-
1
-
-
84921859918
-
Identification of altered cis-regulatory elements in human disease
-
5637093,.;: –
-
Mathelier A, Shi W, Wasserman WW, Identification of altered cis-regulatory elements in human disease. Trends in Genetics. 2015;31: 67–76. doi: 10.1016/j.tig.2014.12.00325637093
-
(2015)
Trends in Genetics
, vol.31
, pp. 67-76
-
-
Mathelier, A.1
Shi, W.2
Wasserman, W.W.3
-
2
-
-
84908894973
-
Genome-wide analysis of noncoding regulatory mutations in cancer
-
5261935,.;: –
-
Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W, Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet. 2014;46: 1160–1165. doi: 10.1038/ng.310125261935
-
(2014)
Nat Genet
, vol.46
, pp. 1160-1165
-
-
Weinhold, N.1
Jacobsen, A.2
Schultz, N.3
Sander, C.4
Lee, W.5
-
3
-
-
84902254692
-
Cis-regulatory variation: significance in biomedicine and evolution
-
4744265,.;: –
-
Friedensohn S, Sawarkar R, Cis-regulatory variation: significance in biomedicine and evolution. Cell Tissue Res. 2014;356: 495–505. doi: 10.1007/s00441-014-1855-324744265
-
(2014)
Cell Tissue Res
, vol.356
, pp. 495-505
-
-
Friedensohn, S.1
Sawarkar, R.2
-
4
-
-
34250159524
-
Genome-wide mapping of in vivo protein-DNA interactions
-
7540862,.;: –
-
Johnson DS, Mortazavi A, Myers RM, Wold B, Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316: 1497–1502. doi: 10.1126/science.114131917540862
-
(2007)
Science
, vol.316
, pp. 1497-1502
-
-
Johnson, D.S.1
Mortazavi, A.2
Myers, R.M.3
Wold, B.4
-
5
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
2955616,.;: –
-
ENCODE Project ConsortiumAn integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489: 57–74. doi: 10.1038/nature1124722955616
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
-
6
-
-
41449086977
-
Systematic identification of mammalian regulatory motifs’ target genes and functions
-
8311145,.;: –
-
Warner JB, Philippakis AA, Jaeger SA, He FS, Lin J, Bulyk ML, Systematic identification of mammalian regulatory motifs’ target genes and functions. Nat Methods. 2008;5: 347–353. doi: 10.1038/nmeth.118818311145
-
(2008)
Nat Methods
, vol.5
, pp. 347-353
-
-
Warner, J.B.1
Philippakis, A.A.2
Jaeger, S.A.3
He, F.S.4
Lin, J.5
Bulyk, M.L.6
-
7
-
-
57749121616
-
A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters
-
9111667,..;: –
-
Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, et al. A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters. Molecular Cell. 2008;32: 878–887. doi: 10.1016/j.molcel.2008.11.02019111667
-
(2008)
Molecular Cell
, vol.32
, pp. 878-887
-
-
Badis, G.1
Chan, E.T.2
van Bakel, H.3
Pena-Castillo, L.4
Tillo, D.5
Tsui, K.6
-
8
-
-
84885841612
-
Modeling the specificity of protein-DNA interactions
-
5045190,.;: –
-
Stormo GD, Modeling the specificity of protein-DNA interactions. Quant Biol. 2013;1: 115–130. doi: 10.1007/s40484-013-0012-425045190
-
(2013)
Quant Biol
, vol.1
, pp. 115-130
-
-
Stormo, G.D.1
-
9
-
-
84873594686
-
Evaluation of methods for modeling transcription factor sequence specificity
-
Weirauch MT, Cote A, Norel R, Annala M, Zhao Y, Riley TR, et al. Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotech. 2013;31: 126–134.
-
(2013)
Nat Biotech
, vol.31
, pp. 126-134
-
-
Weirauch, M.T.1
Cote, A.2
Norel, R.3
Annala, M.4
Zhao, Y.5
Riley, T.R.6
-
10
-
-
84876529535
-
Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium
-
3203885,..;: –
-
Wang J, Zhuang J, Iyer S, Lin X-Y, Greven MC, Kim B-H, et al. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Nucleic Acids Res. 2013;41: D171–176. doi: 10.1093/nar/gks122123203885
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D171-176
-
-
Wang, J.1
Zhuang, J.2
Iyer, S.3
Lin, X.-Y.4
Greven, M.C.5
Kim, B.-H.6
-
11
-
-
84891808382
-
JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles
-
4194598,..;: –
-
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014;42: D142–147. doi: 10.1093/nar/gkt99724194598
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D142-147
-
-
Mathelier, A.1
Zhao, X.2
Zhang, A.W.3
Parcy, F.4
Worsley-Hunt, R.5
Arenillas, D.J.6
-
12
-
-
84916631334
-
Increased subtlety of transcription factor binding increases complexity of genome regulation
-
5468983,.;: –
-
von Hippel PH, Increased subtlety of transcription factor binding increases complexity of genome regulation. Proc Natl Acad Sci U S A. 2014;111: 17344–17345. doi: 10.1073/pnas.141897811125468983
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 17344-17345
-
-
von Hippel, P.H.1
-
13
-
-
84895810018
-
Protein—DNA binding: complexities and multi-protein codes
-
4243859,.;: –
-
Siggers T, Gordân R, Protein—DNA binding: complexities and multi-protein codes. Nucl Acids Res. 2014;42: 2099–2111. doi: 10.1093/nar/gkt111224243859
-
(2014)
Nucl Acids Res
, vol.42
, pp. 2099-2111
-
-
Siggers, T.1
Gordân, R.2
-
14
-
-
84914132430
-
Protein—DNA binding in the absence of specific base-pair recognition
-
5313048,.;: –
-
Afek A, Schipper JL, Horton J, Gordân R, Lukatsky DB, Protein—DNA binding in the absence of specific base-pair recognition. PNAS. 2014;111: 17140–17145. doi: 10.1073/pnas.141056911125313048
-
(2014)
PNAS
, vol.111
, pp. 17140-17145
-
-
Afek, A.1
Schipper, J.L.2
Horton, J.3
Gordân, R.4
Lukatsky, D.B.5
-
15
-
-
84905484602
-
Enhanced regulatory sequence prediction using gapped k-mer features
-
5033408,.;:
-
Ghandi M, Lee D, Mohammad-Noori M, Beer MA, Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput Biol. 2014;10: e1003711. doi: 10.1371/journal.pcbi.100371125033408
-
(2014)
PLoS Comput Biol
, vol.10
, pp. e1003711
-
-
Ghandi, M.1
Lee, D.2
Mohammad-Noori, M.3
Beer, M.A.4
-
16
-
-
84992398648
-
gkmSVM: an R package for gapped-kmer SVM
-
Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway L, Beer MA, gkmSVM: an R package for gapped-kmer SVM. Bioinformatics. 2016; btw203.
-
(2016)
Bioinformatics
, pp. btw203
-
-
Ghandi, M.1
Mohammad-Noori, M.2
Ghareghani, N.3
Lee, D.4
Garraway, L.5
Beer, M.A.6
-
17
-
-
83055181959
-
Discriminative prediction of mammalian enhancers from DNA sequence
-
1875935,.;: –
-
Lee D, Karchin R, Beer MA, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011;21: 2167–2180. doi: 10.1101/gr.121905.11121875935
-
(2011)
Genome Res
, vol.21
, pp. 2167-2180
-
-
Lee, D.1
Karchin, R.2
Beer, M.A.3
-
18
-
-
84959927123
-
GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding
-
Zeng H, Hashimoto T, Kang DD, Gifford DK, GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding. Bioinformatics. 2015; btv565.
-
(2015)
Bioinformatics
, pp. btv565
-
-
Zeng, H.1
Hashimoto, T.2
Kang, D.D.3
Gifford, D.K.4
-
19
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
Alipanahi B, Delong A, Weirauch MT, Frey BJ, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotech. 2015;33: 831–838.
-
(2015)
Nat Biotech
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
20
-
-
84886780296
-
Dynamic trans-Acting Factor Colocalization in Human Cells
-
4243024,.;: –
-
Xie D, Boyle AP, Wu L, Zhai J, Kawli T, Snyder M, Dynamic trans-Acting Factor Colocalization in Human Cells. Cell. 2013;155: 713–724. doi: 10.1016/j.cell.2013.09.04324243024
-
(2013)
Cell
, vol.155
, pp. 713-724
-
-
Xie, D.1
Boyle, A.P.2
Wu, L.3
Zhai, J.4
Kawli, T.5
Snyder, M.6
-
21
-
-
79952266465
-
Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
-
1106904,.;: –
-
Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Pritchard JK, Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 2011;21: 447–455. doi: 10.1101/gr.112623.11021106904
-
(2011)
Genome Res
, vol.21
, pp. 447-455
-
-
Pique-Regi, R.1
Degner, J.F.2
Pai, A.A.3
Gaffney, D.J.4
Gilad, Y.5
Pritchard, J.K.6
-
22
-
-
84893863046
-
Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape
-
Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP, et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotech. 2014;32: 171–178.
-
(2014)
Nat Biotech
, vol.32
, pp. 171-178
-
-
Sherwood, R.I.1
Hashimoto, T.2
O’Donnell, C.W.3
Lewis, S.4
Barkal, A.A.5
van Hoff, J.P.6
-
23
-
-
84894613651
-
Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification
-
He HH, Meyer CA, Hu SS, Chen M-W, Zang C, Liu Y, et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat Meth. 2014;11: 73–78.
-
(2014)
Nat Meth
, vol.11
, pp. 73-78
-
-
He, H.H.1
Meyer, C.A.2
Hu, S.S.3
Chen, M.-W.4
Zang, C.5
Liu, Y.6
-
24
-
-
84938276507
-
A method to predict the impact of regulatory variants from DNA sequence
-
6075791,..;: –
-
Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to predict the impact of regulatory variants from DNA sequence. Nat Genet. 2015;47: 955–961. doi: 10.1038/ng.333126075791
-
(2015)
Nat Genet
, vol.47
, pp. 955-961
-
-
Lee, D.1
Gorkin, D.U.2
Baker, M.3
Strober, B.J.4
Asoni, A.L.5
McCallion, A.S.6
-
25
-
-
84930630277
-
Deep learning
-
6017442,.;: –
-
LeCun Y, Bengio Y, Hinton G, Deep learning. Nature. 2015;521: 436–444. doi: 10.1038/nature1453926017442
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
26
-
-
84910651844
-
Deep Learning in Neural Networks: An Overview
-
5462637,.;: –
-
Schmidhuber J, Deep Learning in Neural Networks: An Overview. Neural Networks. 2015;61: 85–117. doi: 10.1016/j.neunet.2014.09.00325462637
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
27
-
-
84958257565
-
-
advance online publicatio
-
Zhou J, Troyanskaya OG, Predicting effects of noncoding variants with deep learning-based sequence model. Nat Meth. 2015;advance online publication.
-
(2015)
Nat Meth
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
28
-
-
84926632357
-
Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues
-
Ernst J, Kellis M, Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat Biotech. 2015;33: 364–376.
-
(2015)
Nat Biotech
, vol.33
, pp. 364-376
-
-
Ernst, J.1
Kellis, M.2
-
29
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun Y, Bottou L, Bengio Y, Haffner P, Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998;86: 2278–2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
30
-
-
0142166851
-
A Neural Probabilistic Language Model
-
Bengio Y, Ducharme R, Vincent P, Jauvin C, A Neural Probabilistic Language Model. JOURNAL OF MACHINE LEARNING RESEARCH. 2003;3: 1137–1155.
-
(2003)
JOURNAL OF MACHINE LEARNING RESEARCH
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
31
-
-
85014196040
-
-
eiler MD. ADADELTA: An Adaptive Learning Rate Method. arXiv:12125701 [cs]. 2012
-
Zeiler MD. ADADELTA: An Adaptive Learning Rate Method. arXiv:12125701 [cs]. 2012; http://arxiv.org/abs/1212.5701
-
-
-
-
32
-
-
77950652940
-
Integrating multiple evidence sources to predict transcription factor binding in the human genome
-
0219943,.;: –
-
Ernst J, Plasterer HL, Simon I, Bar-Joseph Z, Integrating multiple evidence sources to predict transcription factor binding in the human genome. Genome Res. 2010;20: 526–536. doi: 10.1101/gr.096305.10920219943
-
(2010)
Genome Res
, vol.20
, pp. 526-536
-
-
Ernst, J.1
Plasterer, H.L.2
Simon, I.3
Bar-Joseph, Z.4
-
33
-
-
58549106607
-
High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites
-
8988630,.;: –
-
Whitington T, Perkins AC, Bailey TL, High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites. Nucleic Acids Res. 2009;37: 14–25. doi: 10.1093/nar/gkn86618988630
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 14-25
-
-
Whitington, T.1
Perkins, A.C.2
Bailey, T.L.3
-
34
-
-
85015106384
-
Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse
-
Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2016;
-
(2016)
Nucleic Acids Res
-
-
Mei, S.1
Qin, Q.2
Wu, Q.3
Sun, H.4
Zheng, R.5
Zang, C.6
-
35
-
-
84877147962
-
Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay
-
3512712,..;: –
-
Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, Zhang X, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 2013;23: 800–811. doi: 10.1101/gr.144899.11223512712
-
(2013)
Genome Res
, vol.23
, pp. 800-811
-
-
Kheradpour, P.1
Ernst, J.2
Melnikov, A.3
Rogov, P.4
Wang, L.5
Zhang, X.6
-
36
-
-
84868198825
-
Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression
-
3001124,..;: –
-
Cowper-Sal lari R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J, et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet. 2012;44: 1191–1198. doi: 10.1038/ng.241623001124
-
(2012)
Nat Genet
, vol.44
, pp. 1191-1198
-
-
Cowper-Sal lari, R.1
Zhang, X.2
Wright, J.B.3
Bailey, S.D.4
Cole, M.D.5
Eeckhoute, J.6
-
37
-
-
84857111200
-
DNase I sensitivity QTLs are a major determinant of human expression variation
-
2307276,..;: –
-
Degner JF, Pai AA, Pique-Regi R, Veyrieras J-B, Gaffney DJ, Pickrell JK, et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature. 2012;482: 390–394. doi: 10.1038/nature1080822307276
-
(2012)
Nature
, vol.482
, pp. 390-394
-
-
Degner, J.F.1
Pai, A.A.2
Pique-Regi, R.3
Veyrieras, J.-B.4
Gaffney, D.J.5
Pickrell, J.K.6
-
38
-
-
84902462761
-
Deep learning of the tissue-regulated splicing code
-
4931975,.;: –
-
Leung MKK, Xiong HY, Lee LJ, Frey BJ, Deep learning of the tissue-regulated splicing code. Bioinformatics. 2014;30: i121–i129. doi: 10.1093/bioinformatics/btu27724931975
-
(2014)
Bioinformatics
, vol.30
, pp. i121-i129
-
-
Leung, M.K.K.1
Xiong, H.Y.2
Lee, L.J.3
Frey, B.J.4
-
39
-
-
85014196350
-
-
ho K, van Merrienboer B, Bahdanau D, Bengio Y. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv:14091259 [cs, stat]. 2014
-
Cho K, van Merrienboer B, Bahdanau D, Bengio Y. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv:14091259 [cs, stat]. 2014; http://arxiv.org/abs/1409.1259
-
-
-
-
40
-
-
84963960017
-
High-dimensional genomic data bias correction and data integration using MANCIE
-
7072482,..;:
-
Zang C, Wang T, Deng K, Li B, Hu S, Qin Q, et al. High-dimensional genomic data bias correction and data integration using MANCIE. Nat Commun. 2016;7: 11305. doi: 10.1038/ncomms1130527072482
-
(2016)
Nat Commun
, vol.7
, pp. 11305
-
-
Zang, C.1
Wang, T.2
Deng, K.3
Li, B.4
Hu, S.5
Qin, Q.6
-
41
-
-
85014193675
-
-
Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, et al. Theano: a CPU and GPU Math Expression Compiler. Proceedings of the Python for Scientific Computing Conference (SciPy). Austin, TX; 2010.
-
(2010)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
-
42
-
-
84937942087
-
-
Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow IJ, Bergeron A, et al. Theano: new features and speed improvements. 2012.
-
(2012)
Theano: new features and speed improvements
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.J.5
Bergeron, A.6
|