-
1
-
-
57349088282
-
Glycerol: A promising and abundant carbon source for industrial microbiology
-
Da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27(1):30-9.
-
(2009)
Biotechnol Adv
, vol.27
, Issue.1
, pp. 30-39
-
-
Da Silva, G.P.1
Mack, M.2
Contiero, J.3
-
2
-
-
84857624342
-
Microbial utilization of crude glycerol for the production of value-added products
-
1:CAS:528:DC%2BC38Xht1WgtLk%3D
-
Dobson R, Gray V, Rumbold K. Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol. 2012;39:217-26.
-
(2012)
J Ind Microbiol Biotechnol
, vol.39
, pp. 217-226
-
-
Dobson, R.1
Gray, V.2
Rumbold, K.3
-
3
-
-
34248591045
-
Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol
-
1:CAS:528:DC%2BD2sXls1Wqs7Y%3D
-
Levinson WE, Kurtzman CP, Kuo TM. Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Technol. 2007;41:292-5.
-
(2007)
Enzyme Microb Technol
, vol.41
, pp. 292-295
-
-
Levinson, W.E.1
Kurtzman, C.P.2
Kuo, T.M.3
-
4
-
-
84871673203
-
Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals
-
1:CAS:528:DC%2BC38XhslWqt77L
-
Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol. 2013;31:20-8.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 20-28
-
-
Clomburg, J.M.1
Gonzalez, R.2
-
5
-
-
78650696502
-
Kinetic analysis of a Saccharomyces cerevisiae strain adapted for improved growth on glycerol: Implications for the development of yeast bioprocesses on glycerol
-
1:CAS:528:DC%2BC3MXitlSgsg%3D%3D
-
Ochoa-Estopier A, Lesage J, Gorret N, Guillouet SE. Kinetic analysis of a Saccharomyces cerevisiae strain adapted for improved growth on glycerol: implications for the development of yeast bioprocesses on glycerol. Bioresour Technol. 2011;102:1521-7.
-
(2011)
Bioresour Technol
, vol.102
, pp. 1521-1527
-
-
Ochoa-Estopier, A.1
Lesage, J.2
Gorret, N.3
Guillouet, S.E.4
-
6
-
-
51949107835
-
Progress in metabolic engineering of Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD1cXhtFylsrnL
-
Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2008;72:379-412.
-
(2008)
Microbiol Mol Biol Rev
, vol.72
, pp. 379-412
-
-
Nevoigt, E.1
-
7
-
-
0034214335
-
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
-
van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois J, Gancedo C, et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol. 2000;26:706-14.
-
(2000)
Enzyme Microb Technol
, vol.26
, pp. 706-714
-
-
Van Dijken, J.P.1
Bauer, J.2
Brambilla, L.3
Duboc, P.4
Francois, J.5
Gancedo, C.6
-
8
-
-
0345869655
-
2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
-
2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol. 2004;70:159-66.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 159-166
-
-
Van Maris, A.J.A.1
Geertman, J.A.2
Vermeulen, A.3
Groothuizen, M.K.4
Winkler, A.A.5
Piper, M.D.W.6
-
9
-
-
2442640659
-
Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export
-
van Maris AJA, Winkler AA, Porro D, Van Dijken JP, Pronk JT. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol. 2004;70:2898-905.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 2898-2905
-
-
Van Maris, A.J.A.1
Winkler, A.A.2
Porro, D.3
Van Dijken, J.P.4
Pronk, J.T.5
-
10
-
-
79952806663
-
Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers
-
1:CAS:528:DC%2BC3MXktVOgsrg%3D
-
Madsen KM, Udatha GD, Semba S, Otero JM, Koetter P, Nielsen J, Ebizuka Y, Kushiro T, Panagiotou G. Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS ONE. 2011;6(3):e14763.
-
(2011)
PLoS ONE
, vol.6
, Issue.3
-
-
Madsen, K.M.1
Udatha, G.D.2
Semba, S.3
Otero, J.M.4
Koetter, P.5
Nielsen, J.6
Ebizuka, Y.7
Kushiro, T.8
Panagiotou, G.9
-
11
-
-
78650276516
-
Whole genome sequencing of Saccharomyces cerevisiae: From genotype to phenotype for improved metabolic engineering applications
-
Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Østerås M, Schalk M, Clark A, Nielsen J. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genom. 2010;11(1):1.
-
(2010)
BMC Genom
, vol.11
, Issue.1
, pp. 1
-
-
Otero, J.M.1
Vongsangnak, W.2
Asadollahi, M.A.3
Olivares-Hernandes, R.4
Maury, J.5
Farinelli, L.6
Barlocher, L.7
Østerås, M.8
Schalk, M.9
Clark, A.10
Nielsen, J.11
-
12
-
-
75749121042
-
Key process conditions for production of C4 dicarboxylic acids in bioreactor Batch cultures of an engineered Saccharomyces cerevisiae strain
-
1:CAS:528:DC%2BC3cXisVCjs7k%3D
-
Zelle RM, De Hulster E, Kloezen W, Pronk JT, Van Maris AJA. Key process conditions for production of C4 dicarboxylic acids in bioreactor Batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2010;76:744-50.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 744-750
-
-
Zelle, R.M.1
De Hulster, E.2
Kloezen, W.3
Pronk, J.T.4
Van Maris, A.J.A.5
-
13
-
-
84941129321
-
Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of l-ornithine
-
Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, et al. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of l-ornithine. Nat Commun. 2015;6:8224.
-
(2015)
Nat Commun
, vol.6
, pp. 8224
-
-
Qin, J.1
Zhou, Y.J.2
Krivoruchko, A.3
Huang, M.4
Liu, L.5
Khoomrung, S.6
-
14
-
-
84959330458
-
n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA
-
Schadeweg V, Boles E. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels. 2016;9(1):1.
-
(2016)
Biotechnol Biofuels
, vol.9
, Issue.1
, pp. 1
-
-
Schadeweg, V.1
Boles, E.2
-
15
-
-
84960936931
-
Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
-
Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact. 2016;15:53.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 53
-
-
Kildegaard, K.R.1
Jensen, N.B.2
Schneider, K.3
Czarnotta, E.4
Özdemir, E.5
Klein, T.6
-
16
-
-
0037962155
-
A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol
-
1:CAS:528:DC%2BD3sXlsFagurY%3D
-
Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Society. 2003;69:4144-50.
-
(2003)
Society.
, vol.69
, pp. 4144-4150
-
-
Becker, J.1
Boles, E.2
-
17
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD28XhtlaqsLvO
-
Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2007;73:1039-46.
-
(2007)
Appl Microbiol Biotechnol
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
18
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
1:CAS:528:DC%2BD2MXlvFKlu74%3D
-
Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP, Pronk JT. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005;5:925-34.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
Van Dijken, J.P.5
Pronk, J.T.6
-
19
-
-
85027955559
-
Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol
-
1:CAS:528:DC%2BC3MXptFymsbw%3D
-
Merico A, Ragni E, Galafassi S, Popolo L, Compagno C. Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol. J Ind Microbiol Biotechnol. 2011;38:1037-44.
-
(2011)
J Ind Microbiol Biotechnol
, vol.38
, pp. 1037-1044
-
-
Merico, A.1
Ragni, E.2
Galafassi, S.3
Popolo, L.4
Compagno, C.5
-
20
-
-
84887337602
-
Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: Characterization of an isolate that grows on glycerol without supporting supplements
-
Swinnen S, Klein M, Carrillo M, Mcinnes J, Thi H, Nguyen T, et al. Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements. Biotechnol Biofuels. 2013;6:1-12.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 1-12
-
-
Swinnen, S.1
Klein, M.2
Carrillo, M.3
Mcinnes, J.4
Thi, H.5
Nguyen, T.6
-
22
-
-
84962523487
-
Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC28XkvFGjs7c%3D
-
Swinnen S, Ho P-W, Klein M, Nevoigt E. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab Eng. 2016;36:68-79.
-
(2016)
Metab Eng
, vol.36
, pp. 68-79
-
-
Swinnen, S.1
Ho, P.-W.2
Klein, M.3
Nevoigt, E.4
-
23
-
-
84879489028
-
Adaptive laboratory evolution - Principles and applications for biotechnology
-
Dragosits M, Mattanovich D. Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact. 2013;12:64.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 64
-
-
Dragosits, M.1
Mattanovich, D.2
-
24
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
-
1:CAS:528:DyaK38Xlt1Oqurk%3D
-
Verduyn C, Postma E. Scheffers Wa, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, Wa.3
Van Dijken, J.P.4
-
25
-
-
0025978950
-
Micromanipulation and dissection of asci
-
1:STN:280:DyaK3M7ntFyqsw%3D%3D
-
Sherman F, Hicks J. Micromanipulation and dissection of asci. Methods Enzym. 1991;194:21-37.
-
(1991)
Methods Enzym.
, vol.194
, pp. 21-37
-
-
Sherman, F.1
Hicks, J.2
-
26
-
-
0032412476
-
Mating-type gene switching in Saccharomyces cerevisiae
-
1:CAS:528:DyaK1MXjvFWksQ%3D%3D
-
Haber JE. Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet. 1998;32:561-99.
-
(1998)
Annu Rev Genet
, vol.32
, pp. 561-599
-
-
Haber, J.E.1
-
27
-
-
0036793662
-
Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs
-
1:CAS:528:DC%2BD38XnvFClt7Y%3D
-
Teunissen A, Tanghe A, Loïez A, Smet P, Van Dijck P, Thevelein JM. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Appl Environ Microbiol. 2002;68:4780-7.
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 4780-4787
-
-
Teunissen, A.1
Tanghe, A.2
Loïez, A.3
Smet, P.4
Van Dijck, P.5
Thevelein, J.M.6
-
28
-
-
44949267924
-
Rapid assessment of S. Cerevisiae mating type by PCR
-
1:STN:280:DyaK3M%2FkvVymsA%3D%3D
-
Huxley C, Green E, Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990;6:236.
-
(1990)
Trends Genet
, vol.6
, pp. 236
-
-
Huxley, C.1
Green, E.2
Dunham, I.3
-
31
-
-
84899007503
-
An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments
-
Duitama J, Quintero JC, Cruz DF, Quintero C, Hubmann G, Foulquié-Moreno MR, et al. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res. 2014;42:1-13.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 1-13
-
-
Duitama, J.1
Quintero, J.C.2
Cruz, D.F.3
Quintero, C.4
Hubmann, G.5
Foulquié-Moreno, M.R.6
-
32
-
-
84858729135
-
De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
-
1:CAS:528:DC%2BC38Xpt1ajtLY%3D
-
Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik M, et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact. 2012;11:36.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 36
-
-
Nijkamp, J.F.1
Van Den Broek, M.2
Datema, E.3
De Kok, S.4
Bosman, L.5
Luttik, M.6
-
33
-
-
0037196945
-
Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast
-
1:CAS:528:DC%2BD38XivVersrc%3D
-
Akada R, Hirosawa I, Kawahata M, Hoshida H, Nishizawa Y. Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast. 2002;19:393-402.
-
(2002)
Yeast
, vol.19
, pp. 393-402
-
-
Akada, R.1
Hirosawa, I.2
Kawahata, M.3
Hoshida, H.4
Nishizawa, Y.5
-
34
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
1:STN:280:DC%2BD387lt1GnsQ%3D%3D
-
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30:e23.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. e23
-
-
Gueldener, U.1
Heinisch, J.2
Koehler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
35
-
-
0014197885
-
Purification and properties of glycerol kinase from Escherichia coli
-
1:CAS:528:DyaF2sXmt1Wisw%3D%3D
-
Hayashi S, Lin ECC. Purification and properties of glycerol kinase from Escherichia coli. J Biol Chem. 1967;242:1030-5.
-
(1967)
J Biol Chem
, vol.242
, pp. 1030-1035
-
-
Hayashi, S.1
Lin, E.C.C.2
-
36
-
-
0001570356
-
A Rapid enzymatic assay for glycerol
-
1:CAS:528:DyaF3sXjsVGjtQ%3D%3D
-
Garland PB, Randle PJ. a Rapid enzymatic assay for glycerol. Nature. 1962;196:987-8.
-
(1962)
Nature
, vol.196
, pp. 987-988
-
-
Garland, P.B.1
Randle, P.J.2
-
37
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
1:CAS:528:DyaE28XksVehtrY%3D
-
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
-
(1976)
Anal Biochem
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
38
-
-
0001489694
-
Crossing-over and interference in a multiply marked chromosome arm of Neurospora
-
1:STN:280:DyaF387jsVWhsQ%3D%3D
-
Perkins DD. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics. 1962;47(9):1253.
-
(1962)
Genetics
, vol.47
, Issue.9
, pp. 1253
-
-
Perkins, D.D.1
-
39
-
-
84913546864
-
Toward better understanding of artifacts in variant calling from high-coverage samples
-
1:CAS:528:DC%2BC28XhtFOrt7fP
-
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843-51.
-
(2014)
Bioinformatics
, vol.30
, pp. 2843-2851
-
-
Li, H.1
-
40
-
-
84928680495
-
Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection
-
Duitama J, Silva A, Sanabria Y, Cruz DF, Quintero C, Ballen C, Lorieux M, Scheffler B, Farmer A, Torres E, Oard J. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection. PLoS ONE. 2015;10(4):e0124617.
-
(2015)
PLoS ONE
, vol.10
, Issue.4
-
-
Duitama, J.1
Silva, A.2
Sanabria, Y.3
Cruz, D.F.4
Quintero, C.5
Ballen, C.6
Lorieux, M.7
Scheffler, B.8
Farmer, A.9
Torres, E.10
Oard, J.11
-
41
-
-
33746060530
-
Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling
-
1:CAS:528:DC%2BD28XntVWltrs%3D
-
Roberts GG, Hudson AP. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genom. 2006;276:170-86.
-
(2006)
Mol Genet Genom.
, vol.276
, pp. 170-186
-
-
Roberts, G.G.1
Hudson, A.P.2
-
42
-
-
60749090162
-
Transcriptional memory at the nuclear periphery
-
1:CAS:528:DC%2BD1MXisFGku78%3D
-
Brickner JH. Transcriptional memory at the nuclear periphery. Curr Opin Cell Biol. 2009;21:127-33.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 127-133
-
-
Brickner, J.H.1
-
43
-
-
34247341747
-
H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state
-
1:CAS:528:DC%2BD2sXksFSmtrs%3D
-
Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 2007;5:704-16.
-
(2007)
PLoS Biol
, vol.5
, pp. 704-716
-
-
Brickner, D.G.1
Cajigas, I.2
Fondufe-Mittendorf, Y.3
Ahmed, S.4
Lee, P.C.5
Widom, J.6
-
44
-
-
84987981814
-
A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations
-
González-Ramos D, de Vries AR, Grijseels SS, Berkum MC, Swinnen S, Broek M, Nevoigt E, Daran JM, Pronk JT, Maris AJ. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels. 2016;9(1):173.
-
(2016)
Biotechnol Biofuels
, vol.9
, Issue.1
, pp. 173
-
-
González-Ramos, D.1
De Vries, A.R.2
Grijseels, S.S.3
Berkum, M.C.4
Swinnen, S.5
Broek, M.6
Nevoigt, E.7
Daran, J.M.8
Pronk, J.T.9
Maris, A.J.10
-
45
-
-
84875642557
-
Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
-
1:CAS:528:DC%2BC3sXnvFajurg%3D
-
Gonzalez-Ramos D, van den Broek M, van Maris A, Pronk J, Daran J-M. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels. 2013;6:48.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 48
-
-
Gonzalez-Ramos, D.1
Van Den Broek, M.2
Van Maris, A.3
Pronk, J.4
Daran, J.-M.5
-
46
-
-
84860571592
-
Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
-
1:CAS:528:DC%2BC38Xms1anuro%3D
-
Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 2012;22:975-84.
-
(2012)
Genome Res
, vol.22
, pp. 975-984
-
-
Swinnen, S.1
Schaerlaekens, K.2
Pais, T.3
Claesen, J.4
Hubmann, G.5
Yang, Y.6
-
47
-
-
84907510835
-
Improving industrial yeast strains: Exploiting natural and artificial diversity
-
1:CAS:528:DC%2BC2cXhsFOgu7vJ
-
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev. 2014;38:947-95.
-
(2014)
FEMS Microbiol Rev
, vol.38
, pp. 947-995
-
-
Steensels, J.1
Snoek, T.2
Meersman, E.3
Nicolino, M.P.4
Voordeckers, K.5
Verstrepen, K.J.6
-
48
-
-
40849138236
-
Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD1cXhs12lsr8%3D
-
Lang GI, Murray AW. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics. 2008;178:67-82.
-
(2008)
Genetics
, vol.178
, pp. 67-82
-
-
Lang, G.I.1
Murray, A.W.2
-
49
-
-
0025886466
-
A constant rate of spontaneous mutation in DNA-based microbes
-
1:CAS:528:DyaK3MXlsFais7g%3D
-
Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci. 1991;88:7160-4.
-
(1991)
Proc Natl Acad Sci
, vol.88
, pp. 7160-7164
-
-
Drake, J.W.1
-
50
-
-
85011356024
-
Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities
-
Klein M, Swinnen S, Thevelein J, Nevoigt E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol. 2016. doi: 10.1111/1462-2920.13617.
-
(2016)
Environ Microbiol
-
-
Klein, M.1
Swinnen, S.2
Thevelein, J.3
Nevoigt, E.4
-
51
-
-
84867176120
-
The ubiquitin-proteasome system of Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3sXjvVCisrw%3D
-
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics. 2012;192:319-60.
-
(2012)
Genetics
, vol.192
, pp. 319-360
-
-
Finley, D.1
Ulrich, H.D.2
Sommer, T.3
Kaiser, P.4
-
52
-
-
84890204277
-
Protein quality control and elimination of protein waste: The role of the ubiquitin-proteasome system
-
1:CAS:528:DC%2BC3sXhtFygsb7E
-
Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta Mol Cell Res. 2014;1843(1):182-96.
-
(2014)
Biochim Biophys Acta Mol Cell Res.
, vol.1843
, Issue.1
, pp. 182-196
-
-
Amm, I.1
Sommer, T.2
Wolf, D.H.3
-
53
-
-
85027164921
-
Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: Lessons from yeast
-
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol. 2015;9238:1-14.
-
(2015)
Crit Rev Biochem Mol Biol
, vol.9238
, pp. 1-14
-
-
Nakatsukasa, K.1
Okumura, F.2
Kamura, T.3
-
54
-
-
78650434660
-
Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo
-
1:CAS:528:DC%2BC3MXis1Orsg%3D%3D
-
Emerman AB, Zhang Z-R, Chakrabarti O, Hegde RS. Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo. Mol Biol Cell. 2010;21:4325-37.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 4325-4337
-
-
Emerman, A.B.1
Zhang, Z.-R.2
Chakrabarti, O.3
Hegde, R.S.4
-
55
-
-
11244343965
-
Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
-
1:CAS:528:DC%2BD2cXhtFeis7zJ
-
Wang L, Mao X, Ju D, Xie Y. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem. 2004;279:55218-23.
-
(2004)
J Biol Chem
, vol.279
, pp. 55218-55223
-
-
Wang, L.1
Mao, X.2
Ju, D.3
Xie, Y.4
-
56
-
-
35548985701
-
Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal
-
1:CAS:528:DC%2BD2sXht1Kkur3F
-
Ju D, Xu H, Wang X, Xie Y. Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. Biochim Biophys Acta Mol Cell Res. 2007;1773:1672-80.
-
(2007)
Biochim Biophys Acta Mol Cell Res.
, vol.1773
, pp. 1672-1680
-
-
Ju, D.1
Xu, H.2
Wang, X.3
Xie, Y.4
-
57
-
-
84863615329
-
A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast
-
1:CAS:528:DC%2BC38XpvVeju7s%3D
-
Theodoraki MA, Nillegoda NB, Saini J, Caplan AJ. A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast. J Biol Chem. 2012;287:23911-22.
-
(2012)
J Biol Chem
, vol.287
, pp. 23911-23922
-
-
Theodoraki, M.A.1
Nillegoda, N.B.2
Saini, J.3
Caplan, A.J.4
-
58
-
-
80053445278
-
Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3MXht1ChsbvO
-
Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, et al. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011;7:e1002253.
-
(2011)
PLoS Genet
, vol.7
-
-
Kruegel, U.1
Robison, B.2
Dange, T.3
Kahlert, G.4
Delaney, J.R.5
Kotireddy, S.6
-
59
-
-
84994899494
-
Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses
-
1:CAS:528:DC%2BC28XhslSitL7J
-
Klein M, Carrillo M, Xiberras J, Islam Z, Swinnen S, Nevoigt E. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng. 2016;38:464-72.
-
(2016)
Metab Eng
, vol.38
, pp. 464-472
-
-
Klein, M.1
Carrillo, M.2
Xiberras, J.3
Islam, Z.4
Swinnen, S.5
Nevoigt, E.6
|