-
2
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-33. doi: 10.1016/j.cell.2009.01.002.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
3
-
-
67650484984
-
Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins
-
Ray D, Kazan H, Chan ET, Peña Castillo L, Chaudhry S, Talukder S, et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2009; 27:667-70. doi: 10.1038/nbt.1550.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 667-670
-
-
Ray, D.1
Kazan, H.2
Chan, E.T.3
Peña Castillo, L.4
Chaudhry, S.5
Talukder, S.6
-
4
-
-
77950920903
-
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
-
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010; 141:129-41. doi: 10.1016/j.cell.2010.03.009.
-
(2010)
Cell
, vol.141
, pp. 129-141
-
-
Hafner, M.1
Landthaler, M.2
Burger, L.3
Khorshid, M.4
Hausser, J.5
Berninger, P.6
-
5
-
-
84970024013
-
Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins
-
Stražr M, žitnik M, Zupan B, Ule J, Curk T. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics. 2016; 32:1527-35. doi: 10.1093/bioinformatics/btw003.
-
(2016)
Bioinformatics
, vol.32
, pp. 1527-1535
-
-
Stražr, M.1
Žitnik, M.2
Zupan, B.3
Ule, J.4
Curk, T.5
-
6
-
-
84892636681
-
GraphProt: modeling binding preferences of RNA-binding proteins
-
Maticzka D, Lange SJ, Costa F, Backofen R. GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol. 2014; 15:R17. doi: 10.1186/gb-2014-15-1-r17.
-
(2014)
Genome Biol
, vol.15
, pp. R17
-
-
Maticzka, D.1
Lange, S.J.2
Costa, F.3
Backofen, R.4
-
7
-
-
84960083427
-
A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues
-
Yan J, Friedrich S, Kurgan L. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Brief Bioinform. 2016; 17:88-105. doi: 10.1093/bib/bbv023.
-
(2016)
Brief Bioinform
, vol.17
, pp. 88-105
-
-
Yan, J.1
Friedrich, S.2
Kurgan, L.3
-
8
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015; 33:831-8. doi: 10.1038/nbt.3300.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
9
-
-
84913530064
-
Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection
-
Pan X, Zhu L, Fan YX, Yan J. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem. 2014; 53:324-30. doi: 10.1016/j.compbiolchem.2014.11.002.
-
(2014)
Comput Biol Chem
, vol.53
, pp. 324-330
-
-
Pan, X.1
Zhu, L.2
Fan, Y.X.3
Yan, J.4
-
10
-
-
33748191291
-
Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
-
Foat BC, Morozov AV, Bussemaker HJ. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics. 2006; 22:e141-9.
-
(2006)
Bioinformatics
, vol.22
, pp. e141-e149
-
-
Foat, B.C.1
Morozov, A.V.2
Bussemaker, H.J.3
-
11
-
-
84883575302
-
DRIMust: a web server for discovering rank imbalanced motifs using suffix trees
-
Leibovich L, Paz I, Yakhini Z, Mandel-Gutfreund Y. DRIMust: a web server for discovering rank imbalanced motifs using suffix trees. Nucleic Acids Res. 2013; 41:W174-9. doi: 10.1093/nar/gkt407.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. W174-W179
-
-
Leibovich, L.1
Paz, I.2
Yakhini, Z.3
Mandel-Gutfreund, Y.4
-
12
-
-
84900394210
-
Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures
-
Livi CM, Blanzieri E. Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinforma. 2014; 15:123. doi: 10.1186/1471-2105-15-123.
-
(2014)
BMC Bioinforma
, vol.15
, pp. 123
-
-
Livi, C.M.1
Blanzieri, E.2
-
13
-
-
1542400269
-
Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information
-
Ahmad S, Gromiha MM, Sarai A. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics. 2004; 20:477-86.
-
(2004)
Bioinformatics
, vol.20
, pp. 477-486
-
-
Ahmad, S.1
Gromiha, M.M.2
Sarai, A.3
-
15
-
-
84982061838
-
PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features
-
Pan X, Xiong K. PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol Biosyst. 2015; 11:2219-26. doi: 10.1039/c5mb00214a.
-
(2015)
Mol Biosyst
, vol.11
, pp. 2219-2226
-
-
Pan, X.1
Xiong, K.2
-
17
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313:504-7.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
18
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998; 86:2278-324.
-
(1998)
Proc IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015; 12:931-4. doi: 10.1038/nmeth.3547.
-
(2015)
Nat Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
20
-
-
84976908652
-
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
-
Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 2016; 26:990-9. doi: 10.1101/gr.200535.115.
-
(2016)
Genome Res
, vol.26
, pp. 990-999
-
-
Kelley, D.R.1
Snoek, J.2
Rinn, J.L.3
-
21
-
-
0000359337
-
Backpropagation Applied to Handwritten Zip Code Recognition
-
LeCun Y, et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989; 1:541-51.
-
(1989)
Neural Comput
, vol.1
, pp. 541-551
-
-
LeCun, Y.1
-
22
-
-
84994589154
-
On Estimating Air Pollution from Photos Using Convolutional Neural Network
-
Zhang C, Yan J, Li C, Rui X, Liu L, Bie R. On Estimating Air Pollution from Photos Using Convolutional Neural Network. New York: ACM Multimedia (ACM-MM16): 2016. p. 297-301.
-
(2016)
New York: ACM Multimedia (ACM-MM16)
, pp. 297-301
-
-
Zhang, C.1
Yan, J.2
Li, C.3
Rui, X.4
Liu, L.5
Bie, R.6
-
23
-
-
84865595751
-
An Introduction to Restricted Boltzmann Machines
-
Fischer A, Igel C.An Introduction to Restricted Boltzmann Machines. Lect Notes Comput Sci. 2012; 7441:14-36.
-
(2012)
Lect Notes Comput Sci
, vol.7441
, pp. 14-36
-
-
Fischer, A.1
Igel, C.2
-
24
-
-
84960503750
-
A deep learning framework for modeling structural features of RNA-binding protein targets
-
Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 2015; 44:e32. doi: 10.1093/nar/gkv1025.
-
(2015)
Nucleic Acids Res
, vol.44
-
-
Zhang, S.1
Zhou, J.2
Hu, H.3
Gong, H.4
Chen, L.5
Cheng, C.6
Zeng, J.7
-
25
-
-
84928997067
-
DANN: a deep learning approach for annotating the pathogenicity of genetic variants
-
Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015; 31:761-3. doi: 10.1093/bioinformatics/btu703.
-
(2015)
Bioinformatics
, vol.31
, pp. 761-763
-
-
Quang, D.1
Chen, Y.2
Xie, X.3
-
26
-
-
84981263658
-
IPMiner: Hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
-
Pan X, Fan YX, Yan J, Shen HB. IPMiner: Hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genomics. 2016; 17:582. doi: 10.1186/s12864-016-2931-8.
-
(2016)
BMC Genomics
, vol.17
, pp. 582
-
-
Pan, X.1
Fan, Y.X.2
Yan, J.3
Shen, H.B.4
-
27
-
-
84916911784
-
Multimodal learning with deep boltzmann machines
-
Srivastava N, Salakhutdinov RR. Multimodal learning with deep boltzmann machines. J Mach Learn Res. 2914; 15:2949-2980.
-
(2014)
J Mach Learn Res.
, vol.15
, pp. 2949-2980
-
-
Srivastava, N.1
Salakhutdinov, R.R.2
-
28
-
-
80053437179
-
Multimodal Deep Learning
-
Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal Deep Learning. IEEE Int Conf Mach Learn. 2011; 28:689-96.
-
(2011)
IEEE Int Conf Mach Learn
, vol.28
, pp. 689-696
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
29
-
-
78049275913
-
RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins
-
Kazan H, Ray D, Chan ET, Hughes TR, Morris Q. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol. 2010; 6:e1000832. doi: 10.1371/journal.pcbi.1000832.
-
(2010)
PLoS Comput Biol
, vol.6
-
-
Kazan, H.1
Ray, D.2
Chan, E.T.3
Hughes, T.R.4
Morris, Q.5
-
30
-
-
84868152524
-
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
-
Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 2012; 40:9379-91. doi: 10.1093/nar/gks725.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9379-9391
-
-
Zhang, S.1
Liu, C.C.2
Li, W.3
Shen, H.4
Laird, P.W.5
Zhou, X.J.6
-
31
-
-
34547844077
-
Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
-
Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics. 2007; 23:1495-502.
-
(2007)
Bioinformatics
, vol.23
, pp. 1495-1502
-
-
Kim, H.1
Park, H.2
-
32
-
-
85014098635
-
Non-negative matrix factorization with quasi-newton optimization
-
Zdunek R, Cichocki A. Non-negative matrix factorization with quasi-newton optimization. Artif Intell Soft Comput. 2006; 87:870-9.
-
(2006)
Artif Intell Soft Comput
, vol.87
, pp. 870-879
-
-
Zdunek, R.1
Cichocki, A.2
-
33
-
-
77952687104
-
Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure
-
Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA. 2010; 16:1096-107. doi: 10.1261/rna.2017210.
-
(2010)
RNA
, vol.16
, pp. 1096-1107
-
-
Li, X.1
Quon, G.2
Lipshitz, H.D.3
Morris, Q.4
-
34
-
-
84880427394
-
A compendium of RNA-binding motifs for decoding gene regulation
-
Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499:172-7. doi: 10.1038/nature12311.
-
(2013)
Nature
, vol.499
, pp. 172-177
-
-
Ray, D.1
Kazan, H.2
Cook, K.B.3
Weirauch, M.T.4
Najafabadi, H.S.5
Li, X.6
-
35
-
-
79955522081
-
Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach
-
Pan XY, Tian Y, Huang Y, Shen HB. Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach. Genomics. 2010; 97:257-64. doi: 10.1016/j.ygeno.2011.03.001.
-
(2010)
Genomics
, vol.97
, pp. 257-264
-
-
Pan, X.Y.1
Tian, Y.2
Huang, Y.3
Shen, H.B.4
-
37
-
-
78651408754
-
Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes
-
Sephton CF, Cenik C, Kucukural A, Dammer EB, Cenik B, Han Y, Dewey CM, Roth FP, Herz J, Peng J, Moore MJ, Yu G. Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem. 2011; 286:1204-15.
-
(2011)
J Biol Chem
, vol.286
, pp. 1204-1215
-
-
Sephton, C.F.1
Cenik, C.2
Kucukural, A.3
Dammer, E.B.4
Cenik, B.5
Han, Y.6
Dewey, C.M.7
Roth, F.P.8
Herz, J.9
Peng, J.10
Moore, M.J.11
Yu, G.12
-
38
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014; 15:1929-58.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
40
-
-
82055164092
-
ViennaRNA Package 2.0
-
Lorenz R, Bernhart SH, Hoener zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithm Mol Biol. 2011; 6:26.
-
(2011)
Algorithm Mol Biol
, vol.6
, pp. 26
-
-
Lorenz, R.1
Bernhart, S.H.2
Hoener Zu Siederdissen, C.3
Tafer, H.4
Flamm, C.5
Stadler, P.F.6
Hofacker, I.L.7
-
41
-
-
2142738304
-
WebLogo
-
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo. A sequence logo generator, Genome Res. 2004; 14(6):1188-90.
-
(2004)
A sequence logo generator, Genome Res
, vol.14
, Issue.6
, pp. 1188-1190
-
-
Crooks, G.E.1
Hon, G.2
Chandonia, J.M.3
Brenner, S.E.4
-
43
-
-
84976413226
-
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
-
Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 2016; 44:e107. doi: 10.1093/nar/gkw226.
-
(2016)
Nucleic Acids Res
, vol.44
-
-
Quang, D.1
Xie, X.2
-
44
-
-
85014098038
-
Learning to learn by gradient descent by gradient descent
-
arXiv:1606.04474 [cs.NE]
-
Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, et al. Learning to learn by gradient descent by gradient descent. 2016. arXiv:1606.04474 [cs.NE].
-
(2016)
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
-
45
-
-
84976870685
-
Ensembl 2016
-
Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic Acids Res. 2016; 44:710-6. doi: 10.1093/nar/gkv1157.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 710-716
-
-
Yates, A.1
Akanni, W.2
Amode, M.R.3
Barrell, D.4
Billis, K.5
Carvalho-Silva, D.6
-
46
-
-
84949257173
-
Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models
-
Svetlichnyy D, Imrichova H, Fiers M, Kalender Atak Z, Aerts S. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models. PLoS Comput Biol. 2015; 11:e1004590. doi: 10.1371/journal.pcbi.1004590.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Svetlichnyy, D.1
Imrichova, H.2
Fiers, M.3
Kalender Atak, Z.4
Aerts, S.5
-
47
-
-
0042121118
-
Cluster-Buster: finding dense clusters of motifs in DNA sequences
-
Frith MC, Li MC, Weng Z. Cluster-Buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res. 2003; 31:3666-8.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3666-3668
-
-
Frith, M.C.1
Li, M.C.2
Weng, Z.3
-
48
-
-
0000329993
-
Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory
-
Cambridge: MIT Press
-
Smolensky P. Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory. Cambridge: MIT Press; 1986, p. 194-281.
-
(1986)
, pp. 194-281
-
-
Smolensky, P.1
-
49
-
-
84861125212
-
A practical guide to training restricted Boltzmann machines
-
Hinton GE. A practical guide to training restricted Boltzmann machines. Momentum. 2010; 9:926.
-
(2010)
Momentum
, vol.9
, pp. 926
-
-
Hinton, G.E.1
-
50
-
-
84893343292
-
Lecture 6.5 - rmsprop: Divide the gradient by a run-ning average of its recent magnitude
-
Tieleman T, Hinton GE. Lecture 6.5 - rmsprop: Divide the gradient by a run-ning average of its recent magnitude. COURSERA: Neural Netw Mach Learn. 2012; 4:2.
-
(2012)
COURSERA: Neural Netw Mach Learn
, vol.4
, pp. 2
-
-
Tieleman, T.1
-
51
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825-30.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
|