메뉴 건너뛰기




Volumn 6, Issue 4, 2015, Pages

Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; FUNGAL PROTEIN; GLUCOSE; GLYCEROL; STEROL;

EID: 84940882226     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00431-15     Document Type: Article
Times cited : (99)

References (56)
  • 1
    • 84875640206 scopus 로고    scopus 로고
    • The role of biofuels in the future energy supply
    • Caspeta L, Buijs NAA, Nielsen J. 2013. The role of biofuels in the future energy supply. Energy Environ Sci 6:1077–1082. http://dx.doi.org/10.1039/c3ee24403b
    • (2013) Energy Environ Sci , vol.6 , pp. 1077-1082
    • Caspeta, L.1    Buijs, N.2    Nielsen, J.3
  • 2
    • 0026118583 scopus 로고
    • Fuel ethanol from cellulosic biomass
    • Lynd LR, Cushman JH, Nichols RJ, Wyman CE. 1991. Fuel ethanol from cellulosic biomass. Science 251:1318–1323. http://dx.doi.org/10.1126/science.251.4999.1318
    • (1991) Science , vol.251 , pp. 1318-1323
    • Lynd, L.R.1    Cushman, J.H.2    Nichols, R.J.3    Wyman, C.E.4
  • 3
    • 84893598111 scopus 로고    scopus 로고
    • Solving ethanol production problems with genetically modified yeast strains
    • Abreu-Cavalheiro A, Monteiro G. 2013. Solving ethanol production problems with genetically modified yeast strains. Braz J Microbiol 44: 665–671. http://dx.doi.org/10.1590/S1517-83822013000300001
    • (2013) Braz J Microbiol , vol.44 , pp. 665-671
    • Abreu-Cavalheiro, A.1    Monteiro, G.2
  • 5
    • 76649111376 scopus 로고    scopus 로고
    • High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?
    • Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R. 2010. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867. http://dx.doi.org/10.1007/s00253-009-2248-5
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 861-867
    • Abdel-Banat, B.M.1    Hoshida, H.2    Ano, A.3    Nonklang, S.4    Akada, R.5
  • 6
    • 84882691433 scopus 로고    scopus 로고
    • Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol
    • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A. 2014. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286. http://dx.doi.org/10.1016/j.apenergy.2013.07.036
    • (2014) Appl Energy , vol.113 , pp. 277-286
    • Caspeta, L.1    Caro-Bermúdez, M.A.2    Ponce-Noyola, T.3    Martinez, A.4
  • 7
    • 80052579095 scopus 로고    scopus 로고
    • Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production
    • Kumar D, Murthy GS. 2011. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27. http://dx.doi.org/10.1186/1754-6834-4-27
    • (2011) Biotechnol Biofuels , vol.4
    • Kumar, D.1    Murthy, G.S.2
  • 8
    • 84940833669 scopus 로고    scopus 로고
    • Modified yeast tolerate alcohol, heat
    • Kate Y. 2014. Modified yeast tolerate alcohol, heat. The Scientist. http://www.the-Scientist.com/?articles.view/articleNo/41142/title/Modified-Yeast-Tolerate-Alcohol--Heat/
    • (2014) The Scientist
    • Kate, Y.1
  • 9
    • 0027282779 scopus 로고
    • Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae
    • Piper PW. 1993. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11: 339–355. http://dx.doi.org/10.1111/j.1574-6976.1993.tb00005.x
    • (1993) FEMS Microbiol Rev , vol.11 , pp. 339-355
    • Piper, P.W.1
  • 10
    • 0022555843 scopus 로고
    • The heat-shock response
    • Lindquist S. 1986. The heat-shock response. Annu Rev Biochem 55: 1151–1191. http://dx.doi.org/10.1146/annurev.bi.55.070186.005443
    • (1986) Annu Rev Biochem , vol.55 , pp. 1151-1191
    • Lindquist, S.1
  • 11
    • 64049092699 scopus 로고    scopus 로고
    • Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
    • Lu C, Brauer MJ, Botstein D. 2009. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20: 891–903. http://dx.doi.org/10.1091/mbc.E08-08-0852
    • (2009) Mol Biol Cell , vol.20 , pp. 891-903
    • Lu, C.1    Brauer, M.J.2    Botstein, D.3
  • 12
    • 44649188503 scopus 로고    scopus 로고
    • Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production
    • Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J. 2008. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Technol 43:120–123. http://dx.doi.org/10.1016/j.enzmictec.2008.02.007
    • (2008) Enzyme Microb Technol , vol.43 , pp. 120-123
    • Edgardo, A.1    Carolina, P.2    Manuel, R.3    Juanita, F.4    Baeza, J.5
  • 13
    • 0027503713 scopus 로고
    • Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli
    • Bennett AF, Lenski RE. 1993. Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli. Evolution 47: 1–12. http://dx.doi.org/10.2307/2410113
    • (1993) Evolution , vol.47 , pp. 1-12
    • Bennett, A.F.1    Lenski, R.E.2
  • 15
    • 0035678801 scopus 로고    scopus 로고
    • Evolutionary adaptation to temperature. IX. Preadaptation to novel stressful environments of Escherichia coli adapted to high temperature
    • Cullum AJ, Bennett AF, Lenski RE. 2001. Evolutionary adaptation to temperature. IX. Preadaptation to novel stressful environments of Escherichia coli adapted to high temperature. Evolution 55:2194–2202. http://dx.doi.org/10.1111/j.0014-3820.2001.tb00735.x
    • (2001) Evolution , vol.55 , pp. 2194-2202
    • Cullum, A.J.1    Bennett, A.F.2    Lenski, R.E.3
  • 17
    • 34547418221 scopus 로고    scopus 로고
    • An experimental test of evolutionary tradeoffs during temperature adaptation
    • Bennett AF, Lenski RE. 2007. An experimental test of evolutionary tradeoffs during temperature adaptation. Proc Natl Acad Sci U S A 104(Suppl 1):8649–8654. http://dx.doi.org/10.1073/pnas.0702117104
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 8649-8654
    • Bennett, A.F.1    Lenski, R.E.2
  • 18
    • 78650217130 scopus 로고    scopus 로고
    • Cellular proteomes have broad distributions of protein stability
    • Ghosh K, Dill K. 2010. Cellular proteomes have broad distributions of protein stability. Biophys J 99:3996–4002. http://dx.doi.org/10.1016/j.bpj.2010.10.036
    • (2010) Biophys J , vol.99 , pp. 3996-4002
    • Ghosh, K.1    Dill, K.2
  • 19
    • 36049027813 scopus 로고    scopus 로고
    • Protein stability imposes limits on organism complexity and speed of molecular evolution
    • Zeldovich KB, Chen P, Shakhnovich EI. 2007. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc Natl Acad Sci U S A 104:16152–16157. http://dx.doi.org/10.1073/pnas.0705366104
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 16152-16157
    • Zeldovich, K.B.1    Chen, P.2    Shakhnovich, E.I.3
  • 20
    • 0038530709 scopus 로고    scopus 로고
    • Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways
    • Wojda I, Alonso-Monge R, Bebelman J-P, Mager WH, Siderius M. 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149: 1193–1204. http://dx.doi.org/10.1099/mic.0.26110-0
    • (2003) Microbiology , vol.149 , pp. 1193-1204
    • Wojda, I.1    Alonso-Monge, R.2    Bebelman, J.-P.3    Mager, W.H.4    Siderius, M.5
  • 21
    • 0034888838 scopus 로고    scopus 로고
    • Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects
    • Alonso-Monge R, Real E, Wojda I, Bebelman JP, Mager WH, Siderius M. 2001. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41:717–730. http://dx.doi.org/10.1046/j.1365-2958.2001.02549.x
    • (2001) Mol Microbiol , vol.41 , pp. 717-730
    • Alonso-Monge, R.1    Real, E.2    Wojda, I.3    Bebelman, J.P.4    Mager, W.H.5    Siderius, M.6
  • 22
    • 84907518524 scopus 로고    scopus 로고
    • Engineering alcohol tolerance in yeast
    • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G. 2014. Engineering alcohol tolerance in yeast. Science 346:71–75. http://dx.doi.org/10.1126/science.1257859
    • (2014) Science , vol.346 , pp. 71-75
    • Lam, F.H.1    Ghaderi, A.2    Fink, G.R.3    Stephanopoulos, G.4
  • 23
    • 4344669431 scopus 로고    scopus 로고
    • Protein structure, stability and solubility in water and other solvents
    • Pace CN, Treviño S, Prabhakaran E, Scholtz JM. 2004. Protein structure, stability and solubility in water and other solvents. Philos Trans R Soc Lond B Biol Sci 359:1225–1235. http://dx.doi.org/10.1098/rstb.2004.1500
    • (2004) Philos Trans R Soc Lond B Biol Sci , vol.359 , pp. 1225-1235
    • Pace, C.N.1    Treviño, S.2    Prabhakaran, E.3    Scholtz, J.M.4
  • 24
    • 67649774570 scopus 로고    scopus 로고
    • Computing protein stabilities from their chain lengths
    • Ghosh K, Dill KA. 2009. Computing protein stabilities from their chain lengths. Proc Natl Acad Sci U S A 106:10649–10654. http://dx.doi.org/10.1073/pnas.0903995106
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 10649-10654
    • Ghosh, K.1    Dill, K.A.2
  • 25
    • 80052449370 scopus 로고    scopus 로고
    • How do thermophilic proteins and proteomes withstand high temperature?
    • Sawle L, Ghosh K. 2011. How do thermophilic proteins and proteomes withstand high temperature? Biophys J 101:217–227. http://dx.doi.org/10.1016/j.bpj.2011.05.059
    • (2011) Biophys J , vol.101 , pp. 217-227
    • Sawle, L.1    Ghosh, K.2
  • 26
    • 33846519263 scopus 로고    scopus 로고
    • Protein and DNA sequence determinants of thermophilic adaptation
    • Zeldovich KB, Berezovsky IN, Shakhnovich EI. 2007. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3:e5. http://dx.doi.org/10.1371/journal.pcbi.0030005
    • (2007) Plos Comput Biol , vol.3
    • Zeldovich, K.B.1    Berezovsky, I.N.2    Shakhnovich, E.I.3
  • 27
    • 77950605529 scopus 로고    scopus 로고
    • Thermal adaptation of viruses and bacteria
    • Chen P, Shakhnovich EI. 2010. Thermal adaptation of viruses and bacteria. Biophys J 98:1109–1118. http://dx.doi.org/10.1016/j.bpj.2009.11.048
    • (2010) Biophys J , vol.98 , pp. 1109-1118
    • Chen, P.1    Shakhnovich, E.I.2
  • 28
    • 0023478501 scopus 로고
    • Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae
    • Hottiger T, Schmutz P, Wiemken A. 1987. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169: 5518–5522
    • (1987) J Bacteriol , vol.169 , pp. 5518-5522
    • Hottiger, T.1    Schmutz, P.2    Wiemken, A.3
  • 29
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. 1990. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403. http://dx.doi.org/10.1099/00221287-136-3-395
    • (1990) J Gen Microbiol , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 30
    • 0030856334 scopus 로고    scopus 로고
    • High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion
    • Siderius M, Rots E, Mager WH. 1997. High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143:3241–3250. http://dx.doi.org/10.1099/00221287-143-10-3241
    • (1997) Microbiology , vol.143 , pp. 3241-3250
    • Siderius, M.1    Rots, E.2    Mager, W.H.3
  • 32
    • 0037214352 scopus 로고    scopus 로고
    • Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase
    • De Nadal E, Casadomé L, Posas F. 2003. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23:229–237. http://dx.doi.org/10.1128/MCB.23.1.229-237.2003
    • (2003) Mol Cell Biol , vol.23 , pp. 229-237
    • De Nadal, E.1    Casadomé, L.2    Posas, F.3
  • 33
    • 0037077207 scopus 로고    scopus 로고
    • Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase
    • Hahn JS, Thiele DJ. 2002. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284. http://dx.doi.org/10.1074/jbc.M202557200
    • (2002) J Biol Chem , vol.277 , pp. 21278-21284
    • Hahn, J.S.1    Thiele, D.J.2
  • 34
    • 0036317761 scopus 로고    scopus 로고
    • A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae
    • Ter Linde JJ, Steensma HY. 2002. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19: 825–840. http://dx.doi.org/10.1002/yea.879
    • (2002) Yeast , vol.19 , pp. 825-840
    • Ter Linde, J.J.1    Steensma, H.Y.2
  • 36
    • 0033452784 scopus 로고    scopus 로고
    • Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway
    • Jung US, Levin DE. 1999. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34:1049–1057. http://dx.doi.org/10.1046/j.1365-2958.1999.01667.x
    • (1999) Mol Microbiol , vol.34 , pp. 1049-1057
    • Jung, U.S.1    Levin, D.E.2
  • 37
    • 0024323460 scopus 로고
    • Cloning of the glutamine:Fructose-6- phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription
    • Watzele G, Tanner W. 1989. Cloning of the glutamine:fructose-6- phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription. J Biol Chem 264:8753–8758
    • (1989) J Biol Chem , vol.264 , pp. 8753-8758
    • Watzele, G.1    Tanner, W.2
  • 38
    • 0036024578 scopus 로고    scopus 로고
    • Dynamics of cell wall structure in Saccharomyces cerevisiae
    • Klis FM, Mol P, Hellingwerf K, Brul S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256. http://dx.doi.org/10.1111/j.1574-6976.2002.tb00613.x
    • (2002) FEMS Microbiol Rev , vol.26 , pp. 239-256
    • Klis, F.M.1    Mol, P.2    Hellingwerf, K.3    Brul, S.4
  • 39
    • 0024903729 scopus 로고
    • Evolution of thermal sensitivity of ectotherm performance
    • Huey RB, Kingsolver JG. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135. http://dx.doi.org/10.1016/0169-5347(89)90211-5
    • (1989) Trends Ecol Evol , vol.4 , pp. 131-135
    • Huey, R.B.1    Kingsolver, J.G.2
  • 40
    • 0027503713 scopus 로고
    • Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli
    • Bennett AF, Lenski RE. 1993. Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli. Evolution 47: 1–12. http://dx.doi.org/10.2307/2410113
    • (1993) Evolution , vol.47 , pp. 1-12
    • Bennett, A.F.1    Lenski, R.E.2
  • 41
    • 77953508710 scopus 로고    scopus 로고
    • Evolution of Escherichia coli for growth at high temperatures
    • Rudolph B, Gebendorfer KM, Buchner J, Winter J. 2010. Evolution of Escherichia coli for growth at high temperatures. J Biol Chem 285: 19029–19034. http://dx.doi.org/10.1074/jbc.M110.103374
    • (2010) J Biol Chem , vol.285 , pp. 19029-19034
    • Rudolph, B.1    Gebendorfer, K.M.2    Buchner, J.3    Winter, J.4
  • 42
    • 0008777776 scopus 로고
    • The President’s address
    • Dallinger WH. 1887. The President’s address. J R Microsc Soc 7:185–199. http://dx.doi.org/10.1111/j.1365-2818.1887.tb01566.x
    • (1887) J R Microsc Soc , vol.7 , pp. 185-199
    • Dallinger, W.H.1
  • 43
    • 0005923791 scopus 로고
    • Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae)
    • White EB, Debach P, Garber MJ. 1970. Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae). Hilgardia 40:161–192. http://dx.doi.org/10.3733/hilg.v40n06p161
    • (1970) Hilgardia , vol.40 , pp. 161-192
    • White, E.B.1    Debach, P.2    Garber, M.J.3
  • 44
    • 0040663370 scopus 로고
    • Models for physiological and genetic adaptation to variable environments
    • Dingle H, Hegmann JP, Springer-Verlag, New York, NY
    • Bradley B. 1982. Models for physiological and genetic adaptation to variable environments, p 33–50. In Dingle H, Hegmann JP (ed), Evolution and genetics of life histories. Springer-Verlag, New York, NY
    • (1982) Evolution and Genetics of Life Histories , pp. 33-50
    • Bradley, B.1
  • 45
    • 33745895886 scopus 로고    scopus 로고
    • The genetic basis of thermal reaction norm evolution in lab and natural phage populations
    • Knies JL, Izem R, Supler KL, Kingsolver JG, Burch CL. 2006. The genetic basis of thermal reaction norm evolution in lab and natural phage populations. PLoS Biol 4:e201. http://dx.doi.org/10.1371/journal.pbio.0040201
    • (2006) Plos Biol , vol.4
    • Knies, J.L.1    Izem, R.2    Supler, K.L.3    Kingsolver, J.G.4    Burch, C.L.5
  • 46
    • 0034973280 scopus 로고    scopus 로고
    • Review: Protein function at thermal extremes: Balancing stability and flexibility
    • Fields PA. 2001. Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129: 417–431. http://dx.doi.org/10.1016/S1095-6433(00)00359-7
    • (2001) Comp Biochem Physiol a Mol Integr Physiol , vol.129 , pp. 417-431
    • Fields, P.A.1
  • 47
    • 11144238345 scopus 로고    scopus 로고
    • Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase
    • Meng FG, Hong YK, He HW, Lyubarev AE, Kurganov BI, Yan YB, Zhou HM. 2004. Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase. Biophys J 87:2247–2254. http://dx.doi.org/10.1529/biophysj.104.044784
    • (2004) Biophys J , vol.87 , pp. 2247-2254
    • Meng, F.G.1    Hong, Y.K.2    He, H.W.3    Lyubarev, A.E.4    Kurganov, B.I.5    Yan, Y.B.6    Zhou, H.M.7
  • 48
    • 0031580199 scopus 로고    scopus 로고
    • Protein thermal stability, hydrogen bonds, and ion pairs
    • Vogt G, Woell S, Argos P. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643. http://dx.doi.org/10.1006/jmbi.1997.1042
    • (1997) J Mol Biol , vol.269 , pp. 631-643
    • Vogt, G.1    Woell, S.2    Argos, P.3
  • 50
    • 84878756325 scopus 로고    scopus 로고
    • Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli
    • Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO. 2013. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340:1220–1223. http://dx.doi.org/10.1126/science.1234012
    • (2013) Science , vol.340 , pp. 1220-1223
    • Chang, R.L.1    Rews, K.2    Kim, D.3    Li, Z.4    Godzik, A.5    Palsson, B.O.6
  • 51
    • 0344564137 scopus 로고    scopus 로고
    • DNA supercoiling and temperature adaptation: A clue to early diversification of life?
    • López-García P. 1999. DNA supercoiling and temperature adaptation: a clue to early diversification of life? J Mol Evol 49:439–452. http://dx.doi.org/10.1007/PL00006567
    • (1999) J Mol Evol , vol.49 , pp. 439-452
    • López-García, P.1
  • 55
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Stat Methodol 57:289–300
    • (1995) J R Stat Soc B Stat Methodol , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 56
    • 84877309040 scopus 로고    scopus 로고
    • Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
    • Väremo L, Nielsen J, Nookaew I. 2013. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41: 4378–4391. http://dx.doi.org/10.1093/nar/gkt111.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4378-4391
    • Väremo, L.1    Nielsen, J.2    Nookaew, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.