-
1
-
-
84875156063
-
Enhancers: Five essential questions
-
2013
-
Pennacchio, L. A., Bickmore, W., Dean, A., Nobrega, M. A., and Bejerano, G. 2013. Enhancers: Five essential questions. Nature Reviews Genetics 14, 4 (2013), 288-295. DOI= http://dx.doi.org/10.1038/nrg3458.
-
(2013)
Nature Reviews Genetics
, vol.14
, Issue.4
, pp. 288-295
-
-
Pennacchio, L.A.1
Bickmore, W.2
Dean, A.3
Nobrega, M.A.4
Bejerano, G.5
-
2
-
-
84899450857
-
Transcriptional enhancers: From properties to genome-wide predictions
-
(November 2014), DOI=
-
Shlyueva, D., Stampfel, G., and Stark, A. 2014. Transcriptional enhancers: From properties to genome-wide predictions. Nature Reviews Genetics 15, 4 (November 2014), 272-286. DOI= http://dx.doi.org/10.1038/nrg3682.
-
(2014)
Nature Reviews Genetics
, vol.15
, Issue.4
, pp. 272-286
-
-
Shlyueva, D.1
Stampfel, G.2
Stark, A.3
-
3
-
-
83055181959
-
Discriminative prediction of mammalian enhancers from DNA sequence
-
2011),DOI=
-
Lee, D., Karchin, R., and Beer, M. A. 2011. Discriminative prediction of mammalian enhancers from DNA sequence. Genome Research 21, 12 (2011), 2167-2180. DOI= http://dx.doi.org/10.1101/gr.121905.111.
-
(2011)
Genome Research
, vol.21
, Issue.12
, pp. 2167-2180
-
-
Lee, D.1
Karchin, R.2
Beer, M.A.3
-
4
-
-
84905484602
-
Enhanced regulatory sequence prediction using gapped k-mer features
-
(2014). DOI=
-
Ghandi, M., Lee, D., Mohammad-Noori, M., and Beer, M. A. 2014. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Computational Biology 10, 7 (2014). DOI= http://dx.doi.org/10.1371/journal.pcbi.1003711.
-
(2014)
PLoS Computational Biology
, vol.10
, Issue.7
-
-
Ghandi, M.1
Lee, D.2
Mohammad-Noori, M.3
Beer, M.A.4
-
5
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
(2015),. DOI=
-
Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. 2015. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology 33, 8 (2015), 831-838. DOI= http://dx.doi.org/10.1038/nbt.3300.
-
(2015)
Nature Biotechnology
, vol.33
, Issue.8
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
6
-
-
84883588081
-
Kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets
-
(2013). DOI=
-
Fletez-Brant, C., Lee, D., McCallion, A. S., and Beer, M. A. 2013. Kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets. Nucleic Acids Research 41, W1 (2013). DOI= http://dx.doi.org/10.1093/nar/gkt519.
-
(2013)
Nucleic Acids Research
, vol.41
, pp. W1
-
-
Fletez-Brant, C.1
Lee, D.2
McCallion, A.S.3
Beer, M.A.4
-
7
-
-
84907222996
-
IRBIS: A systematic search for conserved complementarity
-
(2014),. DOI=
-
Pervouchine, D. D. 2014. IRBIS: A systematic search for conserved complementarity. RNA 20, 10 (2014), 1519-1531. DOI= http://dx.doi.org/10.1261/rna.045088.114.
-
(2014)
RNA
, vol.20
, Issue.10
, pp. 1519-1531
-
-
Pervouchine, D.D.1
-
8
-
-
84976908652
-
Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
-
(March 2016),. DOI=
-
Kelley, D. R., Snoek, J., and Rinn, J. L. 2016. Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Research 26, 7 (March 2016), 990-999. DOI= http://dx.doi.org/10.1101/gr.200535.115.
-
(2016)
Genome Research
, vol.26
, Issue.7
, pp. 990-999
-
-
Kelley, D.R.1
Snoek, J.2
Rinn, J.L.3
-
9
-
-
84943143082
-
DEEP: A general computational framework for predicting enhancers
-
(May 2014). DOI=
-
Kleftogiannis, D., Kalnis, P., and Bajic, V. B. 2014. DEEP: A general computational framework for predicting enhancers. Nucleic Acids Research 43, 1 (May 2014). DOI= http://dx.doi.org/10.1093/nar/gku1058.
-
(2014)
Nucleic Acids Research
, vol.43
, pp. 1
-
-
Kleftogiannis, D.1
Kalnis, P.2
Bajic, V.B.3
-
10
-
-
77954204584
-
Discover regulatory DNA elements using chromatin signatures and artificial neural network
-
(July 2010),DOI=
-
Firpi, H. A., Ucar, D., and Tan, K. 2010.Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics 26, 13 (July 2010), 1579-1586. DOI= http://dx.doi.org/10.1093/bioinformatics/btq248.
-
(2010)
Bioinformatics
, vol.26
, Issue.13
, pp. 1579-1586
-
-
Firpi, H.A.1
Ucar, D.2
Tan, K.3
-
11
-
-
79957562270
-
A linear model for transcription factor binding affinity prediction in protein binding microarrays
-
(2011). DOI=
-
Annala, M., Laurila, K., Lähdesmäki, H., and Nykter, M. 2011. A linear model for transcription factor binding affinity prediction in protein binding microarrays. PLoS ONE 6, 5 (2011). DOI= http://dx.doi.org/10.1371/journal.pone.0020059.
-
(2011)
PLoS ONE
, vol.6
, Issue.5
-
-
Annala, M.1
Laurila, K.2
Lähdesmäki, H.3
Nykter, M.4
-
12
-
-
22344437987
-
Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach
-
(2005). DOI=
-
Elemento, O. and Tavazoie, S. 2005. Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biology 6, 2 (2005). DOI= http://dx.doi.org/10.1186/gb-2005-6-2-r18.
-
(2005)
Genome Biology
, vol.6
, pp. 2
-
-
Elemento, O.1
Tavazoie, S.2
-
13
-
-
59949083631
-
Universal proteinbinding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors
-
(2009),. DOI=
-
Berger, M. F. and Bulyk, M. L. 2009. Universal proteinbinding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nature Protocols 4, 3 (2009), 393-411. DOI= http://dx.doi.org/10.1038/nprot.2008.195.
-
(2009)
Nature Protocols
, vol.4
, Issue.3
, pp. 393-411
-
-
Berger, M.F.1
Bulyk, M.L.2
-
14
-
-
46049113874
-
Structural basis for dimerization in DNA recognition by Gal4
-
(2008),. DOI=
-
Hong, M., Fitzgerald, M. X., Harper, S., Luo, C., Speicher, D. W., and Marmorstein, R. 2008. Structural basis for dimerization in DNA recognition by Gal4. Structure 16 , 7 (2008), 1019-1026. DOI= http://dx.doi.org/10.2210/pdb3coq/pdb.
-
(2008)
Structure
, vol.16
, Issue.7
, pp. 1019-1026
-
-
Hong, M.1
Fitzgerald, M.X.2
Harper, S.3
Luo, C.4
Speicher, D.W.5
Marmorstein, R.6
-
15
-
-
42449114966
-
Transcriptional control of human p53-regulated genes
-
(2008),. DOI=
-
Riley, T., Sontag, E., Chen, P., and Levine, A. 2008. Transcriptional control of human p53-regulated genes. Nature Reviews Molecular Cell Biology 9, 5 (2008), 402-412. DOI= http://dx.doi.org/10.1038/nrm2395.
-
(2008)
Nature Reviews Molecular Cell Biology
, vol.9
, Issue.5
, pp. 402-412
-
-
Riley, T.1
Sontag, E.2
Chen, P.3
Levine, A.4
-
16
-
-
33750442923
-
Genome-wide analysis of estrogen receptor binding sites
-
(2006),. DOI
-
Carroll, J. S., Meyer, C. A., Song, J., W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., and Wang, Q. 2006. Genome-wide analysis of estrogen receptor binding sites. Nature Genetics 38, 11 (2006), 1289-1297. DOI: Http://dx.doi.org/10.1038/ng1901.
-
(2006)
Nature Genetics
, vol.38
, Issue.11
, pp. 1289-1297
-
-
Carroll, J.S.1
Meyer, C.A.2
Song, J.W.3
Geistlinger, T.R.4
Eeckhoute, J.5
Brodsky, A.S.6
Keeton, E.K.7
Fertuck, K.C.8
Hall, G.F.9
Wang, Q.10
-
17
-
-
84864459239
-
Efficient motif search in ranked lists and applications to variable gap motifs
-
(2012),. DOI=
-
Leibovich, L. and Yakhini, Z. 2012. Efficient motif search in ranked lists and applications to variable gap motifs. Nucleic Acids Research 40, 13 (2012), 5832-5847. DOI= http://dx.doi.org/10.1093/nar/gks206.
-
(2012)
Nucleic Acids Research
, vol.40
, Issue.13
, pp. 5832-5847
-
-
Leibovich, L.1
Yakhini, Z.2
-
18
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
(1998),. DOI=
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. In Proceedings of the IEEE 86, 11 (1998), 2278-2324. DOI= http://dx.doi.org/10.1109/5.726791.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Le Cun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
0020331278
-
Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
-
(1982). DOI=
-
Fukushima, K. and Miyake, S. 1982. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 15, 6 (1982), 455- 469. DOI= http://dx.doi.org/10.1016/0031-3203(82)90024-3.
-
(1982)
Pattern Recognition
, vol.15
, Issue.6
, pp. 455-469
-
-
Fukushima, K.1
Miyake, S.2
-
22
-
-
80051595965
-
Feature scaling in support vector data description
-
Juszczak, P., Tax, D., and Duin, R. P. 2002. Feature scaling in support vector data description. In Proc. ASCI, 95-102.
-
(2002)
Proc. ASCI
, pp. 95-102
-
-
Juszczak, P.1
Tax, D.2
Duin, R.P.3
-
24
-
-
84863085276
-
Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations
-
Baltimore, Maryland
-
Zhu, W., Zeng, N., and Wang, N. 2010.Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. In NESUG proceedings: Health care and life sciences, Baltimore, Maryland, 1-9.
-
(2010)
NESUG Proceedings: Health Care and Life Sciences
, pp. 1-9
-
-
Zhu, W.1
Zeng, N.2
Wang, N.3
-
26
-
-
84866977710
-
TATA binding proteins can recognize nontraditional DNA sequences
-
(2012),. DOI=
-
Ahn, S., Huang, C.L., Ozkumur, E., Zhang, X., Chinnala, J., Yalcin, A., Bandyopadhyay, S., Russek, S.J., Ünlü, M.S., DeLisi, C. and Irani, R.J., 2012. TATA binding proteins can recognize nontraditional DNA sequences. Biophysical Journal 103, 7 (2012), 1510-1517. DOI= .
-
(2012)
Biophysical Journal
, vol.103
, Issue.7
, pp. 1510-1517
-
-
Ahn, S.1
Huang, C.L.2
Ozkumur, E.3
Zhang, X.4
Chinnala, J.5
Yalcin, A.6
Bandyopadhyay, S.7
Russek, S.J.8
Ünlü, M.S.9
De Lisi, C.10
Irani, R.J.11
|