메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach

Author keywords

CLIP seq; Convolutional neural network; Deep belief network; Multimodal deep learning; RNA binding protein

Indexed keywords

ABSTRACTING; BINDING SITES; BINS; BIOCHEMISTRY; CONVOLUTION; DATA INTEGRATION; DEEP NEURAL NETWORKS; FORECASTING; INTEGRATION; LEARNING SYSTEMS; METADATA; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; NUCLEIC ACIDS; PROTEINS; RNA;

EID: 85014099241     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1561-8     Document Type: Article
Times cited : (163)

References (51)
  • 2
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-33. doi: 10.1016/j.cell.2009.01.002.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 3
    • 67650484984 scopus 로고    scopus 로고
    • Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins
    • Ray D, Kazan H, Chan ET, Peña Castillo L, Chaudhry S, Talukder S, et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2009; 27:667-70. doi: 10.1038/nbt.1550.
    • (2009) Nat Biotechnol , vol.27 , pp. 667-670
    • Ray, D.1    Kazan, H.2    Chan, E.T.3    Peña Castillo, L.4    Chaudhry, S.5    Talukder, S.6
  • 4
    • 77950920903 scopus 로고    scopus 로고
    • Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
    • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010; 141:129-41. doi: 10.1016/j.cell.2010.03.009.
    • (2010) Cell , vol.141 , pp. 129-141
    • Hafner, M.1    Landthaler, M.2    Burger, L.3    Khorshid, M.4    Hausser, J.5    Berninger, P.6
  • 5
    • 84970024013 scopus 로고    scopus 로고
    • Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins
    • Stražr M, žitnik M, Zupan B, Ule J, Curk T. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics. 2016; 32:1527-35. doi: 10.1093/bioinformatics/btw003.
    • (2016) Bioinformatics , vol.32 , pp. 1527-1535
    • Stražr, M.1    Žitnik, M.2    Zupan, B.3    Ule, J.4    Curk, T.5
  • 6
    • 84892636681 scopus 로고    scopus 로고
    • GraphProt: modeling binding preferences of RNA-binding proteins
    • Maticzka D, Lange SJ, Costa F, Backofen R. GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol. 2014; 15:R17. doi: 10.1186/gb-2014-15-1-r17.
    • (2014) Genome Biol , vol.15 , pp. R17
    • Maticzka, D.1    Lange, S.J.2    Costa, F.3    Backofen, R.4
  • 7
    • 84960083427 scopus 로고    scopus 로고
    • A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues
    • Yan J, Friedrich S, Kurgan L. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Brief Bioinform. 2016; 17:88-105. doi: 10.1093/bib/bbv023.
    • (2016) Brief Bioinform , vol.17 , pp. 88-105
    • Yan, J.1    Friedrich, S.2    Kurgan, L.3
  • 8
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015; 33:831-8. doi: 10.1038/nbt.3300.
    • (2015) Nat Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 9
    • 84913530064 scopus 로고    scopus 로고
    • Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection
    • Pan X, Zhu L, Fan YX, Yan J. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem. 2014; 53:324-30. doi: 10.1016/j.compbiolchem.2014.11.002.
    • (2014) Comput Biol Chem , vol.53 , pp. 324-330
    • Pan, X.1    Zhu, L.2    Fan, Y.X.3    Yan, J.4
  • 10
    • 33748191291 scopus 로고    scopus 로고
    • Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
    • Foat BC, Morozov AV, Bussemaker HJ. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics. 2006; 22:e141-9.
    • (2006) Bioinformatics , vol.22 , pp. e141-e149
    • Foat, B.C.1    Morozov, A.V.2    Bussemaker, H.J.3
  • 11
    • 84883575302 scopus 로고    scopus 로고
    • DRIMust: a web server for discovering rank imbalanced motifs using suffix trees
    • Leibovich L, Paz I, Yakhini Z, Mandel-Gutfreund Y. DRIMust: a web server for discovering rank imbalanced motifs using suffix trees. Nucleic Acids Res. 2013; 41:W174-9. doi: 10.1093/nar/gkt407.
    • (2013) Nucleic Acids Res , vol.41 , pp. W174-W179
    • Leibovich, L.1    Paz, I.2    Yakhini, Z.3    Mandel-Gutfreund, Y.4
  • 12
    • 84900394210 scopus 로고    scopus 로고
    • Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures
    • Livi CM, Blanzieri E. Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinforma. 2014; 15:123. doi: 10.1186/1471-2105-15-123.
    • (2014) BMC Bioinforma , vol.15 , pp. 123
    • Livi, C.M.1    Blanzieri, E.2
  • 13
    • 1542400269 scopus 로고    scopus 로고
    • Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information
    • Ahmad S, Gromiha MM, Sarai A. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics. 2004; 20:477-86.
    • (2004) Bioinformatics , vol.20 , pp. 477-486
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 15
    • 84982061838 scopus 로고    scopus 로고
    • PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features
    • Pan X, Xiong K. PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol Biosyst. 2015; 11:2219-26. doi: 10.1039/c5mb00214a.
    • (2015) Mol Biosyst , vol.11 , pp. 2219-2226
    • Pan, X.1    Xiong, K.2
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313:504-7.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998; 86:2278-324.
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015; 12:931-4. doi: 10.1038/nmeth.3547.
    • (2015) Nat Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 20
    • 84976908652 scopus 로고    scopus 로고
    • Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 2016; 26:990-9. doi: 10.1101/gr.200535.115.
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 21
    • 0000359337 scopus 로고
    • Backpropagation Applied to Handwritten Zip Code Recognition
    • LeCun Y, et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989; 1:541-51.
    • (1989) Neural Comput , vol.1 , pp. 541-551
    • LeCun, Y.1
  • 23
    • 84865595751 scopus 로고    scopus 로고
    • An Introduction to Restricted Boltzmann Machines
    • Fischer A, Igel C.An Introduction to Restricted Boltzmann Machines. Lect Notes Comput Sci. 2012; 7441:14-36.
    • (2012) Lect Notes Comput Sci , vol.7441 , pp. 14-36
    • Fischer, A.1    Igel, C.2
  • 24
    • 84960503750 scopus 로고    scopus 로고
    • A deep learning framework for modeling structural features of RNA-binding protein targets
    • Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 2015; 44:e32. doi: 10.1093/nar/gkv1025.
    • (2015) Nucleic Acids Res , vol.44
    • Zhang, S.1    Zhou, J.2    Hu, H.3    Gong, H.4    Chen, L.5    Cheng, C.6    Zeng, J.7
  • 25
    • 84928997067 scopus 로고    scopus 로고
    • DANN: a deep learning approach for annotating the pathogenicity of genetic variants
    • Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015; 31:761-3. doi: 10.1093/bioinformatics/btu703.
    • (2015) Bioinformatics , vol.31 , pp. 761-763
    • Quang, D.1    Chen, Y.2    Xie, X.3
  • 26
    • 84981263658 scopus 로고    scopus 로고
    • IPMiner: Hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
    • Pan X, Fan YX, Yan J, Shen HB. IPMiner: Hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genomics. 2016; 17:582. doi: 10.1186/s12864-016-2931-8.
    • (2016) BMC Genomics , vol.17 , pp. 582
    • Pan, X.1    Fan, Y.X.2    Yan, J.3    Shen, H.B.4
  • 27
    • 84916911784 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • Srivastava N, Salakhutdinov RR. Multimodal learning with deep boltzmann machines. J Mach Learn Res. 2914; 15:2949-2980.
    • (2014) J Mach Learn Res. , vol.15 , pp. 2949-2980
    • Srivastava, N.1    Salakhutdinov, R.R.2
  • 29
    • 78049275913 scopus 로고    scopus 로고
    • RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins
    • Kazan H, Ray D, Chan ET, Hughes TR, Morris Q. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol. 2010; 6:e1000832. doi: 10.1371/journal.pcbi.1000832.
    • (2010) PLoS Comput Biol , vol.6
    • Kazan, H.1    Ray, D.2    Chan, E.T.3    Hughes, T.R.4    Morris, Q.5
  • 30
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 2012; 40:9379-91. doi: 10.1093/nar/gks725.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9379-9391
    • Zhang, S.1    Liu, C.C.2    Li, W.3    Shen, H.4    Laird, P.W.5    Zhou, X.J.6
  • 31
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics. 2007; 23:1495-502.
    • (2007) Bioinformatics , vol.23 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 32
    • 85014098635 scopus 로고    scopus 로고
    • Non-negative matrix factorization with quasi-newton optimization
    • Zdunek R, Cichocki A. Non-negative matrix factorization with quasi-newton optimization. Artif Intell Soft Comput. 2006; 87:870-9.
    • (2006) Artif Intell Soft Comput , vol.87 , pp. 870-879
    • Zdunek, R.1    Cichocki, A.2
  • 33
    • 77952687104 scopus 로고    scopus 로고
    • Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure
    • Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA. 2010; 16:1096-107. doi: 10.1261/rna.2017210.
    • (2010) RNA , vol.16 , pp. 1096-1107
    • Li, X.1    Quon, G.2    Lipshitz, H.D.3    Morris, Q.4
  • 34
    • 84880427394 scopus 로고    scopus 로고
    • A compendium of RNA-binding motifs for decoding gene regulation
    • Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499:172-7. doi: 10.1038/nature12311.
    • (2013) Nature , vol.499 , pp. 172-177
    • Ray, D.1    Kazan, H.2    Cook, K.B.3    Weirauch, M.T.4    Najafabadi, H.S.5    Li, X.6
  • 35
    • 79955522081 scopus 로고    scopus 로고
    • Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach
    • Pan XY, Tian Y, Huang Y, Shen HB. Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach. Genomics. 2010; 97:257-64. doi: 10.1016/j.ygeno.2011.03.001.
    • (2010) Genomics , vol.97 , pp. 257-264
    • Pan, X.Y.1    Tian, Y.2    Huang, Y.3    Shen, H.B.4
  • 43
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 2016; 44:e107. doi: 10.1093/nar/gkw226.
    • (2016) Nucleic Acids Res , vol.44
    • Quang, D.1    Xie, X.2
  • 44
    • 85014098038 scopus 로고    scopus 로고
    • Learning to learn by gradient descent by gradient descent
    • arXiv:1606.04474 [cs.NE]
    • Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, et al. Learning to learn by gradient descent by gradient descent. 2016. arXiv:1606.04474 [cs.NE].
    • (2016)
    • Andrychowicz, M.1    Denil, M.2    Gomez, S.3    Hoffman, M.W.4    Pfau, D.5
  • 46
    • 84949257173 scopus 로고    scopus 로고
    • Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models
    • Svetlichnyy D, Imrichova H, Fiers M, Kalender Atak Z, Aerts S. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models. PLoS Comput Biol. 2015; 11:e1004590. doi: 10.1371/journal.pcbi.1004590.
    • (2015) PLoS Comput Biol , vol.11
    • Svetlichnyy, D.1    Imrichova, H.2    Fiers, M.3    Kalender Atak, Z.4    Aerts, S.5
  • 47
    • 0042121118 scopus 로고    scopus 로고
    • Cluster-Buster: finding dense clusters of motifs in DNA sequences
    • Frith MC, Li MC, Weng Z. Cluster-Buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res. 2003; 31:3666-8.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3666-3668
    • Frith, M.C.1    Li, M.C.2    Weng, Z.3
  • 48
    • 0000329993 scopus 로고
    • Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory
    • Cambridge: MIT Press
    • Smolensky P. Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory. Cambridge: MIT Press; 1986, p. 194-281.
    • (1986) , pp. 194-281
    • Smolensky, P.1
  • 49
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton GE. A practical guide to training restricted Boltzmann machines. Momentum. 2010; 9:926.
    • (2010) Momentum , vol.9 , pp. 926
    • Hinton, G.E.1
  • 50
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5 - rmsprop: Divide the gradient by a run-ning average of its recent magnitude
    • Tieleman T, Hinton GE. Lecture 6.5 - rmsprop: Divide the gradient by a run-ning average of its recent magnitude. COURSERA: Neural Netw Mach Learn. 2012; 4:2.
    • (2012) COURSERA: Neural Netw Mach Learn , vol.4 , pp. 2
    • Tieleman, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.