메뉴 건너뛰기




Volumn 83, Issue 16, 2017, Pages

Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations

Author keywords

Adaptive laboratory evolution; Biotin; Prototrophy; Reverse metabolic engineering; Saccharomyces cerevisiae; Vitamin biosynthesis; Whole genome sequencing

Indexed keywords

BATCH CELL CULTURE; BIOCHEMISTRY; BIOSYNTHESIS; CHROMOSOMES; GENE EXPRESSION; GENES; GROWTH RATE; LABORATORIES; METABOLIC ENGINEERING; METABOLISM; YEAST;

EID: 85026546145     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00892-17     Document Type: Article
Times cited : (26)

References (67)
  • 1
    • 6544232537 scopus 로고
    • Pyruvate-oxaloacetate exchange reaction in baker's yeast
    • Gailiusis J, Rinne RW, Benedict C. 1964. Pyruvate-oxaloacetate exchange reaction in baker's yeast. Biochim Biophys Acta 92:595-601
    • (1964) Biochim Biophys Acta , vol.92 , pp. 595-601
    • Gailiusis, J.1    Rinne, R.W.2    Benedict, C.3
  • 2
    • 6544234363 scopus 로고
    • Oxaloacetate, citramalate and glutamate formation from pyruvate in baker's yeast
    • Losada M, Canovas J, Ruiz A. 1964. Oxaloacetate, citramalate and glutamate formation from pyruvate in baker's yeast. Biochem Z 340:60-74
    • (1964) Biochem Z , vol.340 , pp. 60-74
    • Losada, M.1    Canovas, J.2    Ruiz, A.3
  • 3
    • 0001217446 scopus 로고
    • Evidence for the participation of biotin in the enzymic synthesis of fatty acids
    • Wakil SJ, Titchener EB, Gibson DM. 1958. Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta 29:225-226. https://doi.org/10.1016/0006-3002(58)90177-X
    • (1958) Biochim Biophys Acta , vol.29 , pp. 225-226
    • Wakil, S.J.1    Titchener, E.B.2    Gibson, D.M.3
  • 4
    • 0020479453 scopus 로고
    • Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast
    • Sumrada RA, Cooper TG. 1982. Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem 257:9119-9127
    • (1982) J Biol Chem , vol.257 , pp. 9119-9127
    • Sumrada, R.A.1    Cooper, T.G.2
  • 5
    • 5644259583 scopus 로고    scopus 로고
    • Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae
    • Kim HS, Hoja U, Stolz J, Sauer G, Schweizer E. 2004. Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae. J Biol Chem 279:42445-42452. https://doi.org/ 10.1074/jbc.M407137200
    • (2004) J Biol Chem , vol.279 , pp. 42445-42452
    • Kim, H.S.1    Hoja, U.2    Stolz, J.3    Sauer, G.4    Schweizer, E.5
  • 6
    • 0032526108 scopus 로고    scopus 로고
    • Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells
    • Hoja U, Wellein C, Greiner E, Schweizer E. 1998. Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells. Eur J Biochem 254: 520-526. https://doi.org/10.1046/j.1432-1327.1998.2540520.x
    • (1998) Eur J Biochem , vol.254 , pp. 520-526
    • Hoja, U.1    Wellein, C.2    Greiner, E.3    Schweizer, E.4
  • 7
    • 0037364908 scopus 로고    scopus 로고
    • Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production
    • Streit W, Entcheva P. 2003. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 61:21-31. https://doi.org/10 .1007/s00253-002-1186-2
    • (2003) Appl Microbiol Biotechnol , vol.61 , pp. 21-31
    • Streit, W.1    Entcheva, P.2
  • 8
    • 77955927354 scopus 로고    scopus 로고
    • Biotin synthesis begins by hijacking the fatty acid synthetic pathway
    • Lin S, Hanson RE, Cronan JE. 2010. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 6:682-688. https://doi .org/10.1038/nchembio.420
    • (2010) Nat Chem Biol , vol.6 , pp. 682-688
    • Lin, S.1    Hanson, R.E.2    Cronan, J.E.3
  • 9
    • 79956217992 scopus 로고    scopus 로고
    • Identification and assays of polyamine transport systems in Escherichia coli and Saccharomyces cerevisiae
    • Kashiwagi K, Igarashi K. 2011. Identification and assays of polyamine transport systems in Escherichia coli and Saccharomyces cerevisiae. Methods Mol Biol 720:295-308. https://doi.org/10.1007/978-1-61779-034-8_18
    • (2011) Methods Mol Biol , vol.720 , pp. 295-308
    • Kashiwagi, K.1    Igarashi, K.2
  • 10
    • 79956086881 scopus 로고    scopus 로고
    • Closing in on complete pathways of biotin biosynthesis
    • Lin S, Cronan JE. 2011. Closing in on complete pathways of biotin biosynthesis. Mol Biosyst 7:1811-1821. https://doi.org/10.1039/c1mb05022b
    • (2011) Mol Biosyst , vol.7 , pp. 1811-1821
    • Lin, S.1    Cronan, J.E.2
  • 12
    • 80052194664 scopus 로고    scopus 로고
    • Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis
    • Tanabe Y, Maruyama J-I, Yamaoka S, Yahagi D, Matsuo I, Tsutsumi N, Kitamoto K. 2011. Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis. J Biol Chem 286:30455-30461. https://doi .org/10.1074/jbc.M111.247338
    • (2011) J Biol Chem , vol.286 , pp. 30455-30461
    • Tanabe, Y.1    Maruyama, J.-I.2    Yamaoka, S.3    Yahagi, D.4    Matsuo, I.5    Tsutsumi, N.6    Kitamoto, K.7
  • 13
    • 82755163046 scopus 로고    scopus 로고
    • Contributions of the peroxisome and β-oxidation cycle to biotin synthesis in fungi
    • Magliano P, Flipphi M, Arpat BA, Delessert S, Poirier Y. 2011. Contributions of the peroxisome and β-oxidation cycle to biotin synthesis in fungi. J Biol Chem 286:42133-42140. https://doi.org/10.1074/jbc.M111 .279687
    • (2011) J Biol Chem , vol.286 , pp. 42133-42140
    • Magliano, P.1    Flipphi, M.2    Arpat, B.A.3    Delessert, S.4    Poirier, Y.5
  • 14
    • 37249016359 scopus 로고    scopus 로고
    • The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering
    • Hall C, Dietrich FS. 2007. The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177:2293-2307. https://doi.org/10 .1534/genetics.107.074963
    • (2007) Genetics , vol.177 , pp. 2293-2307
    • Hall, C.1    Dietrich, F.S.2
  • 15
    • 20444468864 scopus 로고    scopus 로고
    • Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae
    • Hall C, Brachat S, Dietrich FS. 2005. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102-1115. https://doi.org/10.1128/EC.4.6.1102-1115.2005
    • (2005) Eukaryot Cell , vol.4 , pp. 1102-1115
    • Hall, C.1    Brachat, S.2    Dietrich, F.S.3
  • 16
    • 32044446012 scopus 로고    scopus 로고
    • Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae
    • Wu H, Ito K, Shimoi H. 2005. Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae. Appl Environ Microbiol 71:6845-6855. https://doi.org/10.1128/AEM.71.11.6845-6855 .2005
    • (2005) Appl Environ Microbiol , vol.71 , pp. 6845-6855
    • Wu, H.1    Ito, K.2    Shimoi, H.3
  • 17
    • 84880926390 scopus 로고    scopus 로고
    • Widespread decay of vitaminrelated pathways: coincidence or consequence?
    • Helliwell KE, Wheeler GL, Smith AG. 2013. Widespread decay of vitaminrelated pathways: coincidence or consequence? Trends Genet 29: 469-478. https://doi.org/10.1016/j.tig.2013.03.003
    • (2013) Trends Genet , vol.29 , pp. 469-478
    • Helliwell, K.E.1    Wheeler, G.L.2    Smith, A.G.3
  • 19
    • 0033603439 scopus 로고    scopus 로고
    • Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant
    • Stolz J, Hoja U, Meier S, Sauer N, Schweizer E. 1999. Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant. J Biol Chem 274:18741-18746. https://doi.org/10.1074/jbc.274.26.18741
    • (1999) J Biol Chem , vol.274 , pp. 18741-18746
    • Stolz, J.1    Hoja, U.2    Meier, S.3    Sauer, N.4    Schweizer, E.5
  • 20
    • 0033577827 scopus 로고    scopus 로고
    • Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake
    • Phalip V, Kuhn I, Lemoine Y, Jeltsch J-M. 1999. Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 232:43-51. https://doi.org/10.1016/S0378-1119(99)00117-1
    • (1999) Gene , vol.232 , pp. 43-51
    • Phalip, V.1    Kuhn, I.2    Lemoine, Y.3    Jeltsch, J.-M.4
  • 21
    • 78049451375 scopus 로고    scopus 로고
    • Engineering of biotinprototrophy in Pichia pastoris for robust production processes
    • Gasser B, Dragosits M, Mattanovich D. 2010. Engineering of biotinprototrophy in Pichia pastoris for robust production processes. Metab Eng 12:573-580. https://doi.org/10.1016/j.ymben.2010.07.002
    • (2010) Metab Eng , vol.12 , pp. 573-580
    • Gasser, B.1    Dragosits, M.2    Mattanovich, D.3
  • 22
  • 23
    • 84960416558 scopus 로고    scopus 로고
    • Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway
    • Yang Y, Lang N, Yang G, Yang S, Jiang W, Gu Y. 2016. Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway. Metab Eng 35:121-128. https://doi.org/10.1016/j.ymben .2016.02.006
    • (2016) Metab Eng , vol.35 , pp. 121-128
    • Yang, Y.1    Lang, N.2    Yang, G.3    Yang, S.4    Jiang, W.5    Gu, Y.6
  • 24
    • 0037020260 scopus 로고    scopus 로고
    • Reproducibility of oligonucleotide microarray transcriptome analyses; an interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
    • Piper MD, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT. 2002. Reproducibility of oligonucleotide microarray transcriptome analyses; an interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277:37001-37008. https://doi .org/10.1074/jbc.M204490200
    • (2002) J Biol Chem , vol.277 , pp. 37001-37008
    • Piper, M.D.1    Daran-Lapujade, P.2    Bro, C.3    Regenberg, B.4    Knudsen, S.5    Nielsen, J.6    Pronk, J.T.7
  • 27
    • 0029585736 scopus 로고
    • The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate (A-stat)
    • Paalme T, Kahru A, Elken R, Vanatalu K, Tiisma K, Raivo V. 1995. The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate (A-stat). J Microbiol Methods 24:145-153. https:// doi.org/10.1016/0167-7012(95)00064-X
    • (1995) J Microbiol Methods , vol.24 , pp. 145-153
    • Paalme, T.1    Kahru, A.2    Elken, R.3    Vanatalu, K.4    Tiisma, K.5    Raivo, V.6
  • 28
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain
    • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    Dijken, J.P.5    Pronk, J.T.6
  • 29
    • 84887294397 scopus 로고    scopus 로고
    • Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae
    • Oud B, Guadalupe-Medina V, Nijkamp JF, de Ridder D, Pronk JT, van Maris AJ, Daran J-M. 2013. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110:E4223-E4231. https://doi .org/10.1073/pnas.1305949110
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. E4223-E4231
    • Oud, B.1    Guadalupe-Medina, V.2    Nijkamp, J.F.3    de Ridder, D.4    Pronk, J.T.5    van Maris, A.J.6    Daran, J.-M.7
  • 30
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomeraseexpressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Dijken JP, Pronk JT. 2005. Metabolic engineering of a xylose-isomeraseexpressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399-409. https://doi.org/10.1016/j .femsyr.2004.09.010
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    Dijken, J.P.6    Pronk, J.T.7
  • 31
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk JT. 2002. Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095-2100. https://doi.org/10.1128/ AEM.68.5.2095-2100.2002
    • (2002) Appl Environ Microbiol , vol.68 , pp. 2095-2100
    • Pronk, J.T.1
  • 33
    • 33747353371 scopus 로고    scopus 로고
    • A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism
    • Hazelwood LA, Tai SL, Boer VM, De Winde JH, Pronk JT, Daran JM. 2006. A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6:937-945. https://doi.org/10.1111/j.1567-1364.2006.00094.x
    • (2006) FEMS Yeast Res , vol.6 , pp. 937-945
    • Hazelwood, L.A.1    Tai, S.L.2    Boer, V.M.3    De Winde, J.H.4    Pronk, J.T.5    Daran, J.M.6
  • 34
    • 0037630437 scopus 로고    scopus 로고
    • Localization and function of the yeast multidrug transporter Tpo1p
    • Albertsen M, Bellahn I, Krämer R, Waffenschmidt S. 2003. Localization and function of the yeast multidrug transporter Tpo1p. J Biol Chem 278:12820-12825. https://doi.org/10.1074/jbc.M210715200
    • (2003) J Biol Chem , vol.278 , pp. 12820-12825
    • Albertsen, M.1    Bellahn, I.2    Krämer, R.3    Waffenschmidt, S.4
  • 36
    • 0032479995 scopus 로고    scopus 로고
    • The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast
    • Piper P, Mahé Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Mühlbauer M, Coote P, Kuchler K. 1998. The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257-4265. https://doi.org/10.1093/emboj/17.15.4257
    • (1998) EMBO J , vol.17 , pp. 4257-4265
    • Piper, P.1    Mahé, Y.2    Thompson, S.3    Pandjaitan, R.4    Holyoak, C.5    Egner, R.6    Mühlbauer, M.7    Coote, P.8    Kuchler, K.9
  • 37
    • 0032766243 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energydependent mechanism
    • Holyoak CD, Bracey D, Piper PW, Kuchler K, Coote PJ. 1999. The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energydependent mechanism. J Bacteriol 181:4644-4652
    • (1999) J Bacteriol , vol.181 , pp. 4644-4652
    • Holyoak, C.D.1    Bracey, D.2    Piper, P.W.3    Kuchler, K.4    Coote, P.J.5
  • 38
    • 34247580875 scopus 로고    scopus 로고
    • 25 yeast genetic strain and plasmid collections
    • Entian K-D, Kötter P. 2007. 25 yeast genetic strain and plasmid collections. Methods Microbiol 36:629-666. https://doi.org/10.1016/S0580-9517(06)36025-4
    • (2007) Methods Microbiol , vol.36 , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 39
    • 0030947344 scopus 로고    scopus 로고
    • Molecular evidence for an ancient duplication of the entire yeast genome
    • Wolfe KH, Shields DC. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708-712. https://doi.org/ 10.1038/42711
    • (1997) Nature , vol.387 , pp. 708-712
    • Wolfe, K.H.1    Shields, D.C.2
  • 40
    • 84859616870 scopus 로고    scopus 로고
    • Laboratory evolution of new lactate transporter genes in a jen1?. mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis
    • de Kok S, Nijkamp JF, Oud B, Roque FC, Ridder D, Daran JM, Pronk JT, Maris AJ. 2012. Laboratory evolution of new lactate transporter genes in a jen1? mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 12:359-374. https://doi.org/10.1111/j.1567-1364 .2011.00787.x
    • (2012) FEMS Yeast Res , vol.12 , pp. 359-374
    • de Kok, S.1    Nijkamp, J.F.2    Oud, B.3    Roque, F.C.4    Ridder, D.5    Daran, J.M.6    Pronk, J.T.7    Maris, A.J.8
  • 41
    • 32044451583 scopus 로고
    • Tests of sake brewing by yeasts after cultured with ventilation. 1. Rising and falling of vitamins contained in sake moromi and preservative tests of yeasts
    • Torigata K, Akiyama Y. 1968. Tests of sake brewing by yeasts after cultured with ventilation. 1. Rising and falling of vitamins contained in sake moromi and preservative tests of yeasts. J Brew Soc Japan 63: 60-63
    • (1968) J Brew Soc Japan , vol.63 , pp. 60-63
    • Torigata, K.1    Akiyama, Y.2
  • 42
    • 0742270637 scopus 로고    scopus 로고
    • Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae
    • Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K. 2004. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706-720
    • (2004) Mol Biol Cell , vol.15 , pp. 706-720
    • Schüller, C.1    Mamnun, Y.M.2    Mollapour, M.3    Krapf, G.4    Schuster, M.5    Bauer, B.E.6    Piper, P.W.7    Kuchler, K.8
  • 43
    • 0033525210 scopus 로고    scopus 로고
    • Identification of a gene for a polyamine transport protein in yeast
    • Tomitori H, Kashiwagi K, Sakata K, Kakinuma Y, Igarashi K. 1999. Identification of a gene for a polyamine transport protein in yeast. J Biol Chem 274:3265-3267. https://doi.org/10.1074/jbc.274.6.3265
    • (1999) J Biol Chem , vol.274 , pp. 3265-3267
    • Tomitori, H.1    Kashiwagi, K.2    Sakata, K.3    Kakinuma, Y.4    Igarashi, K.5
  • 44
    • 70449638261 scopus 로고    scopus 로고
    • Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant
    • Chattopadhyay MK, Chen W, Poy G, Cam M, Stiles D, Tabor H. 2009. Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant. Yeast 26:531-544. https://doi.org/10.1002/yea.1703
    • (2009) Yeast , vol.26 , pp. 531-544
    • Chattopadhyay, M.K.1    Chen, W.2    Poy, G.3    Cam, M.4    Stiles, D.5    Tabor, H.6
  • 45
    • 15744391238 scopus 로고    scopus 로고
    • Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation
    • Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K. 2005. Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280: 9646-9652. https://doi.org/10.1074/jbc.M410274200
    • (2005) J Biol Chem , vol.280 , pp. 9646-9652
    • Uemura, T.1    Tachihara, K.2    Tomitori, H.3    Kashiwagi, K.4    Igarashi, K.5
  • 46
    • 84924412793 scopus 로고    scopus 로고
    • Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents
    • Kim SK, Jin YS, Choi IG, Park YC, Seo JH. 2015. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 29:46-55. https://doi.org/10.1016/j.ymben.2015.02.004
    • (2015) Metab Eng , vol.29 , pp. 46-55
    • Kim, S.K.1    Jin, Y.S.2    Choi, I.G.3    Park, Y.C.4    Seo, J.H.5
  • 47
    • 84889078549 scopus 로고    scopus 로고
    • Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response
    • Krüger A, Vowinckel J, Mülleder M, Grote P, Capuano F, Bluemlein K, Ralser M. 2013. Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response. EMBO rep 14:1113-1119. https://doi.org/10 .1038/embor.2013.165
    • (2013) EMBO rep , vol.14 , pp. 1113-1119
    • Krüger, A.1    Vowinckel, J.2    Mülleder, M.3    Grote, P.4    Capuano, F.5    Bluemlein, K.6    Ralser, M.7
  • 48
    • 0031453850 scopus 로고    scopus 로고
    • Genomewide expression monitoring in Saccharomyces cerevisiae
    • Wodicka L, Dong H, Mittmann M, Ho M-H, Lockhart DJ. 1997. Genomewide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15:1359-1367. https://doi.org/10.1038/nbt1297-1359
    • (1997) Nat Biotechnol , vol.15 , pp. 1359-1367
    • Wodicka, L.1    Dong, H.2    Mittmann, M.3    Ho, M.-H.4    Lockhart, D.J.5
  • 50
    • 85010796686 scopus 로고    scopus 로고
    • Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents
    • Kim SK, Jo JH, Jin YS, Seo JH. 2017. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Bioprocess Biosyst Eng 40:683-691. https://doi.org/10.1007/ s00449-016-1733-3
    • (2017) Bioprocess Biosyst Eng , vol.40 , pp. 683-691
    • Kim, S.K.1    Jo, J.H.2    Jin, Y.S.3    Seo, J.H.4
  • 51
    • 0022504637 scopus 로고
    • Genealogy of principal strains of the yeast genetic stock center
    • Mortimer RK, Johnston JR. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35-43
    • (1986) Genetics , vol.113 , pp. 35-43
    • Mortimer, R.K.1    Johnston, J.R.2
  • 53
    • 79957745171 scopus 로고    scopus 로고
    • Extraction of genomic DNA from yeasts for PCR-based applications
    • Lõoke M, Kristjuhan K, Kristjuhan A. 2011. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50:325
    • (2011) Biotechniques , vol.50 , pp. 325
    • Lõoke, M.1    Kristjuhan, K.2    Kristjuhan, A.3
  • 54
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87-96. https://doi.org/10.1016/S0076-6879(02)50957-5
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 55
    • 0025675856 scopus 로고
    • High efficiency transformation of Escherichia coli with plasmids
    • Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96:23-28. https://doi.org/10.1016/ 0378-1119(90)90336-P
    • (1990) Gene , vol.96 , pp. 23-28
    • Inoue, H.1    Nojima, H.2    Okayama, H.3
  • 56
    • 84877272995 scopus 로고    scopus 로고
    • A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences
    • Kuijpers N, Solis-Escalante D, Bosman L, van den Broek M, Pronk JT, Daran J-M, Daran-Lapujade P. 2013. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 12:47. https://doi.org/10.1186/1475-2859-12-47
    • (2013) Microb Cell Fact , vol.12 , pp. 47
    • Kuijpers, N.1    Solis-Escalante, D.2    Bosman, L.3    van den Broek, M.4    Pronk, J.T.5    Daran, J.-M.6    Daran-Lapujade, P.7
  • 57
    • 17144450611 scopus 로고    scopus 로고
    • Construction of long DNA molecules using long PCRbased fusion of several fragments simultaneously
    • Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S. 2004. Construction of long DNA molecules using long PCRbased fusion of several fragments simultaneously. Nucleic Acids Res 32:e19-e19. https://doi.org/10.1093/nar/gnh014
    • (2004) Nucleic Acids Res , vol.32 , pp. e19-e19
    • Shevchuk, N.A.1    Bryksin, A.V.2    Nusinovich, Y.A.3    Cabello, F.C.4    Sutherland, M.5    Ladisch, S.6
  • 58
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D, Müller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119-122. https://doi.org/10.1016/0378-1119(95)00037-7
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 59
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519-2524. https://doi.org/10.1093/nar/24.13.2519
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fiedler, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 61
    • 0025318231 scopus 로고
    • Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. 1990. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Microbiology 136:405-412
    • (1990) Microbiology , vol.136 , pp. 405-412
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 62
    • 0025362399 scopus 로고
    • A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
    • Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091. https://doi.org/10.1093/nar/18.10.3091
    • (1990) Nucleic Acids Res , vol.18 , pp. 3091
    • Schmitt, M.E.1    Brown, T.A.2    Trumpower, B.L.3
  • 63
    • 84868488951 scopus 로고    scopus 로고
    • Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism
    • Huisjes EH, Luttik MA, Almering MJ, Bisschops MM, Dang DH, Kleerebezem M, Siezen R, van Maris AJ, Pronk JT. 2012. Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism. J Biotechnol 162: 303-310. https://doi.org/10.1016/j.jbiotec.2012.10.003
    • (2012) J Biotechnol , vol.162 , pp. 303-310
    • Huisjes, E.H.1    Luttik, M.A.2    Almering, M.J.3    Bisschops, M.M.4    Dang, D.H.5    Kleerebezem, M.6    Siezen, R.7    van Maris, A.J.8    Pronk, J.T.9
  • 64
    • 44949231424 scopus 로고    scopus 로고
    • Analyzing real-time PCR data by the comparative CT method
    • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101-1108. https://doi.org/10 .1038/nprot.2008.73
    • (2008) Nat Protoc , vol.3 , pp. 1101-1108
    • Schmittgen, T.D.1    Livak, K.J.2
  • 65
    • 85017464092 scopus 로고    scopus 로고
    • Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
    • Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB, Daran J-MG, van Maris AJ, Pronk JT. 2017. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep 7:46155. https://doi.org/10.1038/srep46155
    • (2017) Sci Rep , vol.7 , pp. 46155
    • Verhoeven, M.D.1    Lee, M.2    Kamoen, L.3    van den Broek, M.4    Janssen, D.B.5    Daran, J.-M.G.6    van Maris, A.J.7    Pronk, J.T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.