메뉴 건너뛰기




Volumn 29, Issue , 2015, Pages 36-45

An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica

Author keywords

Evolutionary metabolic engineering; Lipogenesis; Whole genome sequencing; Yarrowia lipolytica

Indexed keywords

AMINO ACIDS; CELL ENGINEERING; GENES; METABOLISM; PRODUCTIVITY; STRAIN;

EID: 84924176808     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2015.02.003     Document Type: Article
Times cited : (121)

References (62)
  • 1
    • 84889671228 scopus 로고    scopus 로고
    • Expanding the metabolic engineering toolbox with directed evolution
    • Abatemarco J., Hill A., Alper H.S. Expanding the metabolic engineering toolbox with directed evolution. Biotechnol. J. 2013, 8:1397-1410.
    • (2013) Biotechnol. J. , vol.8 , pp. 1397-1410
    • Abatemarco, J.1    Hill, A.2    Alper, H.S.3
  • 2
    • 67649576339 scopus 로고    scopus 로고
    • New insights into γ-aminobutyric acid catabolism: evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae
    • Bach B., Meudec E., Lepoutre J.-P., Rossignol T., Blondin B., Dequin S., Camarasa C. New insights into γ-aminobutyric acid catabolism: evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:4231-4239.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 4231-4239
    • Bach, B.1    Meudec, E.2    Lepoutre, J.-P.3    Rossignol, T.4    Blondin, B.5    Dequin, S.6    Camarasa, C.7
  • 3
    • 76649143066 scopus 로고    scopus 로고
    • Genes involved in long-chain alkene biosynthesis in Micrococcus luteus
    • Beller H.R., Goh E.-B., Keasling J.D. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl. Environ. Microbiol. 2010, 76:1212-1223.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 1212-1223
    • Beller, H.R.1    Goh, E.-B.2    Keasling, J.D.3
  • 5
    • 84892840633 scopus 로고    scopus 로고
    • Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
    • Blazeck J., Hill A., Liu L., Knight R., Miller J., Pan A., Otoupal P., Alper H.S. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 2014, 5. (Article number 3131), 10.1038/ncomms4131.
    • (2014) Nat. Commun. , pp. 5
    • Blazeck, J.1    Hill, A.2    Liu, L.3    Knight, R.4    Miller, J.5    Pan, A.6    Otoupal, P.7    Alper, H.S.8
  • 6
    • 84877315991 scopus 로고    scopus 로고
    • Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica
    • Blazeck J., Liu L., Knight R., Alper H.S. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J. Biotechnol. 2013, 165:184-194.
    • (2013) J. Biotechnol. , vol.165 , pp. 184-194
    • Blazeck, J.1    Liu, L.2    Knight, R.3    Alper, H.S.4
  • 7
    • 83055177124 scopus 로고    scopus 로고
    • Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach
    • Blazeck J., Liu L., Redden H., Alper H. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl. Environ. Microbiol. 2011, 77:7905-7914.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 7905-7914
    • Blazeck, J.1    Liu, L.2    Redden, H.3    Alper, H.4
  • 8
    • 84876326394 scopus 로고    scopus 로고
    • GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production
    • Cao J., Barbosa J.M., Singh N.K., Locy R.D. GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production. Yeast 2013, 30:129-144.
    • (2013) Yeast , vol.30 , pp. 129-144
    • Cao, J.1    Barbosa, J.M.2    Singh, N.K.3    Locy, R.D.4
  • 9
    • 0033573016 scopus 로고    scopus 로고
    • The TOR signaling cascade regulates gene expression in response to nutrients
    • Cardenas M.E., Cutler N.S., Lorenz M.C., Di Como C.J., Heitman J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 1999, 13:3271-3279.
    • (1999) Genes Dev. , vol.13 , pp. 3271-3279
    • Cardenas, M.E.1    Cutler, N.S.2    Lorenz, M.C.3    Di Como, C.J.4    Heitman, J.5
  • 10
    • 84876030710 scopus 로고    scopus 로고
    • Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program
    • Cingolani, P., Patel, V.M., Coon, M., Nguyen, T., Land, S.J., Ruden, D.M. Lu, X., 2012. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Gene. 3:35, . http://dx.doi.org/10.3389/fgene.2012.00035.
    • (2012) SnpSift. Front. Gene. , vol.3 , pp. 35
    • Cingolani, P.1    Patel, V.M.2    Coon, M.3    Nguyen, T.4    Land, S.J.5    Ruden, D.M.6    Lu, X.7
  • 11
    • 0028910614 scopus 로고
    • Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture
    • Clark G.J., Bushell M.E. Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture. Microbiology 1995, 141:663-669.
    • (1995) Microbiology , vol.141 , pp. 663-669
    • Clark, G.J.1    Bushell, M.E.2
  • 12
    • 0035808386 scopus 로고    scopus 로고
    • Expression of a glutamate decarboxylase homolog is required for normal oxidative stress tolerance in Saccharomyces cerevisiae
    • Coleman S.T., Fang T.K., Rovinsky S.A., Turano F.J., Moye-Rowley W.S. Expression of a glutamate decarboxylase homolog is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276:244-250.
    • (2001) J. Biol. Chem. , vol.276 , pp. 244-250
    • Coleman, S.T.1    Fang, T.K.2    Rovinsky, S.A.3    Turano, F.J.4    Moye-Rowley, W.S.5
  • 13
    • 84862207929 scopus 로고    scopus 로고
    • Expanding the chemical palate of cells by combining systems biology and metabolic engineering
    • Curran K.A., Alper H.S. Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab. Eng. 2012, 14:289-297.
    • (2012) Metab. Eng. , vol.14 , pp. 289-297
    • Curran, K.A.1    Alper, H.S.2
  • 15
    • 0021229450 scopus 로고
    • Effect of nitrogen source on lipid accumulation in oleaginous yeasts
    • Evans C.T., Ratledge C. Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J. Gen. Microbiol. 1984, 130:1693-1704.
    • (1984) J. Gen. Microbiol. , vol.130 , pp. 1693-1704
    • Evans, C.T.1    Ratledge, C.2
  • 17
    • 70449158340 scopus 로고
    • A simple method for the isolation and purification of total lipides from animal tissues
    • Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226:497-509.
    • (1957) J. Biol. Chem. , vol.226 , pp. 497-509
    • Folch, J.1    Lees, M.2    Stanley, G.H.S.3
  • 19
    • 0002897447 scopus 로고
    • Integrative transformation of the yeast Yarrowia lipolytica
    • Gaillardin C., Ribet A.M., Heslot H. Integrative transformation of the yeast Yarrowia lipolytica. Curr. Genet. 1985, 10:49-58.
    • (1985) Curr. Genet. , vol.10 , pp. 49-58
    • Gaillardin, C.1    Ribet, A.M.2    Heslot, H.3
  • 21
    • 0021923858 scopus 로고
    • Nile red: a selective fluroscent stain for intracelluluar lipid droplets
    • Greenspan P., Mayer E.P., Fowler S.D. Nile red: a selective fluroscent stain for intracelluluar lipid droplets. J. Cell Biol. 1985, 100:965-973.
    • (1985) J. Cell Biol. , vol.100 , pp. 965-973
    • Greenspan, P.1    Mayer, E.P.2    Fowler, S.D.3
  • 22
    • 84893503533 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways
    • Guo D., Zhu J., Deng Z., Liu T. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab. Eng. 2014, 22:69-75.
    • (2014) Metab. Eng. , vol.22 , pp. 69-75
    • Guo, D.1    Zhu, J.2    Deng, Z.3    Liu, T.4
  • 23
    • 84890929902 scopus 로고    scopus 로고
    • Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids
    • Hamilton M.L., Haslam R.P., Napier J.A., Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab. Eng. 2014, 22:3-9.
    • (2014) Metab. Eng. , vol.22 , pp. 3-9
    • Hamilton, M.L.1    Haslam, R.P.2    Napier, J.A.3    Sayanova, O.4
  • 24
    • 84868620899 scopus 로고    scopus 로고
    • Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering
    • Hong K.-K., Nielsen J. Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering. Appl. Environ. Microbiol. 2012, 78:7579-7586.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 7579-7586
    • Hong, K.-K.1    Nielsen, J.2
  • 25
    • 84878367693 scopus 로고    scopus 로고
    • Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine
    • Jiang L.-Y., Chen S.-G., Zhang Y.-Y., Liu J.-Z. Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine. BMC Biotechnol. 2013, 13:47.
    • (2013) BMC Biotechnol. , vol.13 , pp. 47
    • Jiang, L.-Y.1    Chen, S.-G.2    Zhang, Y.-Y.3    Liu, J.-Z.4
  • 26
    • 79953162275 scopus 로고    scopus 로고
    • GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae
    • Kamei Y., Tamura T., Yoshida R., Ohta S., Fukusaki E., Mukai Y. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2011, 407:185-190.
    • (2011) Biochem. Biophys. Res. Commun. , vol.407 , pp. 185-190
    • Kamei, Y.1    Tamura, T.2    Yoshida, R.3    Ohta, S.4    Fukusaki, E.5    Mukai, Y.6
  • 27
    • 33645232394 scopus 로고    scopus 로고
    • Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae
    • Kamisaka Y., Noda N., Tomita N., Kimura K., Kodaki T., Hosaka K. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 2006, 70:646-653.
    • (2006) Biosci. Biotechnol. Biochem. , vol.70 , pp. 646-653
    • Kamisaka, Y.1    Noda, N.2    Tomita, N.3    Kimura, K.4    Kodaki, T.5    Hosaka, K.6
  • 28
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling J.D. Manufacturing molecules through metabolic engineering. Sci. 2010, 330:1355-1358.
    • (2010) Sci. , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 29
    • 0028287703 scopus 로고
    • Multiple-copy integration in the yeast Yarrowia lipolytica
    • Le Dall M.-T., Nicaud J.-M., Gaillardin C. Multiple-copy integration in the yeast Yarrowia lipolytica. Curr. Genet. 1994, 26:38-44.
    • (1994) Curr. Genet. , vol.26 , pp. 38-44
    • Le Dall, M.-T.1    Nicaud, J.-M.2    Gaillardin, C.3
  • 30
    • 84887628007 scopus 로고    scopus 로고
    • Microbial production of fatty acid-derived fuels and chemicals
    • Lennen R.M., Pfleger B.F. Microbial production of fatty acid-derived fuels and chemicals. Curr. Opin. Biotechnol. 2013, 24:1044-1053.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1044-1053
    • Lennen, R.M.1    Pfleger, B.F.2
  • 31
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 33
    • 85003638105 scopus 로고    scopus 로고
    • Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host
    • e00652-14.
    • Liu L., Alper H.S. Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc. 2014, 2(4). e00652-14, 10.1128/genomeA.00652-14.
    • (2014) Genome Announc. , vol.2 , Issue.4
    • Liu, L.1    Alper, H.S.2
  • 34
    • 84887624541 scopus 로고    scopus 로고
    • Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces
    • Liu L., Redden H., Alper H.S. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr. Opin. Biotechnol. 2013, 24:1023-1030.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1023-1030
    • Liu, L.1    Redden, H.2    Alper, H.S.3
  • 35
    • 84874896774 scopus 로고    scopus 로고
    • Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data
    • Liu Q., Guo Y., Li J., Long J., Zhang B., Shyr Y. Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genomics 2012, 13:S8.
    • (2012) BMC Genomics , vol.13 , pp. S8
    • Liu, Q.1    Guo, Y.2    Li, J.3    Long, J.4    Zhang, B.5    Shyr, Y.6
  • 36
    • 84896721360 scopus 로고    scopus 로고
    • Hydrogen peroxide-independent production of alpha-alkenes by OleTJE P450 fatty acid decarboxylase
    • Liu Y., Wang C., Yan J., Zhang W., Guan W., Lu X., Li S. Hydrogen peroxide-independent production of alpha-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol. Biofuels 2014, 7:28.
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 28
    • Liu, Y.1    Wang, C.2    Yan, J.3    Zhang, W.4    Guan, W.5    Lu, X.6    Li, S.7
  • 37
    • 0344002683 scopus 로고    scopus 로고
    • Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica
    • Madzak C., Treton B., Blanchin-Roland S. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J. Mol. Microbiol. Biotechnol. 2000, 2:207-216.
    • (2000) J. Mol. Microbiol. Biotechnol. , vol.2 , pp. 207-216
    • Madzak, C.1    Treton, B.2    Blanchin-Roland, S.3
  • 38
    • 84924179768 scopus 로고    scopus 로고
    • Improved production of poly(lactic acid)-like polyester based on metabolite analysis to address the rate-limiting step
    • Matsumoto K.i., Tobitani K., Aoki S., Song Y., Ooi T., Taguchi S. Improved production of poly(lactic acid)-like polyester based on metabolite analysis to address the rate-limiting step. AMB Express 2014, 4:83.
    • (2014) AMB Express , vol.4 , pp. 83
    • Matsumoto, K.1    Tobitani, K.2    Aoki, S.3    Song, Y.4    Ooi, T.5    Taguchi, S.6
  • 39
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2008, 72:379-412.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 41
    • 77951770756 scopus 로고    scopus 로고
    • BEDTools: a flexible suite of utilities for comparing genomic features
    • Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
    • (2010) Bioinformatics , vol.26 , pp. 841-842
    • Quinlan, A.R.1    Hall, I.M.2
  • 42
    • 0021815660 scopus 로고
    • Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae
    • Ramos F., El Guezzar M., Grenson M., Wiame J.-M. Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 1985, 149:401-404.
    • (1985) Eur. J. Biochem. , vol.149 , pp. 401-404
    • Ramos, F.1    El Guezzar, M.2    Grenson, M.3    Wiame, J.-M.4
  • 44
    • 77954065271 scopus 로고    scopus 로고
    • I-TASSER: a unified platform for automated protein structure and function prediction
    • Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5:725-738.
    • (2010) Nat. Protoc. , vol.5 , pp. 725-738
    • Roy, A.1    Kucukural, A.2    Zhang, Y.3
  • 45
    • 0003903343 scopus 로고    scopus 로고
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, D.W. Russell (Ed.)
    • Sambrook J. Molecular Cloning: A Laboratory Manual 2000, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. D.W. Russell (Ed.).
    • (2000) Molecular Cloning: A Laboratory Manual
    • Sambrook, J.1
  • 46
    • 84865281539 scopus 로고    scopus 로고
    • Rational, combinatorial, and genomic approaches for engineering l-tyrosine production in Escherichia coli
    • Santos C.N.S., Xiao W., Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering l-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A 2012, 109:13538-13543.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , pp. 13538-13543
    • Santos, C.N.S.1    Xiao, W.2    Stephanopoulos, G.3
  • 49
    • 33644808754 scopus 로고    scopus 로고
    • Extraction of yeast lipids
    • Humana Press
    • Schneiter R., Daum G. Extraction of yeast lipids. Yeast Protocol 2006, vol. 313:41-45. Humana Press.
    • (2006) Yeast Protocol , vol.313 , pp. 41-45
    • Schneiter, R.1    Daum, G.2
  • 50
    • 84883201826 scopus 로고    scopus 로고
    • Whole-genome profiling of a novel mutagenesis technique using proofreading-deficient dna polymerase delta
    • Shiwa Y., Fukushima-Tanaka S., Kasahara K., Horiuchi T., Yoshikawa H. Whole-genome profiling of a novel mutagenesis technique using proofreading-deficient dna polymerase delta. Int. J. Evol. Biol. 2012, 2012:860797.
    • (2012) Int. J. Evol. Biol. , vol.2012 , pp. 860797
    • Shiwa, Y.1    Fukushima-Tanaka, S.2    Kasahara, K.3    Horiuchi, T.4    Yoshikawa, H.5
  • 51
    • 80555150662 scopus 로고    scopus 로고
    • An evolutionary strategy for isobutanol production strain development in Escherichia coli
    • Smith K.M., Liao J.C. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 2011, 13:674-681.
    • (2011) Metab. Eng. , vol.13 , pp. 674-681
    • Smith, K.M.1    Liao, J.C.2
  • 52
    • 77952755857 scopus 로고    scopus 로고
    • Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast
    • Staschke K.A., Dey S., Zaborske J.M., Palam L.R., McClintick J.N., Pan T., Edenberg H.J., Wek R.C. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J. Biol. Chem. 2010, 285:16893-16911.
    • (2010) J. Biol. Chem. , vol.285 , pp. 16893-16911
    • Staschke, K.A.1    Dey, S.2    Zaborske, J.M.3    Palam, L.R.4    McClintick, J.N.5    Pan, T.6    Edenberg, H.J.7    Wek, R.C.8
  • 54
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • Tai M., Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 2013, 15:1-9.
    • (2013) Metab. Eng. , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 55
    • 84894039112 scopus 로고    scopus 로고
    • Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening
    • Tapia V E., Anschau A., Coradini A.L., T Franco T., Deckmann A. Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2012, 2:64.
    • (2012) AMB Express , vol.2 , pp. 64
    • Tapia, V.E.1    Anschau, A.2    Coradini, A.L.3    Franco, T.T.4    Deckmann, A.5
  • 57
    • 44249103527 scopus 로고    scopus 로고
    • EMS and UV Mutagenesis in Yeast
    • I:13.3B:13.3B.1-13.3B.5.
    • Winston, F., 2008. EMS and UV Mutagenesis in Yeast. Current Protocols in Molecular Biology. 82:I:13.3B:13.3B.1-13.3B.5.
    • (2008) Current Protocols in Molecular Biology , vol.82
    • Winston, F.1
  • 59
    • 47149109665 scopus 로고    scopus 로고
    • Dissection of centromeric DNA from yeast Yarrowia lipolytica and identification of protein-binding site required for plasmid transmission
    • Yamane T., Sakai H., Nagahama K., Ogawa T., Matsuoka M. Dissection of centromeric DNA from yeast Yarrowia lipolytica and identification of protein-binding site required for plasmid transmission. J. Biosci. Bioeng. 2008, 105:571-578.
    • (2008) J. Biosci. Bioeng. , vol.105 , pp. 571-578
    • Yamane, T.1    Sakai, H.2    Nagahama, K.3    Ogawa, T.4    Matsuoka, M.5
  • 60
    • 84876707023 scopus 로고    scopus 로고
    • Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase
    • Yuan Z., Yin B., Wei D., Yuan Y.A. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J. Struct. Biol. 2013, 182:125-135.
    • (2013) J. Struct. Biol. , vol.182 , pp. 125-135
    • Yuan, Z.1    Yin, B.2    Wei, D.3    Yuan, Y.A.4
  • 62
    • 84901340681 scopus 로고    scopus 로고
    • Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli
    • Zhu X., Tan Z., Xu H., Chen J., Tang J., Zhang X. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab. Eng. 2014, 24:87-96.
    • (2014) Metab. Eng. , vol.24 , pp. 87-96
    • Zhu, X.1    Tan, Z.2    Xu, H.3    Chen, J.4    Tang, J.5    Zhang, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.