메뉴 건너뛰기




Volumn 100, Issue 23, 2016, Pages 10215-10223

Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter

Author keywords

Co utilization; Glucose; Saccharomyces cerevisiae; Transporter; Xylose

Indexed keywords

XYLOSE; YEAST;

EID: 84991086121     PISSN: 01757598     EISSN: 14320614     Source Type: Journal    
DOI: 10.1007/s00253-016-7879-8     Document Type: Article
Times cited : (64)

References (42)
  • 1
    • 84954457527 scopus 로고    scopus 로고
    • Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
    • Bamba T, Hasunuma T, Kondo A (2016) Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. AMB Express 6:4. doi:10.1186/s13568-015-0175-7
    • (2016) AMB Express , vol.6 , pp. 4
    • Bamba, T.1    Hasunuma, T.2    Kondo, A.3
  • 2
    • 84947239721 scopus 로고    scopus 로고
    • Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—a review
    • COI: 1:CAS:528:DC%2BC28XhtFOnsb%2FM
    • Brethauer S, Studer MH (2015) Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—a review. Chim Int J Chem 69:572–581. doi:10.2533/chimia.2015.572
    • (2015) Chim Int J Chem , vol.69 , pp. 572-581
    • Brethauer, S.1    Studer, M.H.2
  • 3
    • 84868483522 scopus 로고    scopus 로고
    • Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method
    • COI: 1:CAS:528:DC%2BC38Xhs1OlurzP
    • Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. doi:10.1016/j.biombioe.2012.04.020
    • (2012) Biomass Bioenerg , vol.46 , pp. 25-35
    • Chiaramonti, D.1    Prussi, M.2    Ferrero, S.3    Oriani, L.4    Ottonello, P.5    Torre, P.6    Cherchi, F.7
  • 4
    • 84864829506 scopus 로고    scopus 로고
    • Energy, wealth, and human development: why and how biomass pretreatment research must improve
    • COI: 1:CAS:528:DC%2BC38Xht1artLjK
    • Dale BE, Ong RG (2012) Energy, wealth, and human development: why and how biomass pretreatment research must improve. Biotechnol Prog 28:893–898. doi:10.1002/btpr.1575
    • (2012) Biotechnol Prog , vol.28 , pp. 893-898
    • Dale, B.E.1    Ong, R.G.2
  • 5
  • 6
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • COI: 1:CAS:528:DC%2BC2cXkslCqs78%3D
    • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159–5164. doi:10.1073/pnas.1323464111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 10
    • 0020912407 scopus 로고
    • Utilization of xylose by bacteria, yeasts, and fungi
    • COI: 1:CAS:528:DyaL3sXlvFWis78%3D
    • Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 27:1–32. doi:10.1007/BFb0009101
    • (1983) Adv Biochem Eng Biotechnol , vol.27 , pp. 1-32
    • Jeffries, T.W.1
  • 11
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • COI: 1:CAS:528:DC%2BD2cXmvVGjtA%3D%3D
    • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509. doi:10.1007/s00253-003-1450-0
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 12
    • 84873843576 scopus 로고    scopus 로고
    • Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels
    • COI: 1:CAS:528:DC%2BC3sXkvVGktb0%3D
    • Kim B, Du J, Eriksen DT, Zhao H (2013) Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 79:931–941. doi:10.1128/AEM.02736-12
    • (2013) Appl Environ Microbiol , vol.79 , pp. 931-941
    • Kim, B.1    Du, J.2    Eriksen, D.T.3    Zhao, H.4
  • 13
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • COI: 1:CAS:528:DC%2BD2cXpsFKrtr0%3D
    • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 14
    • 65249115211 scopus 로고    scopus 로고
    • Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production
    • COI: 1:CAS:528:DC%2BD1MXjsFegtbg%3D
    • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g
    • (2009) Ind Eng Chem Res , vol.48 , pp. 3713-3729
    • Kumar, P.1    Barrett, D.M.2    Delwiche, M.J.3    Stroeve, P.4
  • 16
    • 33646252240 scopus 로고    scopus 로고
    • Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter
    • COI: 1:CAS:528:DC%2BD28XjtlCgsbo%3D
    • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549. doi:10.1042/BJ20051465
    • (2006) Biochem J , vol.395 , pp. 543-549
    • Leandro, M.J.1    Gonçalves, P.2    Spencer-Martins, I.3
  • 17
    • 84866172183 scopus 로고    scopus 로고
    • Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XhtFOnsrrI
    • Lee SM, Jellison T, Alper HS (2012) Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 78:5708–5716. doi:10.1128/AEM.01419-12
    • (2012) Appl Environ Microbiol , vol.78 , pp. 5708-5716
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 18
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • Lee S-M, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122. doi:10.1186/s13068-014-0122-x
    • (2014) Biotechnol Biofuels , vol.7 , pp. 122
    • Lee, S.-M.1    Jellison, T.2    Alper, H.S.3
  • 19
    • 0030378473 scopus 로고    scopus 로고
    • Overview and evaluaton of fuel ethanol from cellulosic biomass: technology, economics, the environment and policy
    • Lynd LR (1996) Overview and evaluaton of fuel ethanol from cellulosic biomass: technology, economics, the environment and policy. Annu Rev Energy Environ 21:403–465. doi:10.1146/annurev.energy.21.1.403
    • (1996) Annu Rev Energy Environ , vol.21 , pp. 403-465
    • Lynd, L.R.1
  • 20
    • 84944406828 scopus 로고    scopus 로고
    • Unlocking the potential of lignocellulosic biomass through plant science
    • Marriott PE, Gómez LD, Mcqueen-Mason SJ (2015) Unlocking the potential of lignocellulosic biomass through plant science. New Phytol 209:1366–1381. doi:10.1111/nph.13684
    • (2015) New Phytol , vol.209 , pp. 1366-1381
    • Marriott, P.E.1    Gómez, L.D.2    Mcqueen-Mason, S.J.3
  • 21
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • COI: 1:CAS:528:DC%2BD1MXovVOhsL8%3D
    • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53. doi:10.1007/s00253-009-2101-x
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 22
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • COI: 1:CAS:528:DyaK2MXkvVamsb4%3D
    • Mumberg D, Mueller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122. doi:10.1016/0378-1119(95)00037-7
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Mueller, R.2    Funk, M.3
  • 23
    • 72049131519 scopus 로고    scopus 로고
    • Production of first and second generation biofuels: a comprehensive review
    • COI: 1:CAS:528:DC%2BD1MXhsF2isbvF
    • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597. doi:10.1016/j.rser.2009.10.003
    • (2010) Renew Sust Energ Rev , vol.14 , pp. 578-597
    • Naik, S.N.1    Goud, V.V.2    Rout, P.K.3    Dalai, A.K.4
  • 24
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
    • Nijland JG, Shin HY, de Jong RM, de Waal PP, Klaassen P, Driessen AJ (2014) Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 7:168. doi:10.1186/s13068-014-0168-9
    • (2014) Biotechnol Biofuels , vol.7 , pp. 168
    • Nijland, J.G.1    Shin, H.Y.2    de Jong, R.M.3    de Waal, P.P.4    Klaassen, P.5    Driessen, A.J.6
  • 26
    • 84955276048 scopus 로고    scopus 로고
    • Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC28Xht1elsrs%3D
    • Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A (2016) Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep 6:19512. doi:10.1038/srep19512
    • (2016) Sci Rep , vol.6 , pp. 19512
    • Reider Apel, A.1    Ouellet, M.2    Szmidt-Middleton, H.3    Keasling, J.D.4    Mukhopadhyay, A.5
  • 27
    • 33646873502 scopus 로고    scopus 로고
    • Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose
    • Salusjärvi L, Pitkänen J-P, Aristidou A, Ruohonen L, Penttilä M (2006) Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128:237–261. doi:10.1385/ABAB:128:3:237
    • (2006) Appl Biochem Biotechnol , vol.128 , pp. 237-261
    • Salusjärvi, L.1    Pitkänen, J.-P.2    Aristidou, A.3    Ruohonen, L.4    Penttilä, M.5
  • 29
    • 84925489058 scopus 로고    scopus 로고
    • Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals
    • Sànchez Nogué V, Karhumaa K (2015) Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 37:761–772. doi:10.1007/s10529-014-1756-2
    • (2015) Biotechnol Lett , vol.37 , pp. 761-772
    • Sànchez Nogué, V.1    Karhumaa, K.2
  • 30
    • 84863618228 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
    • COI: 1:CAS:528:DC%2BC38XhtFegtL7F
    • Scalcinati G, Otero JM, Van Vleet JRH, Jeffries TW, Olsson L, Nielsen J (2012) Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 12:582–597. doi:10.1111/j.1567-1364.2012.00808.x
    • (2012) FEMS Yeast Res , vol.12 , pp. 582-597
    • Scalcinati, G.1    Otero, J.M.2    Van Vleet, J.R.H.3    Jeffries, T.W.4    Olsson, L.5    Nielsen, J.6
  • 31
    • 3042769437 scopus 로고    scopus 로고
    • Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
    • COI: 1:CAS:528:DC%2BD2cXlt1Ogu7g%3D
    • Sedlak M, Ho NWY (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684. doi:10.1002/yea.1060
    • (2004) Yeast , vol.21 , pp. 671-684
    • Sedlak, M.1    Ho, N.W.Y.2
  • 32
    • 84870994085 scopus 로고    scopus 로고
    • An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
    • COI: 1:CAS:528:DC%2BC38XhsFGqsbzK
    • Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96:1079–1091. doi:10.1007/s00253-012-4418-0
    • (2012) Appl Microbiol Biotechnol , vol.96 , pp. 1079-1091
    • Shen, Y.1    Chen, X.2    Peng, B.3    Chen, L.4    Hou, J.5    Bao, X.6
  • 33
    • 84959078116 scopus 로고    scopus 로고
    • An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae
    • Shin HY, Nijland JG, de Waal PP, de Jong RM, Klaassen P, Driessen AJM (2015) An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 8:176. doi:10.1186/s13068-015-0360-6
    • (2015) Biotechnol Biofuels , vol.8 , pp. 176
    • Shin, H.Y.1    Nijland, J.G.2    de Waal, P.P.3    de Jong, R.M.4    Klaassen, P.5    Driessen, A.J.M.6
  • 34
    • 85005781392 scopus 로고    scopus 로고
    • The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss
    • Solis-Escalante D, van den Broek M, Kuijpers NGA, Pronk JT, Boles E, Daran J-M, Daran-Lapujade P (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15:1–12. doi:10.1093/femsyr/fou004
    • (2015) FEMS Yeast Res , vol.15 , pp. 1-12
    • Solis-Escalante, D.1    van den Broek, M.2    Kuijpers, N.G.A.3    Pronk, J.T.4    Boles, E.5    Daran, J.-M.6    Daran-Lapujade, P.7
  • 35
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38Xpt1ajsbg%3D
    • Subtil T, Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14. doi:10.1186/1754-6834-5-14
    • (2012) Biotechnol Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 36
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • COI: 1:CAS:528:DC%2BD1MXosVajsbk%3D
    • Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306. doi:10.1016/j.copbio.2009.06.001
    • (2009) Curr Opin Biotechnol , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 37
    • 84955714285 scopus 로고    scopus 로고
    • Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization
    • Wang M, Yu C, Zhao H (2015) Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization. Biotechnol Bioeng 9999:1–8. doi:10.1002/bit.25724
    • (2015) Biotechnol Bioeng , vol.9999 , pp. 1-8
    • Wang, M.1    Yu, C.2    Zhao, H.3
  • 38
    • 0033373342 scopus 로고    scopus 로고
    • Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD3cXotFOq
    • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128. doi:10.1016/S0014-5793(99)01698-1
    • (1999) FEBS Lett , vol.464 , pp. 123-128
    • Wieczorke, R.1    Krampe, S.2    Weierstall, T.3    Freidel, K.4    Hollenberg, C.P.5    Boles, E.6
  • 39
    • 78649922301 scopus 로고    scopus 로고
    • Optimizing pentose utilization in yeast: the need for novel tools and approaches
    • Young E, Lee S-M, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24. doi:10.1186/1754-6834-3-24
    • (2010) Biotechnol Biofuels , vol.3 , pp. 24
    • Young, E.1    Lee, S.-M.2    Alper, H.3
  • 40
    • 79958211835 scopus 로고    scopus 로고
    • Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
    • COI: 1:CAS:528:DC%2BC3MXns1Slt7s%3D
    • Young E, Poucher A, Comer A, Bailey A, Alper H (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol 77:3311–3319. doi:10.1128/AEM.02651-10
    • (2011) Appl Environ Microbiol , vol.77 , pp. 3311-3319
    • Young, E.1    Poucher, A.2    Comer, A.3    Bailey, A.4    Alper, H.5
  • 41
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38Xkslaqt7k%3D
    • Young EM, Comer AD, Huang H, Alper HS (2012) A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14:401–411. doi:10.1016/j.ymben.2012.03.004
    • (2012) Metab Eng , vol.14 , pp. 401-411
    • Young, E.M.1    Comer, A.D.2    Huang, H.3    Alper, H.S.4
  • 42
    • 84891922490 scopus 로고    scopus 로고
    • Rewiring yeast sugar transporter preference through modifying a conserved protein motif
    • Young EM, Tong A, Bui H, Spofford C, Alper HS (2014) Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A 111:131–136. doi:10.1073/pnas.1311970111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 131-136
    • Young, E.M.1    Tong, A.2    Bui, H.3    Spofford, C.4    Alper, H.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.