메뉴 건너뛰기




Volumn 32, Issue 5, 2016, Pages 641-649

De novo identification of replication-timing domains in the human genome by deep learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DNA REPLICATION; GENOMICS; HUMAN; HUMAN GENOME; NORMAL DISTRIBUTION;

EID: 84960077322     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv643     Document Type: Article
Times cited : (42)

References (39)
  • 1
    • 37249065196 scopus 로고    scopus 로고
    • DNA replication timing data corroborate in silico human replication origin predictions
    • Audit B, et al. (2007). DNA replication timing data corroborate in silico human replication origin predictions. Phys. Rev. Lett., 99, 248102.
    • (2007) Phys. Rev. Lett , vol.99 , pp. 248102
    • Audit, B.1
  • 2
    • 0034281086 scopus 로고    scopus 로고
    • Comparing the success of different prediction software in sequence analysis: A review
    • Bajic V.B. (2000). Comparing the success of different prediction software in sequence analysis: a review. Brief. Bioinform., 1, 214-228.
    • (2000) Brief. Bioinform , vol.1 , pp. 214-228
    • Bajic, V.B.1
  • 3
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell S.P., and Dutta A. (2002). DNA replication in eukaryotic cells. Annu. Rev. Biochem., 71, 333-374.
    • (2002) Annu. Rev. Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 5
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio Y, et al. (2013). Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell., 35, 1798-1828.
    • (2013) IEEE Trans. Patt. Anal. Mach. Intell , vol.35 , pp. 1798-1828
    • Bengio, Y.1
  • 6
    • 79953198187 scopus 로고    scopus 로고
    • Mutations in the pre-replication complex cause Meier-Gorlin syndrome
    • Bicknell L.S, et al. (2011). Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat. Genet., 43, 356-359.
    • (2011) Nat. Genet , vol.43 , pp. 356-359
    • Bicknell, L.S.1
  • 7
    • 79953167422 scopus 로고    scopus 로고
    • Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome
    • Bicknell L.S, et al. (2011). Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat. Genet., 43, 350-355.
    • (2011) Nat. Genet , vol.43 , pp. 350-355
    • Bicknell, L.S.1
  • 8
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project
    • Birney E, et al. (2007). Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project. Nature. 447, 799-816.
    • (2007) Nature , vol.447 , pp. 799-816
    • Birney, E.1
  • 9
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-Trained deep neural networks for large-vocabulary speech recognition
    • Dahl G.E, et al. (2012). Context-dependent pre-Trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech. 20, 30-42.
    • (2012) IEEE Trans Audio Speech , vol.20 , pp. 30-42
    • Dahl, G.E.1
  • 10
    • 34447333117 scopus 로고    scopus 로고
    • Unsupervised segmentation of continuous genomic data
    • Day N, et al. (2007). Unsupervised segmentation of continuous genomic data. Bioinformatics (Oxford, England), 23, 1424-1426.
    • (2007) Bioinformatics (Oxford, England , vol.23 , pp. 1424-1426
    • Day, N.1
  • 11
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-Training help deep learning?
    • Erhan D, et al. (2010). Why does unsupervised pre-Training help deep learning?. J. Mach. Learn. Res., 11, 625-660.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 625-660
    • Erhan, D.1
  • 12
    • 78650747491 scopus 로고    scopus 로고
    • Discovery and characterization of chromatin states for systematic annotation of the human genome
    • Ernst J., and Kellis M. (2010). Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol., 28, 817-825.
    • (2010) Nat. Biotechnol , vol.28 , pp. 817-825
    • Ernst, J.1    Kellis, M.2
  • 13
    • 84857707318 scopus 로고    scopus 로고
    • ChromHMM: Automating chromatin-state discovery and characterization
    • Ernst J, and Kellis M. (2012). ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods., 9, 215-216.
    • (2012) Nat. Methods , vol.9 , pp. 215-216
    • Ernst, J.1    Kellis, M.2
  • 14
    • 53549118586 scopus 로고    scopus 로고
    • Global organization of replication time zones of the mouse genome
    • Farkash-Amar S, et al. (2008). Global organization of replication time zones of the mouse genome. Genome Res., 18, 1562-1570.
    • (2008) Genome Res , vol.18 , pp. 1562-1570
    • Farkash-Amar, S.1
  • 15
    • 79953203480 scopus 로고    scopus 로고
    • Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome
    • Guernsey D.L, et al. (2011). Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome. Nat. Genet., 43, 360-364.
    • (2011) Nat. Genet , vol.43 , pp. 360-364
    • Guernsey, D.L.1
  • 16
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen R.S, et al. (2010). Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. U.S.A., 107, 139-144.
    • (2010) Proc. Natl Acad. Sci. U.S.A. , vol.107 , pp. 139-144
    • Hansen, R.S.1
  • 17
    • 84887348655 scopus 로고    scopus 로고
    • Deep belief networks
    • Hinton G. (2009). Deep belief networks. Scholarpedia. 4, 5947.
    • (2009) Scholarpedia , vol.4 , pp. 5947
    • Hinton, G.1
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E, et al. (2006) A fast learning algorithm for deep belief nets. Neural Comput., 18, 1527-1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E, and Salakhutdinov R.R. (2006). Reducing the dimensionality of data with neural networks. Science. 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 20
    • 84862785201 scopus 로고    scopus 로고
    • Unsupervised pattern discovery in human chromatin structure through genomic segmentation
    • Hoffman M.M, et al. (2012). Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods. 9, 473-476.
    • (2012) Nat. Methods , vol.9 , pp. 473-476
    • Hoffman, M.M.1
  • 21
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-Tiling arrays of ENCODE genomic areas
    • Karnani N, et al. (2007). Pan-S replication patterns and chromosomal domains defined by genome-Tiling arrays of ENCODE genomic areas. Genome Res., 17, 865-876.
    • (2007) Genome Res , vol.17 , pp. 865-876
    • Karnani, N.1
  • 22
    • 79551661935 scopus 로고    scopus 로고
    • Cell-Type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier A, et al. (2011). Cell-Type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature. 470, 120-123.
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1
  • 23
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue-regulated splicing code
    • Leung M.K, et al. (2014). Deep learning of the tissue-regulated splicing code. Bioinformatics (Oxford, England), 30, i121-i129.
    • (2014) Bioinformatics (Oxford, England , vol.30 , pp. i121-i129
    • Leung, M.K.1
  • 24
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E, et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326, 289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 25
    • 34547637896 scopus 로고    scopus 로고
    • High-Throughput mapping of origins of replication in human cells
    • Lucas I, et al. (2007). High-Throughput mapping of origins of replication in human cells. EMBO Rep., 8, 770-777.
    • (2007) EMBO Rep , vol.8 , pp. 770-777
    • Lucas, I.1
  • 26
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine D.M, et al. (2004). Coordination of replication and transcription along a Drosophila chromosome. Genes Dev., 18, 3094-3105.
    • (2004) Genes Dev , vol.18 , pp. 3094-3105
    • MacAlpine, D.M.1
  • 27
    • 77953632048 scopus 로고    scopus 로고
    • Eukaryotic chromosome DNA replication: Where when, and how?
    • Masai H, et al. (2010). Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem., 79, 89-130.
    • (2010) Annu. Rev. Biochem , vol.79 , pp. 89-130
    • Masai, H.1
  • 28
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-Timing regulation
    • Pope B.D, et al. (2014). Topologically associating domains are stable units of replication-Timing regulation. Nature. 515, 402-405.
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1
  • 29
    • 0035812808 scopus 로고    scopus 로고
    • Replication dynamics of the yeast genome
    • Raghuraman M.K, et al. (2001). Replication dynamics of the yeast genome. Science. 294, 115-121.
    • (2001) Science , vol.294 , pp. 115-121
    • Raghuraman, M.K.1
  • 30
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T, et al. (2010). Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res., 20, 761-770.
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1
  • 31
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
    • Schubeler D, et al. (2002). Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet., 32, 438-442.
    • (2002) Nat. Genet , vol.32 , pp. 438-442
    • Schubeler, D.1
  • 32
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-Type- and genderspecific replication of the Drosophila genome
    • Schwaiger M, et al. (2009). Chromatin state marks cell-Type- And genderspecific replication of the Drosophila genome. Genes Dev., 23, 589-601.
    • (2009) Genes Dev , vol.23 , pp. 589-601
    • Schwaiger, M.1
  • 33
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani R.A, and Holzen T.M. (2007). Cell cycle regulation of DNA replication. Annu. Rev. Genet., 41, 237-280.
    • (2007) Annu. Rev. Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 34
    • 84877924200 scopus 로고    scopus 로고
    • Aberrant DNA replication in cancer
    • 743-744
    • Suzuki M, and Takahashi T. (2013). Aberrant DNA replication in cancer. Mut. Res., 743-744, 111-117.
    • (2013) Mut. Res , pp. 111-117
    • Suzuki, M.1    Takahashi, T.2
  • 35
    • 34250376064 scopus 로고    scopus 로고
    • Identification of higher-order functional domains in the human ENCODE regions
    • Thurman R.E, et al. (2007). Identification of higher-order functional domains in the human ENCODE regions. Genome Res., 17, 917-927.
    • (2007) Genome Res , vol.17 , pp. 917-927
    • Thurman, R.E.1
  • 36
    • 34147104969 scopus 로고    scopus 로고
    • A faster circular binary segmentation algorithm for the analysis of array CGH data
    • Venkatraman E.S, and Olshen A.B. (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics (Oxford, England), 23, 657-663.
    • (2007) Bioinformatics (Oxford, England , vol.23 , pp. 657-663
    • Venkatraman, E.S.1    Olshen, A.B.2
  • 37
    • 84866067741 scopus 로고    scopus 로고
    • DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes
    • Woo Y.H, and Li W.H. (2012). DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat. Commun., 3, 1004.
    • (2012) Nat. Commun , vol.3 , pp. 1004
    • Woo, Y.H.1    Li, W.H.2
  • 38
    • 17444425224 scopus 로고    scopus 로고
    • Replication timing of human chromosome 6
    • Woodfine K, et al. (2005). Replication timing of human chromosome 6. Cell Cycle. 4, 172-176.
    • (2005) Cell Cycle , vol.4 , pp. 172-176
    • Woodfine, K.1
  • 39
    • 84923276179 scopus 로고    scopus 로고
    • RNA splicing the human splicing code reveals new insights into the genetic determinants of disease
    • Xiong H.Y, et al. (2015). RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 347, 1254806.
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.