메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives

Author keywords

Adaptive laboratory evolution; CEN.PK; Evolutionary engineering; Glycerol; Yeast

Indexed keywords

GENES; GROWTH RATE; REVERSE ENGINEERING; SUBSTRATES; YEAST;

EID: 85027139376     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-016-0696-6     Document Type: Article
Times cited : (32)

References (59)
  • 1
    • 57349088282 scopus 로고    scopus 로고
    • Glycerol: A promising and abundant carbon source for industrial microbiology
    • Da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27(1):30-9.
    • (2009) Biotechnol Adv , vol.27 , Issue.1 , pp. 30-39
    • Da Silva, G.P.1    Mack, M.2    Contiero, J.3
  • 2
    • 84857624342 scopus 로고    scopus 로고
    • Microbial utilization of crude glycerol for the production of value-added products
    • 1:CAS:528:DC%2BC38Xht1WgtLk%3D
    • Dobson R, Gray V, Rumbold K. Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol. 2012;39:217-26.
    • (2012) J Ind Microbiol Biotechnol , vol.39 , pp. 217-226
    • Dobson, R.1    Gray, V.2    Rumbold, K.3
  • 3
    • 34248591045 scopus 로고    scopus 로고
    • Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol
    • 1:CAS:528:DC%2BD2sXls1Wqs7Y%3D
    • Levinson WE, Kurtzman CP, Kuo TM. Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Technol. 2007;41:292-5.
    • (2007) Enzyme Microb Technol , vol.41 , pp. 292-295
    • Levinson, W.E.1    Kurtzman, C.P.2    Kuo, T.M.3
  • 4
    • 84871673203 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals
    • 1:CAS:528:DC%2BC38XhslWqt77L
    • Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol. 2013;31:20-8.
    • (2013) Trends Biotechnol , vol.31 , pp. 20-28
    • Clomburg, J.M.1    Gonzalez, R.2
  • 5
    • 78650696502 scopus 로고    scopus 로고
    • Kinetic analysis of a Saccharomyces cerevisiae strain adapted for improved growth on glycerol: Implications for the development of yeast bioprocesses on glycerol
    • 1:CAS:528:DC%2BC3MXitlSgsg%3D%3D
    • Ochoa-Estopier A, Lesage J, Gorret N, Guillouet SE. Kinetic analysis of a Saccharomyces cerevisiae strain adapted for improved growth on glycerol: implications for the development of yeast bioprocesses on glycerol. Bioresour Technol. 2011;102:1521-7.
    • (2011) Bioresour Technol , vol.102 , pp. 1521-1527
    • Ochoa-Estopier, A.1    Lesage, J.2    Gorret, N.3    Guillouet, S.E.4
  • 6
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXhtFylsrnL
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2008;72:379-412.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 7
    • 0034214335 scopus 로고    scopus 로고
    • An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
    • van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois J, Gancedo C, et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol. 2000;26:706-14.
    • (2000) Enzyme Microb Technol , vol.26 , pp. 706-714
    • Van Dijken, J.P.1    Bauer, J.2    Brambilla, L.3    Duboc, P.4    Francois, J.5    Gancedo, C.6
  • 9
    • 2442640659 scopus 로고    scopus 로고
    • Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export
    • van Maris AJA, Winkler AA, Porro D, Van Dijken JP, Pronk JT. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol. 2004;70:2898-905.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2898-2905
    • Van Maris, A.J.A.1    Winkler, A.A.2    Porro, D.3    Van Dijken, J.P.4    Pronk, J.T.5
  • 10
    • 79952806663 scopus 로고    scopus 로고
    • Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers
    • 1:CAS:528:DC%2BC3MXktVOgsrg%3D
    • Madsen KM, Udatha GD, Semba S, Otero JM, Koetter P, Nielsen J, Ebizuka Y, Kushiro T, Panagiotou G. Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS ONE. 2011;6(3):e14763.
    • (2011) PLoS ONE , vol.6 , Issue.3
    • Madsen, K.M.1    Udatha, G.D.2    Semba, S.3    Otero, J.M.4    Koetter, P.5    Nielsen, J.6    Ebizuka, Y.7    Kushiro, T.8    Panagiotou, G.9
  • 12
    • 75749121042 scopus 로고    scopus 로고
    • Key process conditions for production of C4 dicarboxylic acids in bioreactor Batch cultures of an engineered Saccharomyces cerevisiae strain
    • 1:CAS:528:DC%2BC3cXisVCjs7k%3D
    • Zelle RM, De Hulster E, Kloezen W, Pronk JT, Van Maris AJA. Key process conditions for production of C4 dicarboxylic acids in bioreactor Batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2010;76:744-50.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 744-750
    • Zelle, R.M.1    De Hulster, E.2    Kloezen, W.3    Pronk, J.T.4    Van Maris, A.J.A.5
  • 13
    • 84941129321 scopus 로고    scopus 로고
    • Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of l-ornithine
    • Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, et al. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of l-ornithine. Nat Commun. 2015;6:8224.
    • (2015) Nat Commun , vol.6 , pp. 8224
    • Qin, J.1    Zhou, Y.J.2    Krivoruchko, A.3    Huang, M.4    Liu, L.5    Khoomrung, S.6
  • 14
    • 84959330458 scopus 로고    scopus 로고
    • n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA
    • Schadeweg V, Boles E. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels. 2016;9(1):1.
    • (2016) Biotechnol Biofuels , vol.9 , Issue.1 , pp. 1
    • Schadeweg, V.1    Boles, E.2
  • 15
    • 84960936931 scopus 로고    scopus 로고
    • Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
    • Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact. 2016;15:53.
    • (2016) Microb Cell Fact , vol.15 , pp. 53
    • Kildegaard, K.R.1    Jensen, N.B.2    Schneider, K.3    Czarnotta, E.4    Özdemir, E.5    Klein, T.6
  • 16
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
    • 1:CAS:528:DC%2BD3sXlsFagurY%3D
    • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Society. 2003;69:4144-50.
    • (2003) Society. , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 17
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD28XhtlaqsLvO
    • Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2007;73:1039-46.
    • (2007) Appl Microbiol Biotechnol , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 18
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • 1:CAS:528:DC%2BD2MXlvFKlu74%3D
    • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP, Pronk JT. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005;5:925-34.
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    Van Dijken, J.P.5    Pronk, J.T.6
  • 19
    • 85027955559 scopus 로고    scopus 로고
    • Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol
    • 1:CAS:528:DC%2BC3MXptFymsbw%3D
    • Merico A, Ragni E, Galafassi S, Popolo L, Compagno C. Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol. J Ind Microbiol Biotechnol. 2011;38:1037-44.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1037-1044
    • Merico, A.1    Ragni, E.2    Galafassi, S.3    Popolo, L.4    Compagno, C.5
  • 20
    • 84887337602 scopus 로고    scopus 로고
    • Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: Characterization of an isolate that grows on glycerol without supporting supplements
    • Swinnen S, Klein M, Carrillo M, Mcinnes J, Thi H, Nguyen T, et al. Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements. Biotechnol Biofuels. 2013;6:1-12.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 1-12
    • Swinnen, S.1    Klein, M.2    Carrillo, M.3    Mcinnes, J.4    Thi, H.5    Nguyen, T.6
  • 22
    • 84962523487 scopus 로고    scopus 로고
    • Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC28XkvFGjs7c%3D
    • Swinnen S, Ho P-W, Klein M, Nevoigt E. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab Eng. 2016;36:68-79.
    • (2016) Metab Eng , vol.36 , pp. 68-79
    • Swinnen, S.1    Ho, P.-W.2    Klein, M.3    Nevoigt, E.4
  • 23
    • 84879489028 scopus 로고    scopus 로고
    • Adaptive laboratory evolution - Principles and applications for biotechnology
    • Dragosits M, Mattanovich D. Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact. 2013;12:64.
    • (2013) Microb Cell Fact , vol.12 , pp. 64
    • Dragosits, M.1    Mattanovich, D.2
  • 24
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • 1:CAS:528:DyaK38Xlt1Oqurk%3D
    • Verduyn C, Postma E. Scheffers Wa, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, Wa.3    Van Dijken, J.P.4
  • 25
    • 0025978950 scopus 로고
    • Micromanipulation and dissection of asci
    • 1:STN:280:DyaK3M7ntFyqsw%3D%3D
    • Sherman F, Hicks J. Micromanipulation and dissection of asci. Methods Enzym. 1991;194:21-37.
    • (1991) Methods Enzym. , vol.194 , pp. 21-37
    • Sherman, F.1    Hicks, J.2
  • 26
    • 0032412476 scopus 로고    scopus 로고
    • Mating-type gene switching in Saccharomyces cerevisiae
    • 1:CAS:528:DyaK1MXjvFWksQ%3D%3D
    • Haber JE. Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet. 1998;32:561-99.
    • (1998) Annu Rev Genet , vol.32 , pp. 561-599
    • Haber, J.E.1
  • 27
    • 0036793662 scopus 로고    scopus 로고
    • Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs
    • 1:CAS:528:DC%2BD38XnvFClt7Y%3D
    • Teunissen A, Tanghe A, Loïez A, Smet P, Van Dijck P, Thevelein JM. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Appl Environ Microbiol. 2002;68:4780-7.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 4780-4787
    • Teunissen, A.1    Tanghe, A.2    Loïez, A.3    Smet, P.4    Van Dijck, P.5    Thevelein, J.M.6
  • 28
    • 44949267924 scopus 로고
    • Rapid assessment of S. Cerevisiae mating type by PCR
    • 1:STN:280:DyaK3M%2FkvVymsA%3D%3D
    • Huxley C, Green E, Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990;6:236.
    • (1990) Trends Genet , vol.6 , pp. 236
    • Huxley, C.1    Green, E.2    Dunham, I.3
  • 31
    • 84899007503 scopus 로고    scopus 로고
    • An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments
    • Duitama J, Quintero JC, Cruz DF, Quintero C, Hubmann G, Foulquié-Moreno MR, et al. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res. 2014;42:1-13.
    • (2014) Nucleic Acids Res , vol.42 , pp. 1-13
    • Duitama, J.1    Quintero, J.C.2    Cruz, D.F.3    Quintero, C.4    Hubmann, G.5    Foulquié-Moreno, M.R.6
  • 32
    • 84858729135 scopus 로고    scopus 로고
    • De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
    • 1:CAS:528:DC%2BC38Xpt1ajtLY%3D
    • Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik M, et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact. 2012;11:36.
    • (2012) Microb Cell Fact , vol.11 , pp. 36
    • Nijkamp, J.F.1    Van Den Broek, M.2    Datema, E.3    De Kok, S.4    Bosman, L.5    Luttik, M.6
  • 33
    • 0037196945 scopus 로고    scopus 로고
    • Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast
    • 1:CAS:528:DC%2BD38XivVersrc%3D
    • Akada R, Hirosawa I, Kawahata M, Hoshida H, Nishizawa Y. Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast. 2002;19:393-402.
    • (2002) Yeast , vol.19 , pp. 393-402
    • Akada, R.1    Hirosawa, I.2    Kawahata, M.3    Hoshida, H.4    Nishizawa, Y.5
  • 34
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • 1:STN:280:DC%2BD387lt1GnsQ%3D%3D
    • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30:e23.
    • (2002) Nucleic Acids Res , vol.30 , pp. e23
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 35
    • 0014197885 scopus 로고
    • Purification and properties of glycerol kinase from Escherichia coli
    • 1:CAS:528:DyaF2sXmt1Wisw%3D%3D
    • Hayashi S, Lin ECC. Purification and properties of glycerol kinase from Escherichia coli. J Biol Chem. 1967;242:1030-5.
    • (1967) J Biol Chem , vol.242 , pp. 1030-1035
    • Hayashi, S.1    Lin, E.C.C.2
  • 36
    • 0001570356 scopus 로고
    • A Rapid enzymatic assay for glycerol
    • 1:CAS:528:DyaF3sXjsVGjtQ%3D%3D
    • Garland PB, Randle PJ. a Rapid enzymatic assay for glycerol. Nature. 1962;196:987-8.
    • (1962) Nature , vol.196 , pp. 987-988
    • Garland, P.B.1    Randle, P.J.2
  • 37
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • 1:CAS:528:DyaE28XksVehtrY%3D
    • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 38
    • 0001489694 scopus 로고
    • Crossing-over and interference in a multiply marked chromosome arm of Neurospora
    • 1:STN:280:DyaF387jsVWhsQ%3D%3D
    • Perkins DD. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics. 1962;47(9):1253.
    • (1962) Genetics , vol.47 , Issue.9 , pp. 1253
    • Perkins, D.D.1
  • 39
    • 84913546864 scopus 로고    scopus 로고
    • Toward better understanding of artifacts in variant calling from high-coverage samples
    • 1:CAS:528:DC%2BC28XhtFOrt7fP
    • Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843-51.
    • (2014) Bioinformatics , vol.30 , pp. 2843-2851
    • Li, H.1
  • 41
    • 33746060530 scopus 로고    scopus 로고
    • Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling
    • 1:CAS:528:DC%2BD28XntVWltrs%3D
    • Roberts GG, Hudson AP. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genom. 2006;276:170-86.
    • (2006) Mol Genet Genom. , vol.276 , pp. 170-186
    • Roberts, G.G.1    Hudson, A.P.2
  • 42
    • 60749090162 scopus 로고    scopus 로고
    • Transcriptional memory at the nuclear periphery
    • 1:CAS:528:DC%2BD1MXisFGku78%3D
    • Brickner JH. Transcriptional memory at the nuclear periphery. Curr Opin Cell Biol. 2009;21:127-33.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 127-133
    • Brickner, J.H.1
  • 43
    • 34247341747 scopus 로고    scopus 로고
    • H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
    • 1:CAS:528:DC%2BD2sXksFSmtrs%3D
    • Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 2007;5:704-16.
    • (2007) PLoS Biol , vol.5 , pp. 704-716
    • Brickner, D.G.1    Cajigas, I.2    Fondufe-Mittendorf, Y.3    Ahmed, S.4    Lee, P.C.5    Widom, J.6
  • 45
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • 1:CAS:528:DC%2BC3sXnvFajurg%3D
    • Gonzalez-Ramos D, van den Broek M, van Maris A, Pronk J, Daran J-M. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels. 2013;6:48.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 48
    • Gonzalez-Ramos, D.1    Van Den Broek, M.2    Van Maris, A.3    Pronk, J.4    Daran, J.-M.5
  • 46
    • 84860571592 scopus 로고    scopus 로고
    • Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
    • 1:CAS:528:DC%2BC38Xms1anuro%3D
    • Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 2012;22:975-84.
    • (2012) Genome Res , vol.22 , pp. 975-984
    • Swinnen, S.1    Schaerlaekens, K.2    Pais, T.3    Claesen, J.4    Hubmann, G.5    Yang, Y.6
  • 48
    • 40849138236 scopus 로고    scopus 로고
    • Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXhs12lsr8%3D
    • Lang GI, Murray AW. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics. 2008;178:67-82.
    • (2008) Genetics , vol.178 , pp. 67-82
    • Lang, G.I.1    Murray, A.W.2
  • 49
    • 0025886466 scopus 로고
    • A constant rate of spontaneous mutation in DNA-based microbes
    • 1:CAS:528:DyaK3MXlsFais7g%3D
    • Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci. 1991;88:7160-4.
    • (1991) Proc Natl Acad Sci , vol.88 , pp. 7160-7164
    • Drake, J.W.1
  • 50
    • 85011356024 scopus 로고    scopus 로고
    • Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities
    • Klein M, Swinnen S, Thevelein J, Nevoigt E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol. 2016. doi: 10.1111/1462-2920.13617.
    • (2016) Environ Microbiol
    • Klein, M.1    Swinnen, S.2    Thevelein, J.3    Nevoigt, E.4
  • 51
    • 84867176120 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXjvVCisrw%3D
    • Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics. 2012;192:319-60.
    • (2012) Genetics , vol.192 , pp. 319-360
    • Finley, D.1    Ulrich, H.D.2    Sommer, T.3    Kaiser, P.4
  • 52
    • 84890204277 scopus 로고    scopus 로고
    • Protein quality control and elimination of protein waste: The role of the ubiquitin-proteasome system
    • 1:CAS:528:DC%2BC3sXhtFygsb7E
    • Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta Mol Cell Res. 2014;1843(1):182-96.
    • (2014) Biochim Biophys Acta Mol Cell Res. , vol.1843 , Issue.1 , pp. 182-196
    • Amm, I.1    Sommer, T.2    Wolf, D.H.3
  • 53
    • 85027164921 scopus 로고    scopus 로고
    • Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: Lessons from yeast
    • Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol. 2015;9238:1-14.
    • (2015) Crit Rev Biochem Mol Biol , vol.9238 , pp. 1-14
    • Nakatsukasa, K.1    Okumura, F.2    Kamura, T.3
  • 54
    • 78650434660 scopus 로고    scopus 로고
    • Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo
    • 1:CAS:528:DC%2BC3MXis1Orsg%3D%3D
    • Emerman AB, Zhang Z-R, Chakrabarti O, Hegde RS. Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo. Mol Biol Cell. 2010;21:4325-37.
    • (2010) Mol Biol Cell , vol.21 , pp. 4325-4337
    • Emerman, A.B.1    Zhang, Z.-R.2    Chakrabarti, O.3    Hegde, R.S.4
  • 55
    • 11244343965 scopus 로고    scopus 로고
    • Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
    • 1:CAS:528:DC%2BD2cXhtFeis7zJ
    • Wang L, Mao X, Ju D, Xie Y. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem. 2004;279:55218-23.
    • (2004) J Biol Chem , vol.279 , pp. 55218-55223
    • Wang, L.1    Mao, X.2    Ju, D.3    Xie, Y.4
  • 56
    • 35548985701 scopus 로고    scopus 로고
    • Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal
    • 1:CAS:528:DC%2BD2sXht1Kkur3F
    • Ju D, Xu H, Wang X, Xie Y. Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. Biochim Biophys Acta Mol Cell Res. 2007;1773:1672-80.
    • (2007) Biochim Biophys Acta Mol Cell Res. , vol.1773 , pp. 1672-1680
    • Ju, D.1    Xu, H.2    Wang, X.3    Xie, Y.4
  • 57
    • 84863615329 scopus 로고    scopus 로고
    • A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast
    • 1:CAS:528:DC%2BC38XpvVeju7s%3D
    • Theodoraki MA, Nillegoda NB, Saini J, Caplan AJ. A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast. J Biol Chem. 2012;287:23911-22.
    • (2012) J Biol Chem , vol.287 , pp. 23911-23922
    • Theodoraki, M.A.1    Nillegoda, N.B.2    Saini, J.3    Caplan, A.J.4
  • 58
    • 80053445278 scopus 로고    scopus 로고
    • Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3MXht1ChsbvO
    • Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, et al. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011;7:e1002253.
    • (2011) PLoS Genet , vol.7
    • Kruegel, U.1    Robison, B.2    Dange, T.3    Kahlert, G.4    Delaney, J.R.5    Kotireddy, S.6
  • 59
    • 84994899494 scopus 로고    scopus 로고
    • Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses
    • 1:CAS:528:DC%2BC28XhslSitL7J
    • Klein M, Carrillo M, Xiberras J, Islam Z, Swinnen S, Nevoigt E. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng. 2016;38:464-72.
    • (2016) Metab Eng , vol.38 , pp. 464-472
    • Klein, M.1    Carrillo, M.2    Xiberras, J.3    Islam, Z.4    Swinnen, S.5    Nevoigt, E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.