-
1
-
-
84949210409
-
The multimodal brain tumor image segmentation benchmark (BRATS)
-
Menze, B. H.; Jakab, A; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Siotboom, 1.; Wiest, R., The multimodal brain tumor image segmentation benchmark (BRATS). Medical Imaging, IEEE Transactions on 2015, 34 (10), 1993-2024.
-
(2015)
Medical Imaging, IEEE Transactions on
, vol.34
, Issue.10
, pp. 1993-2024
-
-
Menze, B.H.1
Jakab, A.2
Bauer, S.3
Kalpathy-Cramer, J.4
Farahani, K.5
Kirby, J.6
Burren, Y.7
Porz, N.8
Siotboom, I.9
Wiest, R.10
-
2
-
-
0019614183
-
A modular computer vision system for image segmentation
-
Lenvine, M.; Shaheen, S., A modular computer vision system for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 1981, 3 (5), 540-557.
-
(1981)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.3
, Issue.5
, pp. 540-557
-
-
Lenvine, M.1
Shaheen, S.2
-
3
-
-
84922287804
-
Automatic Segmentation of Brain Tumor from MR Image Using Region Growing Technique
-
Balasubramanian, c.; Ramasamy, K.; Srinivasagan, K.; Rama-krishnan, K., Automatic Segmentation of Brain Tumor from MR Image Using Region Growing Technique. Journal of Pattern Recognition & Image Processing 2013, 4 (3), 273-282.
-
(2013)
Journal of Pattern Recognition & Image Processing
, vol.4
, Issue.3
, pp. 273-282
-
-
Balasubramanian, C.1
Ramasamy, K.2
Srinivasagan, K.3
Rama-Krishnan, K.4
-
4
-
-
84860744209
-
-
Yamasaki, T.; Chen, T.; Yagi, M.; Hirai, T.; Murakami, R. In: GrowCutbased fast tumor segmentation for 3D magnetic resonance images, SPIE Medical Imaging, International Society for Optics and Photonics: 2012; pp 831434-831434-8.
-
(2012)
GrowCutbased Fast Tumor Segmentation for 3D Magnetic Resonance Images SPIE Medical Imaging International Society for Optics and Photonics
, pp. 831434-8314348
-
-
Yamasaki, T.1
Chen, T.2
Yagi, M.3
Hirai, T.4
Murakami, R.5
-
5
-
-
85011101880
-
Brain tumour extraction from MRI images using bounding-box with level set method
-
Rana, R.; Bhdauria, H.; Singh, A. In: Brain tumour extraction from MRI images using bounding-box with level set method, Contemporary Computing (IC3), 2013 Sixth International Conference on, IEEE: 2013; pp 319-324.
-
(2013)
Contemporary Computing (IC3), 2013 Sixth International Conference On, IEEE
, pp. 319-324
-
-
Rana, R.1
Bhdauria, H.2
Singh, A.3
-
6
-
-
84863913436
-
In: Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm
-
Selvakumar, 1.; Lakshmi, A; Arivoli, T. In: Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm, Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on, IEEE: 2012; pp 186-190.
-
(2012)
Advances in Engineering, Science and Management (ICAESM), 2012 International Conference On, IEEE
, pp. 186-190
-
-
Selvakumar, I.1
Lakshmi, A.2
Arivoli, T.3
-
7
-
-
0028903345
-
MRI segmentation: Methods and applications
-
Clarke, L.; Velthuizen, R.; Camacho, M.; Heine, J.; Vaidyanathan, M.; Hall, L.; Thatcher, R.; Silbiger, M., MRI segmentation: methods and applications. Magnetic resonance imaging 1995, 13 (3), 343-368.
-
(1995)
Magnetic Resonance Imaging
, vol.13
, Issue.3
, pp. 343-368
-
-
Clarke, L.1
Velthuizen, R.2
Camacho, M.3
Heine, J.4
Vaidyanathan, M.5
Hall, L.6
Thatcher, R.7
Silbiger, M.8
-
8
-
-
84876754775
-
In: Brain tumor classification using discrete cosine transform and probabilistic neural network
-
Sridhar, D.; Murali Krishna, I. V. In: Brain tumor classification using discrete cosine transform and probabilistic neural network, Signal Processing Image Processing & Pattern Recognition (ICSIPR), 2013 International Conference on, IEEE: 2013; pp 92-96.
-
(2013)
Signal Processing Image Processing & Pattern Recognition (ICSIPR), 2013 International Conference On, IEEE
, pp. 92-96
-
-
Sridhar, D.1
Murali Krishna, I.V.2
-
9
-
-
84880176045
-
Brain tumor classification using neural network based methods
-
Kharat, K. D.; Kulkarni, P. P.; Nagori, M., Brain tumor classification using neural network based methods. International Journal of Computer Science and Informatics 2012, I (4).
-
(2012)
International Journal of Computer Science and Informatics
, vol.1
, Issue.4
-
-
Kharat, K.D.1
Kulkarni, P.P.2
Nagori, M.3
-
10
-
-
84879864941
-
In Automatic detection of tumor subtype in mammograms based on GLCM and DWT features using SVM
-
Mohamed Fathima, M.; Manimegalai, D.; Thaiyalnayaki, S. In Automatic detection of tumor subtype in mammograms based On GLCM and DWT features using SVM, Information Communication and Embedded Systems (ICICES), 2013 International Conference on, IEEE: 2013; pp 809-813.
-
(2013)
Information Communication and Embedded Systems (ICICES), 2013 International Conference On, IEEE
, pp. 809-813
-
-
Mohamed Fathima, M.1
Manimegalai, D.2
Thaiyalnayaki, S.3
-
11
-
-
82255181699
-
Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization
-
Springer
-
Bauer, S.; Nolte, L.-P.; Reyes, M., Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization.In Medical image computing and computer-assisted interventionM1CCAI 2011, Springer: 2011; pp 354-361.
-
(2011)
Medical Image Computing and Computer-assisted interventionM1CCAI 2011
, pp. 354-361
-
-
Bauer, S.1
Nolte, L.-P.2
Reyes, M.3
-
13
-
-
84907019192
-
Hierarchical feature representation and multimodal fusion with deep learning for ADIMCI diagnosis
-
Suk, H.-I.; Lee, S.-W.; Shen, D.; Initiative, A. s. D. N., Hierarchical feature representation and multimodal fusion with deep learning for ADIMCI diagnosis. Neurolmage 2014, 101, 569-582.
-
(2014)
Neurolmage
, vol.101
, pp. 569-582
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
Initiative, A.S.D.N.4
-
15
-
-
84906979740
-
Deep learning based imaging data completion for improved brain disease diagnosis
-
Springer
-
Li, R.; Zhang, W.; Suk, H.-I.; Wang, L.; Li, J.; Shen, D.; Ji, S., Deep learning based imaging data completion for improved brain disease diagnosis. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Springer: 2014; pp 305-312.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014
, pp. 305-312
-
-
Li, R.1
Zhang, W.2
Suk, H.-I.3
Wang, L.4
Li, J.5
Shen, D.6
Ji, S.7
-
16
-
-
84921673966
-
Robust deep learning for improved classification of AD/MCI patients
-
Springer
-
Li, F.; Tran, L.; Thung, K.-H.; Ji, S.; Shen, D.; Li, J., Robust deep learning for improved classification of AD/MCI patients. In Machine Learning in Medical Imaging, Springer: 2014; pp 240-247.
-
(2014)
Machine Learning in Medical Imaging
, pp. 240-247
-
-
Li, F.1
Tran, L.2
Thung, K.-H.3
Ji, S.4
Shen, D.5
Li, J.6
-
17
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang, W.; Li, R.; Deng, H.; Wang, L.; Lin, W.; Ji, S.; Shen, D., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neurolmage 2015, 108, 214-224.
-
(2015)
Neurolmage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
Wang, L.4
Lin, W.5
Ji, S.6
Shen, D.7
-
18
-
-
84892841517
-
Unsupervised deep feature learning for deformable registration of MR brain images
-
Springer
-
Wu, G.; Kim, M.; Wang, Q.; Gao, Y.; Liao, S.; Shen, D., Unsupervised deep feature learning for deformable registration of MR brain images. In Medical Image Computing and Computer-Assisted InterventionMlCCAI 2013, Springer: 2013; pp 649-656.
-
(2013)
Medical Image Computing and Computer-Assisted InterventionMlCCAI 2013
, pp. 649-656
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Gao, Y.4
Liao, S.5
Shen, D.6
-
19
-
-
84897576138
-
Representation learning: A unified deep learning framework for automatic prostate MR segmentation
-
Springer
-
Liao, S.; Gao, Y.; Oto, A; Shen, D., Representation learning: A unified deep learning framework for automatic prostate MR segmentation. In Medical Image Computing and Computer-Assisted InterventionM1CCAI 2013, Springer: 2013; pp 254-261.
-
(2013)
Medical Image Computing and Computer-Assisted InterventionM1CCAI 2013
, pp. 254-261
-
-
Liao, S.1
Gao, Y.2
Oto, A.3
Shen, D.4
-
20
-
-
84922329668
-
Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features
-
Springer
-
Guo, Y.; Wu, G.; Commander, L. A.; Szary, S.; Jewells, V.; Lin, W.; Shen, D., Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Springer: 2014; pp 308-315.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014
, pp. 308-315
-
-
Guo, Y.1
Wu, G.2
Commander, L.A.3
Szary, S.4
Jewells, V.5
Lin, W.6
Shen, D.7
-
22
-
-
84886731548
-
Unsupervised deep learning for hippocampus segmentation in 7.0 tesla mr images
-
Springer
-
Kim, M.; Wu, G.; Shen, D., Unsupervised deep learning for hippocampus segmentation in 7.0 tesla mr images. In Machine Learning in Medical Imaging, Springer: 2013; pp 1-8.
-
(2013)
Machine Learning in Medical Imaging
, pp. 1-8
-
-
Kim, M.1
Wu, G.2
Shen, D.3
-
23
-
-
84952669511
-
-
arXiv preprint arXiv: 1505.03540
-
Havaei, M.; Davy, A; Warde-Farley, D.; Biard, A; Courville, A; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H., Brain Tumor Segmentation with Deep Neural Networks. arXiv preprint arXiv:1505.03540 2015.
-
(2015)
Brain Tumor Segmentation with Deep Neural Networks
-
-
Havaei, M.1
Davy, A.2
Warde-Farley, D.3
Biard, A.4
Courville, A.5
Bengio, Y.6
Pal, C.7
Jodoin, P.-M.8
Larochelle, H.9
-
25
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H., Greedy layerwise training of deep networks. Advances in neural information processing systems 2007, 19, 153.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
26
-
-
56449089103
-
In: Extracting and composing robust features with denoising autoencoders
-
Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A In: Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, ACM: 2008; pp 1096-1103.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning, ACM
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
28
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E.; Osindero, S.; Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural computation 2006, 18 (7), 1527-1554.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
29
-
-
34547967782
-
In: An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H.; Erhan, D.; Courville, A; Bergstra, 1.; Bengio, Y. In: An empirical evaluation of deep architectures on problems with many factors of variation, Proceedings of the 24th international conference on Machine learning, ACM: 2007; pp 473-480.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ACM
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, L.4
Bengio, Y.5
-
30
-
-
0032034227
-
Automatic tumor segmentation using knowledge-based techniques
-
Clark, M. c.; Hall, 1. 0.; Goldgof, D. B.; Velthuizen, R.; Murtagh, F. R.; Silbiger, M. S., Automatic tumor segmentation using knowledge-based techniques. Medical Imaging, IEEE Transactions on 1998, 17 (2), 187-201.
-
(1998)
Medical Imaging, IEEE Transactions on
, vol.17
, Issue.2
, pp. 187-201
-
-
Clark, M.C.1
Hall, L.O.2
Goldgof, D.B.3
Velthuizen, R.4
Murtagh, F.R.5
Silbiger, M.S.6
-
31
-
-
34249753618
-
Support-vector networks
-
Cortes, c.; Vapnik, V., Support-vector networks. Machine learning 1995, 20 (3), 273-297
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
32
-
-
24944435111
-
In: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
-
Zhang, 1.; Ma, K.-K.; Er, M.-H.; Chong, V. In: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine, International Workshop on Advanced Image Technology (IWAIT'04), 2004; pp 207-211.
-
(2004)
International Workshop on Advanced Image Technology (IWAIT'04)
, pp. 207-211
-
-
Zhang, L.1
Ma, K.-K.2
Er, M.-H.3
Chong, V.4
-
33
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
Chang, c.-c.; Lin, c.-1., LIBSVM: a library for support vector machines.ACM Transactions on Intelligent Systems and Technology (TIST) 2011, 2 (3), 27
-
(2011)
ACM Transactions on Intelligent Systems and Technology (TIST)
, vol.2
, Issue.3
, pp. 27
-
-
Chang, C.-C.1
Lin, C.-L.2
|