메뉴 건너뛰기




Volumn , Issue , 2016, Pages 41-47

GMFR-CNN: An integration of gapped motif feature representation and deep learning approach for enhancer prediction

Author keywords

Convolution neural network; Enhancer motifs; Gapped motif feature representation

Indexed keywords

BIOINFORMATICS; CONVOLUTION; DEEP LEARNING; FORECASTING; GENE EXPRESSION; GENES; IMAGE RECOGNITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; TRANSCRIPTION;

EID: 85015246115     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3029375.3029380     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 2
    • 84899450857 scopus 로고    scopus 로고
    • Transcriptional enhancers: From properties to genome-wide predictions
    • (November 2014), DOI=
    • Shlyueva, D., Stampfel, G., and Stark, A. 2014. Transcriptional enhancers: From properties to genome-wide predictions. Nature Reviews Genetics 15, 4 (November 2014), 272-286. DOI= http://dx.doi.org/10.1038/nrg3682.
    • (2014) Nature Reviews Genetics , vol.15 , Issue.4 , pp. 272-286
    • Shlyueva, D.1    Stampfel, G.2    Stark, A.3
  • 3
    • 83055181959 scopus 로고    scopus 로고
    • Discriminative prediction of mammalian enhancers from DNA sequence
    • 2011),DOI=
    • Lee, D., Karchin, R., and Beer, M. A. 2011. Discriminative prediction of mammalian enhancers from DNA sequence. Genome Research 21, 12 (2011), 2167-2180. DOI= http://dx.doi.org/10.1101/gr.121905.111.
    • (2011) Genome Research , vol.21 , Issue.12 , pp. 2167-2180
    • Lee, D.1    Karchin, R.2    Beer, M.A.3
  • 4
    • 84905484602 scopus 로고    scopus 로고
    • Enhanced regulatory sequence prediction using gapped k-mer features
    • (2014). DOI=
    • Ghandi, M., Lee, D., Mohammad-Noori, M., and Beer, M. A. 2014. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Computational Biology 10, 7 (2014). DOI= http://dx.doi.org/10.1371/journal.pcbi.1003711.
    • (2014) PLoS Computational Biology , vol.10 , Issue.7
    • Ghandi, M.1    Lee, D.2    Mohammad-Noori, M.3    Beer, M.A.4
  • 5
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • (2015),. DOI=
    • Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. 2015. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology 33, 8 (2015), 831-838. DOI= http://dx.doi.org/10.1038/nbt.3300.
    • (2015) Nature Biotechnology , vol.33 , Issue.8 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 6
    • 84883588081 scopus 로고    scopus 로고
    • Kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets
    • (2013). DOI=
    • Fletez-Brant, C., Lee, D., McCallion, A. S., and Beer, M. A. 2013. Kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets. Nucleic Acids Research 41, W1 (2013). DOI= http://dx.doi.org/10.1093/nar/gkt519.
    • (2013) Nucleic Acids Research , vol.41 , pp. W1
    • Fletez-Brant, C.1    Lee, D.2    McCallion, A.S.3    Beer, M.A.4
  • 7
    • 84907222996 scopus 로고    scopus 로고
    • IRBIS: A systematic search for conserved complementarity
    • (2014),. DOI=
    • Pervouchine, D. D. 2014. IRBIS: A systematic search for conserved complementarity. RNA 20, 10 (2014), 1519-1531. DOI= http://dx.doi.org/10.1261/rna.045088.114.
    • (2014) RNA , vol.20 , Issue.10 , pp. 1519-1531
    • Pervouchine, D.D.1
  • 8
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
    • (March 2016),. DOI=
    • Kelley, D. R., Snoek, J., and Rinn, J. L. 2016. Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Research 26, 7 (March 2016), 990-999. DOI= http://dx.doi.org/10.1101/gr.200535.115.
    • (2016) Genome Research , vol.26 , Issue.7 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 9
    • 84943143082 scopus 로고    scopus 로고
    • DEEP: A general computational framework for predicting enhancers
    • (May 2014). DOI=
    • Kleftogiannis, D., Kalnis, P., and Bajic, V. B. 2014. DEEP: A general computational framework for predicting enhancers. Nucleic Acids Research 43, 1 (May 2014). DOI= http://dx.doi.org/10.1093/nar/gku1058.
    • (2014) Nucleic Acids Research , vol.43 , pp. 1
    • Kleftogiannis, D.1    Kalnis, P.2    Bajic, V.B.3
  • 10
    • 77954204584 scopus 로고    scopus 로고
    • Discover regulatory DNA elements using chromatin signatures and artificial neural network
    • (July 2010),DOI=
    • Firpi, H. A., Ucar, D., and Tan, K. 2010.Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics 26, 13 (July 2010), 1579-1586. DOI= http://dx.doi.org/10.1093/bioinformatics/btq248.
    • (2010) Bioinformatics , vol.26 , Issue.13 , pp. 1579-1586
    • Firpi, H.A.1    Ucar, D.2    Tan, K.3
  • 11
    • 79957562270 scopus 로고    scopus 로고
    • A linear model for transcription factor binding affinity prediction in protein binding microarrays
    • (2011). DOI=
    • Annala, M., Laurila, K., Lähdesmäki, H., and Nykter, M. 2011. A linear model for transcription factor binding affinity prediction in protein binding microarrays. PLoS ONE 6, 5 (2011). DOI= http://dx.doi.org/10.1371/journal.pone.0020059.
    • (2011) PLoS ONE , vol.6 , Issue.5
    • Annala, M.1    Laurila, K.2    Lähdesmäki, H.3    Nykter, M.4
  • 12
    • 22344437987 scopus 로고    scopus 로고
    • Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach
    • (2005). DOI=
    • Elemento, O. and Tavazoie, S. 2005. Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biology 6, 2 (2005). DOI= http://dx.doi.org/10.1186/gb-2005-6-2-r18.
    • (2005) Genome Biology , vol.6 , pp. 2
    • Elemento, O.1    Tavazoie, S.2
  • 13
    • 59949083631 scopus 로고    scopus 로고
    • Universal proteinbinding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors
    • (2009),. DOI=
    • Berger, M. F. and Bulyk, M. L. 2009. Universal proteinbinding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nature Protocols 4, 3 (2009), 393-411. DOI= http://dx.doi.org/10.1038/nprot.2008.195.
    • (2009) Nature Protocols , vol.4 , Issue.3 , pp. 393-411
    • Berger, M.F.1    Bulyk, M.L.2
  • 14
    • 46049113874 scopus 로고    scopus 로고
    • Structural basis for dimerization in DNA recognition by Gal4
    • (2008),. DOI=
    • Hong, M., Fitzgerald, M. X., Harper, S., Luo, C., Speicher, D. W., and Marmorstein, R. 2008. Structural basis for dimerization in DNA recognition by Gal4. Structure 16 , 7 (2008), 1019-1026. DOI= http://dx.doi.org/10.2210/pdb3coq/pdb.
    • (2008) Structure , vol.16 , Issue.7 , pp. 1019-1026
    • Hong, M.1    Fitzgerald, M.X.2    Harper, S.3    Luo, C.4    Speicher, D.W.5    Marmorstein, R.6
  • 15
    • 42449114966 scopus 로고    scopus 로고
    • Transcriptional control of human p53-regulated genes
    • (2008),. DOI=
    • Riley, T., Sontag, E., Chen, P., and Levine, A. 2008. Transcriptional control of human p53-regulated genes. Nature Reviews Molecular Cell Biology 9, 5 (2008), 402-412. DOI= http://dx.doi.org/10.1038/nrm2395.
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , Issue.5 , pp. 402-412
    • Riley, T.1    Sontag, E.2    Chen, P.3    Levine, A.4
  • 17
    • 84864459239 scopus 로고    scopus 로고
    • Efficient motif search in ranked lists and applications to variable gap motifs
    • (2012),. DOI=
    • Leibovich, L. and Yakhini, Z. 2012. Efficient motif search in ranked lists and applications to variable gap motifs. Nucleic Acids Research 40, 13 (2012), 5832-5847. DOI= http://dx.doi.org/10.1093/nar/gks206.
    • (2012) Nucleic Acids Research , vol.40 , Issue.13 , pp. 5832-5847
    • Leibovich, L.1    Yakhini, Z.2
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • (1998),. DOI=
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. In Proceedings of the IEEE 86, 11 (1998), 2278-2324. DOI= http://dx.doi.org/10.1109/5.726791.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 0020331278 scopus 로고
    • Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
    • (1982). DOI=
    • Fukushima, K. and Miyake, S. 1982. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 15, 6 (1982), 455- 469. DOI= http://dx.doi.org/10.1016/0031-3203(82)90024-3.
    • (1982) Pattern Recognition , vol.15 , Issue.6 , pp. 455-469
    • Fukushima, K.1    Miyake, S.2
  • 22
    • 80051595965 scopus 로고    scopus 로고
    • Feature scaling in support vector data description
    • Juszczak, P., Tax, D., and Duin, R. P. 2002. Feature scaling in support vector data description. In Proc. ASCI, 95-102.
    • (2002) Proc. ASCI , pp. 95-102
    • Juszczak, P.1    Tax, D.2    Duin, R.P.3
  • 24
    • 84863085276 scopus 로고    scopus 로고
    • Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations
    • Baltimore, Maryland
    • Zhu, W., Zeng, N., and Wang, N. 2010.Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. In NESUG proceedings: Health care and life sciences, Baltimore, Maryland, 1-9.
    • (2010) NESUG Proceedings: Health Care and Life Sciences , pp. 1-9
    • Zhu, W.1    Zeng, N.2    Wang, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.