메뉴 건너뛰기




Volumn 32, Issue 12, 2016, Pages 1832-1839

Gene expression inference with deep learning

Author keywords

[No Author keywords available]

Indexed keywords

RNA;

EID: 84976420628     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw074     Document Type: Article
Times cited : (342)

References (35)
  • 1
    • 84929001104 scopus 로고    scopus 로고
    • The genotype-tissue expression (gtex) pilot analysis: Multitissue gene regulation in humans
    • Ardlie,K.G. et al. (2015) The genotype-tissue expression (gtex) pilot analysis: multitissue gene regulation in humans. Science, 348, 648-660.
    • (2015) Science , vol.348 , pp. 648-660
    • Ardlie, K.G.1
  • 3
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • Baldi,P. et al. (2014) Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 5, 4308.
    • (2014) Nat. Commun , vol.5 , pp. 4308
    • Baldi, P.1
  • 4
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal,M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 1.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 1
    • Bansal, M.1
  • 5
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio,Y. (2009) Learning deep architectures for AI. Found. Trends Mach. Learn., 2, 1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio,Y. et al. (2013) Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798-1828.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1798-1828
    • Bengio, Y.1
  • 7
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley,J.L. (1975) Multidimensional binary search trees used for associative searching. Commun. ACM, 18, 509-517.
    • (1975) Commun. ACM , vol.18 , pp. 509-517
    • Bentley, J.L.1
  • 12
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • Di Lena,P. et al. (2012) Deep architectures for protein contact map prediction. Bioinformatics, 28, 2449-2457.
    • (2012) Bioinformatics , vol.28 , pp. 2449-2457
    • Di Lena, P.1
  • 13
    • 0036081355 scopus 로고    scopus 로고
    • Gene expression omnibus: NCBI gene expression and hybridization array data repository
    • Edgar,R. et al. (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 30, 207-210.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 207-210
    • Edgar, R.1
  • 16
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: In numero molecular biology
    • Hasty,J. et al. (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet., 2, 268-279.
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 268-279
    • Hasty, J.1
  • 17
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton,G. (2010) A practical guide to training restricted Boltzmann machines. Momentum, 9, 926.
    • (2010) Momentum , vol.9 , pp. 926
    • Hinton, G.1
  • 18
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton,G. et al. (2012a) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag., 29, 82-97.
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Lake Tahoe, US
    • Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, Lake Tahoe, US, pp. 1097-1105.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1
  • 21
    • 33749335282 scopus 로고    scopus 로고
    • The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
    • Lamb,J. et al. (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929-1935.
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1
  • 22
    • 84885645853 scopus 로고    scopus 로고
    • Transcriptome and genome sequencing uncovers functional variation in humans
    • Lappalainen,T. et al. (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506-511.
    • (2013) Nature , vol.501 , pp. 506-511
    • Lappalainen, T.1
  • 23
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue-regulated splicing code
    • Leung,M.K. et al. (2014) Deep learning of the tissue-regulated splicing code. Bioinformatics, 30, i121-i129.
    • (2014) Bioinformatics , vol.30 , pp. i121-i129
    • Leung, M.K.1
  • 24
    • 84878682420 scopus 로고    scopus 로고
    • The genotype-tissue expression (GTEX) project
    • Lonsdale,J. et al. (2013) The genotype-tissue expression (GTEX) project. Nat. Genet., 45, 580-585.
    • (2013) Nat. Genet. , vol.45 , pp. 580-585
    • Lonsdale, J.1
  • 25
    • 33747657739 scopus 로고    scopus 로고
    • A method for high-throughput gene expression signature analysis
    • Peck,D. et al. (2006) A method for high-throughput gene expression signature analysis. Genome Biol., 7, R61.
    • (2006) Genome Biol. , vol.7 , pp. R61
    • Peck, D.1
  • 26
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825-2830.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 27
    • 84921845912 scopus 로고    scopus 로고
    • DANN: A deep learning approach for annotating the pathogenicity of genetic variants
    • Quang,D. et al. (2014) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics
    • (2014) Bioinformatics
    • Quang, D.1
  • 28
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart,D.E. et al. (1988) Learning representations by back-propagating errors. Cogn. Model., 5, 1.
    • (1988) Cogn. Model. , vol.5 , pp. 1
    • Rumelhart, D.E.1
  • 30
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1929-1958
    • Srivastava, N.1
  • 33
  • 34
    • 84912527013 scopus 로고    scopus 로고
    • The concordance between RNA-Seq and microarray data depends on chemical treatment and transcript abundance
    • Wang,C. et al. (2014) The concordance between RNA-Seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol., 32, 926-932.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 926-932
    • Wang, C.1
  • 35
    • 84893053905 scopus 로고    scopus 로고
    • Low-rank regularization for learning gene expression programs
    • Ye,G. et al. (2013) Low-rank regularization for learning gene expression programs. PloS One, 8, e82146.
    • (2013) PloS One , vol.8 , pp. e82146
    • Ye, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.