-
1
-
-
84875640206
-
The role of biofuels in the future energy supply
-
Caspeta L, Buijs NAA, Nielsen J. 2013. The role of biofuels in the future energy supply. Energy Environ Sci 6:1077–1082. http://dx.doi.org/10.1039/c3ee24403b
-
(2013)
Energy Environ Sci
, vol.6
, pp. 1077-1082
-
-
Caspeta, L.1
Buijs, N.2
Nielsen, J.3
-
2
-
-
0026118583
-
Fuel ethanol from cellulosic biomass
-
Lynd LR, Cushman JH, Nichols RJ, Wyman CE. 1991. Fuel ethanol from cellulosic biomass. Science 251:1318–1323. http://dx.doi.org/10.1126/science.251.4999.1318
-
(1991)
Science
, vol.251
, pp. 1318-1323
-
-
Lynd, L.R.1
Cushman, J.H.2
Nichols, R.J.3
Wyman, C.E.4
-
3
-
-
84893598111
-
Solving ethanol production problems with genetically modified yeast strains
-
Abreu-Cavalheiro A, Monteiro G. 2013. Solving ethanol production problems with genetically modified yeast strains. Braz J Microbiol 44: 665–671. http://dx.doi.org/10.1590/S1517-83822013000300001
-
(2013)
Braz J Microbiol
, vol.44
, pp. 665-671
-
-
Abreu-Cavalheiro, A.1
Monteiro, G.2
-
4
-
-
77957021521
-
Technological trends, global market, and challenges of bio-ethanol production
-
Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830. http://dx.doi.org/10.1016/j.biotechadv.2010.07.001
-
(2010)
Biotechnol Adv
, vol.28
, pp. 817-830
-
-
Mussatto, S.I.1
Dragone, G.2
Guimarães, P.3
Silva, J.4
Carneiro, L.M.5
Roberto, I.C.6
Vicente, A.7
Domingues, L.8
Teixeira, J.A.9
-
5
-
-
76649111376
-
High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?
-
Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R. 2010. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867. http://dx.doi.org/10.1007/s00253-009-2248-5
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 861-867
-
-
Abdel-Banat, B.M.1
Hoshida, H.2
Ano, A.3
Nonklang, S.4
Akada, R.5
-
6
-
-
84882691433
-
Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol
-
Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A. 2014. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286. http://dx.doi.org/10.1016/j.apenergy.2013.07.036
-
(2014)
Appl Energy
, vol.113
, pp. 277-286
-
-
Caspeta, L.1
Caro-Bermúdez, M.A.2
Ponce-Noyola, T.3
Martinez, A.4
-
7
-
-
80052579095
-
Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production
-
Kumar D, Murthy GS. 2011. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27. http://dx.doi.org/10.1186/1754-6834-4-27
-
(2011)
Biotechnol Biofuels
, vol.4
-
-
Kumar, D.1
Murthy, G.S.2
-
8
-
-
84940833669
-
Modified yeast tolerate alcohol, heat
-
Kate Y. 2014. Modified yeast tolerate alcohol, heat. The Scientist. http://www.the-Scientist.com/?articles.view/articleNo/41142/title/Modified-Yeast-Tolerate-Alcohol--Heat/
-
(2014)
The Scientist
-
-
Kate, Y.1
-
9
-
-
0027282779
-
Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae
-
Piper PW. 1993. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11: 339–355. http://dx.doi.org/10.1111/j.1574-6976.1993.tb00005.x
-
(1993)
FEMS Microbiol Rev
, vol.11
, pp. 339-355
-
-
Piper, P.W.1
-
10
-
-
0022555843
-
The heat-shock response
-
Lindquist S. 1986. The heat-shock response. Annu Rev Biochem 55: 1151–1191. http://dx.doi.org/10.1146/annurev.bi.55.070186.005443
-
(1986)
Annu Rev Biochem
, vol.55
, pp. 1151-1191
-
-
Lindquist, S.1
-
11
-
-
64049092699
-
Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
-
Lu C, Brauer MJ, Botstein D. 2009. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20: 891–903. http://dx.doi.org/10.1091/mbc.E08-08-0852
-
(2009)
Mol Biol Cell
, vol.20
, pp. 891-903
-
-
Lu, C.1
Brauer, M.J.2
Botstein, D.3
-
12
-
-
44649188503
-
Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production
-
Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J. 2008. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Technol 43:120–123. http://dx.doi.org/10.1016/j.enzmictec.2008.02.007
-
(2008)
Enzyme Microb Technol
, vol.43
, pp. 120-123
-
-
Edgardo, A.1
Carolina, P.2
Manuel, R.3
Juanita, F.4
Baeza, J.5
-
13
-
-
0027503713
-
Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli
-
Bennett AF, Lenski RE. 1993. Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli. Evolution 47: 1–12. http://dx.doi.org/10.2307/2410113
-
(1993)
Evolution
, vol.47
, pp. 1-12
-
-
Bennett, A.F.1
Lenski, R.E.2
-
14
-
-
67650376275
-
Adaptive prediction of environmental changes by microorganisms
-
Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y. 2009. Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224. http://dx.doi.org/10.1038/nature08112
-
(2009)
Nature
, vol.460
, pp. 220-224
-
-
Mitchell, A.1
Romano, G.H.2
Groisman, B.3
Yona, A.4
Dekel, E.5
Kupiec, M.6
Dahan, O.7
Pilpel, Y.8
-
15
-
-
0035678801
-
Evolutionary adaptation to temperature. IX. Preadaptation to novel stressful environments of Escherichia coli adapted to high temperature
-
Cullum AJ, Bennett AF, Lenski RE. 2001. Evolutionary adaptation to temperature. IX. Preadaptation to novel stressful environments of Escherichia coli adapted to high temperature. Evolution 55:2194–2202. http://dx.doi.org/10.1111/j.0014-3820.2001.tb00735.x
-
(2001)
Evolution
, vol.55
, pp. 2194-2202
-
-
Cullum, A.J.1
Bennett, A.F.2
Lenski, R.E.3
-
16
-
-
84907483760
-
Altered sterol composition renders yeast thermotolerant
-
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. 2014. Altered sterol composition renders yeast thermotolerant. Science 346:75–78. http://dx.doi.org/10.1126/science.1258137
-
(2014)
Science
, vol.346
, pp. 75-78
-
-
Caspeta, L.1
Chen, Y.2
Ghiaci, P.3
Feizi, A.4
Buskov, S.5
Hallström, B.M.6
Petranovic, D.7
Nielsen, J.8
-
17
-
-
34547418221
-
An experimental test of evolutionary tradeoffs during temperature adaptation
-
Bennett AF, Lenski RE. 2007. An experimental test of evolutionary tradeoffs during temperature adaptation. Proc Natl Acad Sci U S A 104(Suppl 1):8649–8654. http://dx.doi.org/10.1073/pnas.0702117104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 8649-8654
-
-
Bennett, A.F.1
Lenski, R.E.2
-
18
-
-
78650217130
-
Cellular proteomes have broad distributions of protein stability
-
Ghosh K, Dill K. 2010. Cellular proteomes have broad distributions of protein stability. Biophys J 99:3996–4002. http://dx.doi.org/10.1016/j.bpj.2010.10.036
-
(2010)
Biophys J
, vol.99
, pp. 3996-4002
-
-
Ghosh, K.1
Dill, K.2
-
19
-
-
36049027813
-
Protein stability imposes limits on organism complexity and speed of molecular evolution
-
Zeldovich KB, Chen P, Shakhnovich EI. 2007. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc Natl Acad Sci U S A 104:16152–16157. http://dx.doi.org/10.1073/pnas.0705366104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 16152-16157
-
-
Zeldovich, K.B.1
Chen, P.2
Shakhnovich, E.I.3
-
20
-
-
0038530709
-
Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways
-
Wojda I, Alonso-Monge R, Bebelman J-P, Mager WH, Siderius M. 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149: 1193–1204. http://dx.doi.org/10.1099/mic.0.26110-0
-
(2003)
Microbiology
, vol.149
, pp. 1193-1204
-
-
Wojda, I.1
Alonso-Monge, R.2
Bebelman, J.-P.3
Mager, W.H.4
Siderius, M.5
-
21
-
-
0034888838
-
Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects
-
Alonso-Monge R, Real E, Wojda I, Bebelman JP, Mager WH, Siderius M. 2001. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41:717–730. http://dx.doi.org/10.1046/j.1365-2958.2001.02549.x
-
(2001)
Mol Microbiol
, vol.41
, pp. 717-730
-
-
Alonso-Monge, R.1
Real, E.2
Wojda, I.3
Bebelman, J.P.4
Mager, W.H.5
Siderius, M.6
-
22
-
-
84907518524
-
Engineering alcohol tolerance in yeast
-
Lam FH, Ghaderi A, Fink GR, Stephanopoulos G. 2014. Engineering alcohol tolerance in yeast. Science 346:71–75. http://dx.doi.org/10.1126/science.1257859
-
(2014)
Science
, vol.346
, pp. 71-75
-
-
Lam, F.H.1
Ghaderi, A.2
Fink, G.R.3
Stephanopoulos, G.4
-
23
-
-
4344669431
-
Protein structure, stability and solubility in water and other solvents
-
Pace CN, Treviño S, Prabhakaran E, Scholtz JM. 2004. Protein structure, stability and solubility in water and other solvents. Philos Trans R Soc Lond B Biol Sci 359:1225–1235. http://dx.doi.org/10.1098/rstb.2004.1500
-
(2004)
Philos Trans R Soc Lond B Biol Sci
, vol.359
, pp. 1225-1235
-
-
Pace, C.N.1
Treviño, S.2
Prabhakaran, E.3
Scholtz, J.M.4
-
24
-
-
67649774570
-
Computing protein stabilities from their chain lengths
-
Ghosh K, Dill KA. 2009. Computing protein stabilities from their chain lengths. Proc Natl Acad Sci U S A 106:10649–10654. http://dx.doi.org/10.1073/pnas.0903995106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 10649-10654
-
-
Ghosh, K.1
Dill, K.A.2
-
25
-
-
80052449370
-
How do thermophilic proteins and proteomes withstand high temperature?
-
Sawle L, Ghosh K. 2011. How do thermophilic proteins and proteomes withstand high temperature? Biophys J 101:217–227. http://dx.doi.org/10.1016/j.bpj.2011.05.059
-
(2011)
Biophys J
, vol.101
, pp. 217-227
-
-
Sawle, L.1
Ghosh, K.2
-
26
-
-
33846519263
-
Protein and DNA sequence determinants of thermophilic adaptation
-
Zeldovich KB, Berezovsky IN, Shakhnovich EI. 2007. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3:e5. http://dx.doi.org/10.1371/journal.pcbi.0030005
-
(2007)
Plos Comput Biol
, vol.3
-
-
Zeldovich, K.B.1
Berezovsky, I.N.2
Shakhnovich, E.I.3
-
27
-
-
77950605529
-
Thermal adaptation of viruses and bacteria
-
Chen P, Shakhnovich EI. 2010. Thermal adaptation of viruses and bacteria. Biophys J 98:1109–1118. http://dx.doi.org/10.1016/j.bpj.2009.11.048
-
(2010)
Biophys J
, vol.98
, pp. 1109-1118
-
-
Chen, P.1
Shakhnovich, E.I.2
-
28
-
-
0023478501
-
Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae
-
Hottiger T, Schmutz P, Wiemken A. 1987. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169: 5518–5522
-
(1987)
J Bacteriol
, vol.169
, pp. 5518-5522
-
-
Hottiger, T.1
Schmutz, P.2
Wiemken, A.3
-
29
-
-
0025318231
-
Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
-
Verduyn C, Postma E, Scheffers WA, van Dijken JP. 1990. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403. http://dx.doi.org/10.1099/00221287-136-3-395
-
(1990)
J Gen Microbiol
, vol.136
, pp. 395-403
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
Van Dijken, J.P.4
-
30
-
-
0030856334
-
High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion
-
Siderius M, Rots E, Mager WH. 1997. High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143:3241–3250. http://dx.doi.org/10.1099/00221287-143-10-3241
-
(1997)
Microbiology
, vol.143
, pp. 3241-3250
-
-
Siderius, M.1
Rots, E.2
Mager, W.H.3
-
31
-
-
79251556819
-
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
-
André B, Canelas AB, Harrison N, Fazio A, Zhang J, Pitkänen JP, van den Brink J, Bakker BM, Bogner L, Bouwman J, Castrillo JI, Cankorur A, Chumnanpuen P, Lapujade PD, Dikicioglu D, van Eunen K, Ewald JC, Heijnen JJ, Kirdar B, Mattila I, Mensonides FIC, Niebel A, Penttilä M, Pronk JT, Reuss M, Salusjärvi S, Sauer U, Sherman D, Siemann- Herzberg M, Westerhoff H, de Winde J, Petranovic D, Oliver SG, Workman ChT, Zamboni N, Nielsen J. 2010. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145. http://dx.doi.org/10.1038/ncomms1150
-
(2010)
Nat Commun
, vol.1
-
-
André, B.1
Canelas, A.B.2
Harrison, N.3
Fazio, A.4
Zhang, J.5
Pitkänen, J.P.6
Van Den Brink, J.7
Bakker, B.M.8
Bogner, L.9
Bouwman, J.10
Castrillo, J.I.11
Cankorur, A.12
Chumnanpuen, P.13
Lapujade, P.D.14
Dikicioglu, D.15
Van Eunen, K.16
Ewald, J.C.17
Heijnen, J.J.18
Kirdar, B.19
Mattila, I.20
Mensonides, F.21
Niebel, A.22
Penttilä, M.23
Pronk, J.T.24
Reuss, M.25
Salusjärvi, S.26
Sauer, U.27
Sherman, D.28
Siemann-Herzberg, M.29
Westerhoff, H.30
De Winde, J.31
Petranovic, D.32
Oliver, S.G.33
Workman, C.34
Zamboni, N.35
Nielsen, J.36
more..
-
32
-
-
0037214352
-
Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase
-
De Nadal E, Casadomé L, Posas F. 2003. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23:229–237. http://dx.doi.org/10.1128/MCB.23.1.229-237.2003
-
(2003)
Mol Cell Biol
, vol.23
, pp. 229-237
-
-
De Nadal, E.1
Casadomé, L.2
Posas, F.3
-
33
-
-
0037077207
-
Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase
-
Hahn JS, Thiele DJ. 2002. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284. http://dx.doi.org/10.1074/jbc.M202557200
-
(2002)
J Biol Chem
, vol.277
, pp. 21278-21284
-
-
Hahn, J.S.1
Thiele, D.J.2
-
34
-
-
0036317761
-
A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae
-
Ter Linde JJ, Steensma HY. 2002. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19: 825–840. http://dx.doi.org/10.1002/yea.879
-
(2002)
Yeast
, vol.19
, pp. 825-840
-
-
Ter Linde, J.J.1
Steensma, H.Y.2
-
35
-
-
33645769260
-
An improved map of conserved regulatory sites for Saccharomyces cerevisiae
-
MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E. 2006. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113. http://dx.doi.org/10.1186/1471-2105-7-113
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Macisaac, K.D.1
Wang, T.2
Gordon, D.B.3
Gifford, D.K.4
Stormo, G.D.5
Fraenkel, E.6
-
36
-
-
0033452784
-
Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway
-
Jung US, Levin DE. 1999. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34:1049–1057. http://dx.doi.org/10.1046/j.1365-2958.1999.01667.x
-
(1999)
Mol Microbiol
, vol.34
, pp. 1049-1057
-
-
Jung, U.S.1
Levin, D.E.2
-
37
-
-
0024323460
-
Cloning of the glutamine:Fructose-6- phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription
-
Watzele G, Tanner W. 1989. Cloning of the glutamine:fructose-6- phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription. J Biol Chem 264:8753–8758
-
(1989)
J Biol Chem
, vol.264
, pp. 8753-8758
-
-
Watzele, G.1
Tanner, W.2
-
38
-
-
0036024578
-
Dynamics of cell wall structure in Saccharomyces cerevisiae
-
Klis FM, Mol P, Hellingwerf K, Brul S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256. http://dx.doi.org/10.1111/j.1574-6976.2002.tb00613.x
-
(2002)
FEMS Microbiol Rev
, vol.26
, pp. 239-256
-
-
Klis, F.M.1
Mol, P.2
Hellingwerf, K.3
Brul, S.4
-
39
-
-
0024903729
-
Evolution of thermal sensitivity of ectotherm performance
-
Huey RB, Kingsolver JG. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135. http://dx.doi.org/10.1016/0169-5347(89)90211-5
-
(1989)
Trends Ecol Evol
, vol.4
, pp. 131-135
-
-
Huey, R.B.1
Kingsolver, J.G.2
-
40
-
-
0027503713
-
Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli
-
Bennett AF, Lenski RE. 1993. Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli. Evolution 47: 1–12. http://dx.doi.org/10.2307/2410113
-
(1993)
Evolution
, vol.47
, pp. 1-12
-
-
Bennett, A.F.1
Lenski, R.E.2
-
41
-
-
77953508710
-
Evolution of Escherichia coli for growth at high temperatures
-
Rudolph B, Gebendorfer KM, Buchner J, Winter J. 2010. Evolution of Escherichia coli for growth at high temperatures. J Biol Chem 285: 19029–19034. http://dx.doi.org/10.1074/jbc.M110.103374
-
(2010)
J Biol Chem
, vol.285
, pp. 19029-19034
-
-
Rudolph, B.1
Gebendorfer, K.M.2
Buchner, J.3
Winter, J.4
-
42
-
-
0008777776
-
The President’s address
-
Dallinger WH. 1887. The President’s address. J R Microsc Soc 7:185–199. http://dx.doi.org/10.1111/j.1365-2818.1887.tb01566.x
-
(1887)
J R Microsc Soc
, vol.7
, pp. 185-199
-
-
Dallinger, W.H.1
-
43
-
-
0005923791
-
Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae)
-
White EB, Debach P, Garber MJ. 1970. Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae). Hilgardia 40:161–192. http://dx.doi.org/10.3733/hilg.v40n06p161
-
(1970)
Hilgardia
, vol.40
, pp. 161-192
-
-
White, E.B.1
Debach, P.2
Garber, M.J.3
-
44
-
-
0040663370
-
Models for physiological and genetic adaptation to variable environments
-
Dingle H, Hegmann JP, Springer-Verlag, New York, NY
-
Bradley B. 1982. Models for physiological and genetic adaptation to variable environments, p 33–50. In Dingle H, Hegmann JP (ed), Evolution and genetics of life histories. Springer-Verlag, New York, NY
-
(1982)
Evolution and Genetics of Life Histories
, pp. 33-50
-
-
Bradley, B.1
-
45
-
-
33745895886
-
The genetic basis of thermal reaction norm evolution in lab and natural phage populations
-
Knies JL, Izem R, Supler KL, Kingsolver JG, Burch CL. 2006. The genetic basis of thermal reaction norm evolution in lab and natural phage populations. PLoS Biol 4:e201. http://dx.doi.org/10.1371/journal.pbio.0040201
-
(2006)
Plos Biol
, vol.4
-
-
Knies, J.L.1
Izem, R.2
Supler, K.L.3
Kingsolver, J.G.4
Burch, C.L.5
-
46
-
-
0034973280
-
Review: Protein function at thermal extremes: Balancing stability and flexibility
-
Fields PA. 2001. Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129: 417–431. http://dx.doi.org/10.1016/S1095-6433(00)00359-7
-
(2001)
Comp Biochem Physiol a Mol Integr Physiol
, vol.129
, pp. 417-431
-
-
Fields, P.A.1
-
47
-
-
11144238345
-
Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase
-
Meng FG, Hong YK, He HW, Lyubarev AE, Kurganov BI, Yan YB, Zhou HM. 2004. Osmophobic effect of glycerol on irreversible thermal denaturation of rabbit creatine kinase. Biophys J 87:2247–2254. http://dx.doi.org/10.1529/biophysj.104.044784
-
(2004)
Biophys J
, vol.87
, pp. 2247-2254
-
-
Meng, F.G.1
Hong, Y.K.2
He, H.W.3
Lyubarev, A.E.4
Kurganov, B.I.5
Yan, Y.B.6
Zhou, H.M.7
-
48
-
-
0031580199
-
Protein thermal stability, hydrogen bonds, and ion pairs
-
Vogt G, Woell S, Argos P. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643. http://dx.doi.org/10.1006/jmbi.1997.1042
-
(1997)
J Mol Biol
, vol.269
, pp. 631-643
-
-
Vogt, G.1
Woell, S.2
Argos, P.3
-
49
-
-
0037810546
-
Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens
-
Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T. 2003. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579. http://dx.doi.org/10.1101/gr.1285603
-
(2003)
Genome Res
, vol.13
, pp. 1572-1579
-
-
Nishio, Y.1
Nakamura, Y.2
Kawarabayasi, Y.3
Usuda, Y.4
Kimura, E.5
Sugimoto, S.6
Matsui, K.7
Yamagishi, A.8
Kikuchi, H.9
Ikeo, K.10
Gojobori, T.11
-
50
-
-
84878756325
-
Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli
-
Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO. 2013. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340:1220–1223. http://dx.doi.org/10.1126/science.1234012
-
(2013)
Science
, vol.340
, pp. 1220-1223
-
-
Chang, R.L.1
Rews, K.2
Kim, D.3
Li, Z.4
Godzik, A.5
Palsson, B.O.6
-
51
-
-
0344564137
-
DNA supercoiling and temperature adaptation: A clue to early diversification of life?
-
López-García P. 1999. DNA supercoiling and temperature adaptation: a clue to early diversification of life? J Mol Evol 49:439–452. http://dx.doi.org/10.1007/PL00006567
-
(1999)
J Mol Evol
, vol.49
, pp. 439-452
-
-
López-García, P.1
-
52
-
-
84888810700
-
-
3rd ed. Springer, New York, NY
-
Villadsen J, Nielsen J, Lidén G. 2011. Biochemical engineering principles, 3rd ed. Springer, New York, NY
-
(2011)
Biochemical Engineering Principles
-
-
Villadsen, J.1
Nielsen, J.2
Lidén, G.3
-
53
-
-
28744458859
-
Bioconductor: Open software development for computational biology and bioinformatics
-
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. http://dx.doi.org/10.1186/gb-2004-5-10-r80
-
(2004)
Genome Biol
, vol.5
, pp. R80
-
-
Gentleman, R.C.1
Carey, V.J.2
Bates, D.M.3
Bolstad, B.4
Dettling, M.5
Dudoit, S.6
Ellis, B.7
Gautier, L.8
Ge, Y.9
Gentry, J.10
Hornik, K.11
Hothorn, T.12
Huber, W.13
Iacus, S.14
Irizarry, R.15
Leisch, F.16
Li, C.17
Maechler, M.18
Rossini, A.J.19
Sawitzki, G.20
more..
-
55
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Stat Methodol 57:289–300
-
(1995)
J R Stat Soc B Stat Methodol
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
56
-
-
84877309040
-
Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
-
Väremo L, Nielsen J, Nookaew I. 2013. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41: 4378–4391. http://dx.doi.org/10.1093/nar/gkt111.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4378-4391
-
-
Väremo, L.1
Nielsen, J.2
Nookaew, I.3
|