, Y.-H.3    Qin, J.4    Tiu, C.-M.5    Chang, Y.-C.6
  • 70
    • 84988000506 scopus 로고    scopus 로고
    • Early-stage atherosclerosis detection using deep learning over carotid ultrasound images
    • Menchón-Lara, R.-M., Sancho-Gómez, J.-L. and Bueno-Crespo, A. (2016) Early-stage atherosclerosis detection using deep learning over carotid ultrasound images. Appl. Soft Comput. 49, 616-628 https://doi.org/10.1016/j.asoc.2016.08.055
    • (2016) Appl. Soft Comput , vol.49 , pp. 616-628
    • Menchón-Lara, R.-M.1    Sancho-Gómez, J.-L.2    Bueno-Crespo, A.3
  • 72
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M. et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115-118 https://doi.org/10.1038/nature21056
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6
  • 73
    • 85045203801 scopus 로고    scopus 로고
    • Leveraging uncertainty information from deep neural networks for disease detection
    • bioRxiv 084210
    • Leibig, C., Allken, V., Berens, P. and Wahl, S. (2016) Leveraging uncertainty information from deep neural networks for disease detection. bioRxiv 084210 https://doi.org/10.1101/084210
    • (2016)
    • Leibig, C.1    Allken, V.2    Berens, P.3    Wahl, S.4
  • 80
    • 84976407069 scopus 로고    scopus 로고
    • Deep biomarkers of human aging: Application of deep neural networks to biomarker development
    • Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A. et al. (2016) Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging 8, 1021-1033 https://doi.org/10.18632/aging.100968
    • (2016) Aging , vol.8 , pp. 1021-1033
    • Putin, E.1    Mamoshina, P.2    Aliper, A.3    Korzinkin, M.4    Moskalev, A.5    Kolosov, A.6
  • 84
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
    • Miotto, R., Li, L., Kidd, B.A. and Dudley, J.T. (2016) Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 https://doi.org/10.1038/srep26094
    • (2016) Sci. Rep , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 85
    • 84959421866 scopus 로고    scopus 로고
    • Deep learning approach for active classification of electrocardiogram signals
    • Al Rahhal, M.M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F. and Yager R.R. (2016) Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340-354 https://doi.org/10.1016/j.ins.2016.01.082
    • (2016) Inf. Sci , vol.345 , pp. 340-354
    • Al Rahhal, M.M.1    Bazi, Y.2    AlHichri, H.3    Alajlan, N.4    Melgani, F.5    Yager, R.R.6
  • 87
    • 85027881492 scopus 로고    scopus 로고
    • Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
    • Lee, C.S., Baughman, D.M. and Lee, A.Y. (2017) Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retina 1, 322-327 https://doi.org/10.1016/j.oret.2016.12.009
    • (2017) Ophthalmol. Retina , vol.1 , pp. 322-327
    • Lee, C.S.1    Baughman, D.M.2    Lee, A.Y.3
  • 88
    • 84990193991 scopus 로고    scopus 로고
    • Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
    • Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C. et al. (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci. 57, 5200-5206 https://doi.org/10.1167/iovs.16-19964
    • (2016) Invest. Ophthalmol. Vis. Sci , vol.57 , pp. 5200-5206
    • Abràmoff, M.D.1    Lou, Y.2    Erginay, A.3    Clarida, W.4    Amelon, R.5    Folk, J.C.6
  • 89
    • 85012297277 scopus 로고    scopus 로고
    • A deep learning approach for the analysis of masses in mammograms with minimal user intervention
    • Dhungel, N., Carneiro, G. and Bradley, A.P. (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal. 37, 114-128 https://doi.org/10.1016/j.media.2017.01.009
    • (2017) Med. Image Anal , vol.37 , pp. 114-128
    • Dhungel, N.1    Carneiro, G.2    Bradley, A.P.3
  • 91
    • 84980350859 scopus 로고    scopus 로고
    • Large scale deep learning for computer aided detection of mammographic lesions
    • Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R. et al. (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303-312 https://doi.org/10.1016/j.media.2016.07.007
    • (2017) Med. Image Anal , vol.35 , pp. 303-312
    • Kooi, T.1    Litjens, G.2    van Ginneken, B.3    Gubern-Mérida, A.4    Sánchez, C.I.5    Mann, R.6
  • 93
    • 84968610616 scopus 로고    scopus 로고
    • Brain tumor segmentation using convolutional neural networks in MRI images
    • Pereira, S., Pinto, A., Alves, V. and Silva, C.A. (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240-1251 https://doi.org/10.1109/TMI.2016.2538465
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1240-1251
    • Pereira, S.1    Pinto, A.2    Alves, V.3    Silva, C.A.4
  • 94
    • 85019258762 scopus 로고    scopus 로고
    • Detecting cardiovascular disease from mammograms with deep learning
    • Wang, J., Ding, H., Bidgoli, F.A., Zhou, B., Iribarren, C., Molloi, S. et al. (2017) Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 36, 1172-1181 https://doi.org/10.1109/TMI.2017.2655486
    • (2017) IEEE Trans. Med. Imaging , vol.36 , pp. 1172-1181
    • Wang, J.1    Ding, H.2    Bidgoli, F.A.3    Zhou, B.4    Iribarren, C.5    Molloi, S.6
  • 95
    • 85027857164 scopus 로고    scopus 로고
    • DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI
    • bioRxiv 070441
    • Sarraf, S., DeSouza, D.D., Anderson, J. and Tofighi, G. (2017) DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI. bioRxiv 070441 https://doi.org/10.1101/070441
    • (2017)
    • Sarraf, S.1    DeSouza, D.D.2    Anderson, J.3    Tofighi, G.4
  • 100
    • 85018293362 scopus 로고    scopus 로고
    • Automated analysis of high-content microscopy data with deep learning
    • Kraus, O.Z., Grys, B.T., Ba, J., Chong, Y., Frey, B.J., Boone, C. et al. (2017) Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. 13, 924 https://doi.org/10.15252/msb.20177551
    • (2017) Mol. Syst. Biol , vol.13 , pp. 924
    • Kraus, O.Z.1    Grys, B.T.2    Ba, J.3    Chong, Y.4    Frey, B.J.5    Boone, C.6
  • 101
    • 78650904464 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI
    • Now Publishers Inc. 101 Zhang, S., Hu, H., Zhou, J., He, X., Jiang, T. and Zeng, J. (2016) ROSE: A deep learning based framework for predicting ribosome stalling. bioRxiv
    • Bengio, Y. (2009) Learning Deep Architectures for AI. Now Publishers Inc. 101 Zhang, S., Hu, H., Zhou, J., He, X., Jiang, T. and Zeng, J. (2016) ROSE: A deep learning based framework for predicting ribosome stalling. bioRxiv https://doi.org/10.1101/067108
    • (2009)
    • Bengio, Y.1
  • 102
    • 84960077322 scopus 로고    scopus 로고
    • De novo identification of replication-timing domains in the human genome by deep learning
    • Liu, F., Ren, C., Li, H., Zhou, P., Bo, X. and Shu, W. (2016) De novo identification of replication-timing domains in the human genome by deep learning. Bioinformatics 32, 641-649 https://doi.org/10.1093/bioinformatics/btv643
    • (2016) Bioinformatics , vol.32 , pp. 641-649
    • Liu, F.1    Ren, C.2    Li, H.3    Zhou, P.4    Bo, X.5    Shu, W.6
  • 104
    • 84894193223 scopus 로고    scopus 로고
    • Compression of structured high-throughput sequencing data
    • Campagne, F., Dorff, K.C., Chambwe, N., Robinson, J.T. and Mesirov. J.P. (2013) Compression of structured high-throughput sequencing data. PloS One 8, e79871 https://doi.org/10.1371/journal.pone.0079871
    • (2013) PloS One , vol.8 , pp. e79871
    • Campagne, F.1    Dorff, K.C.2    Chambwe, N.3    Robinson, J.T.4    Mesirov, J.P.5
  • 106
    • 85029673464 scopus 로고    scopus 로고
    • Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
    • Cole, J.H., Poudel, R.P.K., Tsagkrasoulis, D., Caan, M.W.A., Steves, C., Spector, T.D. and Montana, G. (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163, 115-124
    • (2017) NeuroImage , vol.163 , pp. 115-124
    • Cole, J.H.1    Poudel, R.P.K.2    Tsagkrasoulis, D.3    Caan, M.W.A.4    Steves, C.5    Spector, T.D.6    Montana, G.7
  • 107
    • 85000788384 scopus 로고    scopus 로고
    • Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
    • Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Wei, J. and Cha, K. (2016) Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Med. Phys. 43, 6654 https://doi.org/10.1118/1.4967345
    • (2016) Med. Phys , vol.43 , pp. 6654
    • Samala, R.K.1    Chan, H.-P.2    Hadjiiski, L.3    Helvie, M.A.4    Wei, J.5    Cha, K.6
  • 108
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A. and Mougiakakou, S. (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207-1216 https://doi.org/10.1109/TMI.2016.2535865
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 110
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I. et al. (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285-1298 https://doi.org/10.1109/TMI.2016.2528162
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1285-1298
    • Shin, H.-C.1    Roth, H.R.2    Gao, M.3    Lu, L.4    Xu, Z.5    Nogues, I.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.