-
1
-
-
84929001104
-
The genotype-tissue expression (gtex) pilot analysis: Multitissue gene regulation in humans
-
Ardlie,K.G. et al. (2015) The genotype-tissue expression (gtex) pilot analysis: multitissue gene regulation in humans. Science, 348, 648-660.
-
(2015)
Science
, vol.348
, pp. 648-660
-
-
Ardlie, K.G.1
-
3
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
Baldi,P. et al. (2014) Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 5, 4308.
-
(2014)
Nat. Commun
, vol.5
, pp. 4308
-
-
Baldi, P.1
-
4
-
-
33847055114
-
How to infer gene networks from expression profiles
-
Bansal,M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 1.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 1
-
-
Bansal, M.1
-
5
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio,Y. (2009) Learning deep architectures for AI. Found. Trends Mach. Learn., 2, 1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
6
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio,Y. et al. (2013) Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798-1828.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
-
7
-
-
0016557674
-
Multidimensional binary search trees used for associative searching
-
Bentley,J.L. (1975) Multidimensional binary search trees used for associative searching. Commun. ACM, 18, 509-517.
-
(1975)
Commun. ACM
, vol.18
, pp. 509-517
-
-
Bentley, J.L.1
-
9
-
-
84976521812
-
-
PhD Thesis, University of California, Irvine, ProQuest, UMI Dissertations Publishing
-
Chen,Y. (2014) Machine learning for large-scale genomics: algorithms, models and applications. PhD Thesis, University of California, Irvine, ProQuest, UMI Dissertations Publishing.
-
(2014)
Machine Learning for Large-scale Genomics: Algorithms, Models and Applications
-
-
Chen, Y.1
-
12
-
-
84867316765
-
Deep architectures for protein contact map prediction
-
Di Lena,P. et al. (2012) Deep architectures for protein contact map prediction. Bioinformatics, 28, 2449-2457.
-
(2012)
Bioinformatics
, vol.28
, pp. 2449-2457
-
-
Di Lena, P.1
-
13
-
-
0036081355
-
Gene expression omnibus: NCBI gene expression and hybridization array data repository
-
Edgar,R. et al. (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 30, 207-210.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 207-210
-
-
Edgar, R.1
-
16
-
-
0035319006
-
Computational studies of gene regulatory networks: In numero molecular biology
-
Hasty,J. et al. (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet., 2, 268-279.
-
(2001)
Nat. Rev. Genet.
, vol.2
, pp. 268-279
-
-
Hasty, J.1
-
17
-
-
84861125212
-
A practical guide to training restricted Boltzmann machines
-
Hinton,G. (2010) A practical guide to training restricted Boltzmann machines. Momentum, 9, 926.
-
(2010)
Momentum
, vol.9
, pp. 926
-
-
Hinton, G.1
-
18
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton,G. et al. (2012a) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag., 29, 82-97.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, pp. 82-97
-
-
Hinton, G.1
-
20
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, US
-
Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, Lake Tahoe, US, pp. 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
21
-
-
33749335282
-
The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
-
Lamb,J. et al. (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929-1935.
-
(2006)
Science
, vol.313
, pp. 1929-1935
-
-
Lamb, J.1
-
22
-
-
84885645853
-
Transcriptome and genome sequencing uncovers functional variation in humans
-
Lappalainen,T. et al. (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506-511.
-
(2013)
Nature
, vol.501
, pp. 506-511
-
-
Lappalainen, T.1
-
23
-
-
84902462761
-
Deep learning of the tissue-regulated splicing code
-
Leung,M.K. et al. (2014) Deep learning of the tissue-regulated splicing code. Bioinformatics, 30, i121-i129.
-
(2014)
Bioinformatics
, vol.30
, pp. i121-i129
-
-
Leung, M.K.1
-
24
-
-
84878682420
-
The genotype-tissue expression (GTEX) project
-
Lonsdale,J. et al. (2013) The genotype-tissue expression (GTEX) project. Nat. Genet., 45, 580-585.
-
(2013)
Nat. Genet.
, vol.45
, pp. 580-585
-
-
Lonsdale, J.1
-
25
-
-
33747657739
-
A method for high-throughput gene expression signature analysis
-
Peck,D. et al. (2006) A method for high-throughput gene expression signature analysis. Genome Biol., 7, R61.
-
(2006)
Genome Biol.
, vol.7
, pp. R61
-
-
Peck, D.1
-
26
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825-2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
27
-
-
84921845912
-
DANN: A deep learning approach for annotating the pathogenicity of genetic variants
-
Quang,D. et al. (2014) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics
-
(2014)
Bioinformatics
-
-
Quang, D.1
-
28
-
-
84921817164
-
Learning representations by back-propagating errors
-
Rumelhart,D.E. et al. (1988) Learning representations by back-propagating errors. Cogn. Model., 5, 1.
-
(1988)
Cogn. Model.
, vol.5
, pp. 1
-
-
Rumelhart, D.E.1
-
30
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
-
33
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM, Helsinki, Finland,ACM
-
Vincent,P. et al. (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, pp. 1096-1103. ACM.
-
(2008)
Proceedings of the rfvn1 25th International Conference on Machine Learning
, pp. 1096-1103
-
-
Vincent, P.1
-
34
-
-
84912527013
-
The concordance between RNA-Seq and microarray data depends on chemical treatment and transcript abundance
-
Wang,C. et al. (2014) The concordance between RNA-Seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol., 32, 926-932.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 926-932
-
-
Wang, C.1
-
35
-
-
84893053905
-
Low-rank regularization for learning gene expression programs
-
Ye,G. et al. (2013) Low-rank regularization for learning gene expression programs. PloS One, 8, e82146.
-
(2013)
PloS One
, vol.8
, pp. e82146
-
-
Ye, G.1
|