-
1
-
-
84883569291
-
Epidemiology of heart failure
-
Roger, V. L. Epidemiology of heart failure. Circ. Res. 113, 646 (2013).
-
(2013)
Circ. Res.
, vol.113
, pp. 646
-
-
Roger, V.L.1
-
2
-
-
84883573937
-
Genetic cardiomyopathies causing heart failure
-
Cahill, T. J., Ashrafian, H. & Watkins, H. Genetic cardiomyopathies causing heart failure. Circ. Res. 113, 660-675 (2013).
-
(2013)
Circ. Res.
, vol.113
, pp. 660-675
-
-
Cahill, T.J.1
Ashrafian, H.2
Watkins, H.3
-
3
-
-
84925581948
-
The war against heart failure: The Lancet lecture
-
Braunwald, E. The war against heart failure: the Lancet lecture. Lancet 385, 812-824 (2015).
-
(2015)
Lancet
, vol.385
, pp. 812-824
-
-
Braunwald, E.1
-
4
-
-
57149134513
-
Long-term trends in the incidence of heart failure after myocardial infarction
-
Velagaleti, R. S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118, 2057 (2008).
-
(2008)
Circulation
, vol.118
, pp. 2057
-
-
Velagaleti, R.S.1
-
5
-
-
57949113965
-
Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction
-
Ezekowitz, J. A. et al. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J. Am. Coll. Cardiol. 53, 13-20 (2009).
-
(2009)
J. Am. Coll. Cardiol.
, vol.53
, pp. 13-20
-
-
Ezekowitz, J.A.1
-
6
-
-
84879202874
-
Forecasting the impact of heart failure in the United States
-
Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States. Circ. Heart Fail. 6, 606 (2013).
-
(2013)
Circ. Heart Fail.
, vol.6
, pp. 606
-
-
Heidenreich, P.A.1
-
7
-
-
63849212924
-
The "modern" view of heart failure
-
Katz, A. M. The "modern" view of heart failure. Circ. Heart Fail. 1, 63 (2008).
-
(2008)
Circ. Heart Fail.
, vol.1
, pp. 63
-
-
Katz, A.M.1
-
8
-
-
84969941074
-
The neprilysin pathway in heart failure: A review and guide on the use of sacubitril/valsartan
-
Jhund, P. S. & McMurray, J. J. V. The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart 102, 1342 (2016).
-
(2016)
Heart
, vol.102
, pp. 1342
-
-
Jhund, P.S.1
McMurray, J.J.V.2
-
9
-
-
84881649486
-
Current state of clinical translation of cardioprotective agents for acute myocardial infarction
-
Kloner, R. A. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ. Res. 113, 451 (2013).
-
(2013)
Circ. Res.
, vol.113
, pp. 451
-
-
Kloner, R.A.1
-
10
-
-
85027763639
-
Adult stem cell therapy and heart failure, 2000 to 2016: A systematic review
-
Nguyen, P. K., Rhee, J. & Wu, J. C. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 1, 831-841 (2016).
-
(2016)
JAMA Cardiol.
, vol.1
, pp. 831-841
-
-
Nguyen, P.K.1
Rhee, J.2
Wu, J.C.3
-
11
-
-
85011964453
-
Mechanisms of cardiomyocyte proliferation and differentiation in development and regeneration
-
Yester, J. W. & Kühn, B. Mechanisms of cardiomyocyte proliferation and differentiation in development and regeneration. Curr. Cardiol. Rep. 19, 13 (2017).
-
(2017)
Curr. Cardiol. Rep.
, vol.19
, pp. 13
-
-
Yester, J.W.1
Kühn, B.2
-
12
-
-
85014129963
-
Redirecting cardiac growth mechanisms for therapeutic regeneration
-
Karra, R. & Poss, K. D. Redirecting cardiac growth mechanisms for therapeutic regeneration. J. Clin. Invest. 127, 427-436 (2017).
-
(2017)
J. Clin. Invest.
, vol.127
, pp. 427-436
-
-
Karra, R.1
Poss, K.D.2
-
13
-
-
85014884441
-
Evolution, comparative biology and ontogeny of vertebrate heart regeneration
-
Vivien, C. J., Hudson, J. E. & Porrello, E. R. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. Regen. Med. 1, 16012 (2016).
-
(2016)
Regen. Med.
, vol.1
, pp. 16012
-
-
Vivien, C.J.1
Hudson, J.E.2
Porrello, E.R.3
-
14
-
-
84861761564
-
Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish
-
Gonzalez-Rosa, J. M. & Mercader, N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat. Protoc. 7, 782-788 (2012).
-
(2012)
Nat. Protoc.
, vol.7
, pp. 782-788
-
-
Gonzalez-Rosa, J.M.1
Mercader, N.2
-
15
-
-
79960778952
-
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
-
Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421 (2011).
-
(2011)
Development
, vol.138
, pp. 3421
-
-
Wang, J.1
-
16
-
-
84872465403
-
Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart
-
Parente, V. et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS ONE 8, e53748 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e53748
-
-
Parente, V.1
-
17
-
-
0037073890
-
Heart regeneration in zebrafish
-
Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188 (2002).
-
(2002)
Science
, vol.298
, pp. 2188
-
-
Poss, K.D.1
Wilson, L.G.2
Keating, M.T.3
-
18
-
-
79955507001
-
Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury
-
Witman, N., Murtuza, B., Davis, B., Arner, A. & Morrison, J. I. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev. Biol. 354, 67-76 (2011).
-
(2011)
Dev. Biol.
, vol.354
, pp. 67-76
-
-
Witman, N.1
Murtuza, B.2
Davis, B.3
Arner, A.4
Morrison, J.I.5
-
19
-
-
79955364546
-
Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
-
González-Rosa, J. M., Martín, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663 (2011).
-
(2011)
Development
, vol.138
, pp. 1663
-
-
González-Rosa, J.M.1
Martín, V.2
Peralta, M.3
Torres, M.4
Mercader, N.5
-
20
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078-1080 (2011).
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
-
21
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the MIR-15 family
-
Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187-192 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 187-192
-
-
Porrello, E.R.1
-
22
-
-
84955382988
-
Functional recovery of a human neonatal heart after severe myocardial infarction
-
Haubner, B. J. et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 118, 216-221 (2016).
-
(2016)
Circ. Res.
, vol.118
, pp. 216-221
-
-
Haubner, B.J.1
-
23
-
-
80155130426
-
Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery
-
Fratz, S. et al. Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann. Thorac. Surg. 92, 1761-1765 (2011).
-
(2011)
Ann. Thorac. Surg.
, vol.92
, pp. 1761-1765
-
-
Fratz, S.1
-
24
-
-
67651252909
-
Late donor cardiectomy after paediatric heterotopic cardiac transplantation
-
Tsang, V. et al. Late donor cardiectomy after paediatric heterotopic cardiac transplantation. Lancet 374, 387-392 (2009).
-
(2009)
Lancet
, vol.374
, pp. 387-392
-
-
Tsang, V.1
-
25
-
-
28944447775
-
Some principles of regeneration in mammalian systems
-
Carlson, B. M. Some principles of regeneration in mammalian systems. Anat. Rec. B New Anat. 287, 4-13 (2005).
-
(2005)
Anat. Rec. B New Anat.
, vol.287
, pp. 4-13
-
-
Carlson, B.M.1
-
26
-
-
84880839534
-
Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair
-
Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529-541 (2013).
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 529-541
-
-
Xin, M.1
Olson, E.N.2
Bassel-Duby, R.3
-
27
-
-
84856090845
-
Lineage tracing
-
Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33-45 (2012).
-
(2012)
Cell
, vol.148
, pp. 33-45
-
-
Kretzschmar, K.1
Watt, F.M.2
-
28
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606-609 (2010).
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
-
29
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes
-
Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601-605 (2010).
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
-
30
-
-
84872611623
-
Mammalian heart renewal by pre-existing cardiomyocytes
-
Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433-436 (2013).
-
(2013)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
-
31
-
-
84882759023
-
Adult c-kit+ cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair
-
Ellison, G. M. et al. Adult c-kit+ cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154, 827-842 (2013).
-
(2013)
Cell
, vol.154
, pp. 827-842
-
-
Ellison, G.M.1
-
32
-
-
84923535492
-
An emerging consensus on cardiac regeneration
-
van Berlo, J. H. & Molkentin, J. D. An emerging consensus on cardiac regeneration. Nat. Med. 20, 1386-1393 (2014).
-
(2014)
Nat. Med.
, vol.20
, pp. 1386-1393
-
-
Van Berlo, J.H.1
Molkentin, J.D.2
-
33
-
-
0035810240
-
Bone marrow cells regenerate infarcted myocardium
-
Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705 (2001).
-
(2001)
Nature
, vol.410
, pp. 701-705
-
-
Orlic, D.1
-
34
-
-
11144356049
-
Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts
-
Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-668 (2004).
-
(2004)
Nature
, vol.428
, pp. 664-668
-
-
Murry, C.E.1
-
35
-
-
1942517003
-
Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium
-
Balsam, L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668-673 (2004).
-
(2004)
Nature
, vol.428
, pp. 668-673
-
-
Balsam, L.B.1
-
36
-
-
34248593790
-
Cardiac myocyte cell cycle control in development, disease, and regeneration
-
Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521 (2007).
-
(2007)
Physiol. Rev.
, vol.87
, pp. 521
-
-
Ahuja, P.1
Sdek, P.2
MacLellan, W.R.3
-
37
-
-
64249107059
-
Evidence for cardiomyocyte renewal in humans
-
Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98 (2009).
-
(2009)
Science
, vol.324
, pp. 98
-
-
Bergmann, O.1
-
38
-
-
84872876842
-
Cardiomyocyte proliferation contributes to heart growth in young humans
-
Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446-1451 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 1446-1451
-
-
Mollova, M.1
-
39
-
-
84899533827
-
The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response
-
Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157, 565-579 (2014).
-
(2014)
Cell
, vol.157
, pp. 565-579
-
-
Puente, B.N.1
-
40
-
-
84938069663
-
Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart
-
Kimura, W. et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523, 226-230 (2015).
-
(2015)
Nature
, vol.523
, pp. 226-230
-
-
Kimura, W.1
-
41
-
-
18844383961
-
P38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes
-
Engel, F. B. et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175-1187 (2005).
-
(2005)
Genes Dev
, vol.19
, pp. 1175-1187
-
-
Engel, F.B.1
-
42
-
-
84877775012
-
Meis1 regulates postnatal cardiomyocyte cell cycle arrest
-
Mahmoud, A. I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249-253 (2013).
-
(2013)
Nature
, vol.497
, pp. 249-253
-
-
Mahmoud, A.I.1
-
43
-
-
0028884413
-
Requirement for neuregulin receptor erbB2 in neural and cardiac development
-
Lee, K.-F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394-398 (1995).
-
(1995)
Nature
, vol.378
, pp. 394-398
-
-
Lee, K.-F.1
-
44
-
-
0028785406
-
Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor
-
Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390-394 (1995).
-
(1995)
Nature
, vol.378
, pp. 390-394
-
-
Gassmann, M.1
-
45
-
-
85003054958
-
Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish
-
Gemberling, M., Karra, R., Dickson, A. L. & Poss, K. D. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 4, e05871 (2015).
-
(2015)
ELife
, vol.4
, pp. e05871
-
-
Gemberling, M.1
Karra, R.2
Dickson, A.L.3
Poss, K.D.4
-
46
-
-
0033947661
-
The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development
-
Yelon, D. et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573 (2000).
-
(2000)
Development
, vol.127
, pp. 2573
-
-
Yelon, D.1
-
47
-
-
0030903857
-
Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND
-
Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat. Genet. 16, 154-160 (1997).
-
(1997)
Nat. Genet.
, vol.16
, pp. 154-160
-
-
Srivastava, D.1
-
48
-
-
84905457302
-
Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration
-
Schindler, Y. L. et al. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 141, 3112 (2014).
-
(2014)
Development
, vol.141
, pp. 3112
-
-
Schindler, Y.L.1
-
49
-
-
84960976492
-
GATA4 regulates Fgf16 to promote heart repair after injury
-
Yu, W. et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development 143, 936 (2016).
-
(2016)
Development
, vol.143
, pp. 936
-
-
Yu, W.1
-
50
-
-
84942797497
-
The hippo pathway in heart development, regeneration, and diseases
-
Zhou, Q., Li, L., Zhao, B. & Guan, K.-L. The hippo pathway in heart development, regeneration, and diseases. Circ. Res. 116, 1431 (2015).
-
(2015)
Circ. Res.
, vol.116
, pp. 1431
-
-
Zhou, Q.1
Li, L.2
Zhao, B.3
Guan, K.-L.4
-
51
-
-
79955405757
-
Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size
-
Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458 (2011).
-
(2011)
Science
, vol.332
, pp. 458
-
-
Heallen, T.1
-
52
-
-
84882740716
-
Hippo pathway effector Yap promotes cardiac regeneration
-
Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839-13844 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 13839-13844
-
-
Xin, M.1
-
53
-
-
77954222814
-
Chromatin regulation by Brg1 underlies heart muscle development and disease
-
Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62-67 (2010).
-
(2010)
Nature
, vol.466
, pp. 62-67
-
-
Hang, C.T.1
-
54
-
-
85002625663
-
Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish
-
Xiao, C. et al. Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat. Commun. 7, 13787 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 13787
-
-
Xiao, C.1
-
55
-
-
67650569135
-
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257-270 (2009).
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
Arab, S.2
Haring, B.3
Kühn, B.4
-
56
-
-
84860237424
-
Clonally dominant cardiomyocytes direct heart morphogenesis
-
Gupta, V. & Poss, K. D. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484, 479-484 (2012).
-
(2012)
Nature
, vol.484
, pp. 479-484
-
-
Gupta, V.1
Poss, K.D.2
-
57
-
-
80755156297
-
Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling
-
Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420-432 (2011).
-
(2011)
Cell Stem Cell
, vol.9
, pp. 420-432
-
-
Kubin, T.1
-
58
-
-
84992416350
-
Monitoring tissue regeneration at single-cell resolution
-
Di Talia, S. & Poss, K. D. Monitoring tissue regeneration at single-cell resolution. Cell Stem Cell 19, 428-431 (2016).
-
(2016)
Cell Stem Cell
, vol.19
, pp. 428-431
-
-
Di Talia, S.1
Poss, K.D.2
-
59
-
-
77952371023
-
Cardiomyocyte cell cycle control and growth estimation in vivo - An analysis based on cardiomyocyte nuclei
-
Walsh, S., Pontén, A., Fleischmann, B. K. & Jovinge, S. Cardiomyocyte cell cycle control and growth estimation in vivo - an analysis based on cardiomyocyte nuclei. Cardiovasc. Res. 86, 365-373 (2010).
-
(2010)
Cardiovasc. Res.
, vol.86
, pp. 365-373
-
-
Walsh, S.1
Pontén, A.2
Fleischmann, B.K.3
Jovinge, S.4
-
60
-
-
84952628115
-
Sympathetic reinnervation is required for mammalian cardiac regeneration
-
White, I. A., Gordon, J., Balkan, W. & Hare, J. M. Sympathetic reinnervation is required for mammalian cardiac regeneration. Circ. Res. 117, 990 (2015).
-
(2015)
Circ. Res.
, vol.117
, pp. 990
-
-
White, I.A.1
Gordon, J.2
Balkan, W.3
Hare, J.M.4
-
61
-
-
84939777584
-
Nerves regulate cardiomyocyte proliferation and heart regeneration
-
Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387-399 (2015).
-
(2015)
Dev. Cell
, vol.34
, pp. 387-399
-
-
Mahmoud, A.I.1
-
62
-
-
84941168336
-
Six-year prognostic value of microvascular obstruction after reperfused ST-elevation myocardial infarction as assessed by contrast-enhanced cardiovascular magnetic resonance
-
Regenfus, M. et al. Six-year prognostic value of microvascular obstruction after reperfused ST-elevation myocardial infarction as assessed by contrast-enhanced cardiovascular magnetic resonance. Am. J. Cardiol. 116, 1022-1027 (2015).
-
(2015)
Am. J. Cardiol.
, vol.116
, pp. 1022-1027
-
-
Regenfus, M.1
-
63
-
-
77950237662
-
Coronary arteries form by developmental reprogramming of venous cells
-
Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549-553 (2010).
-
(2010)
Nature
, vol.464
, pp. 549-553
-
-
Red-Horse, K.1
Ueno, H.2
Weissman, I.L.3
Krasnow, M.A.4
-
64
-
-
84883318758
-
Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries
-
Tian, X. et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23, 1075-1090 (2013).
-
(2013)
Cell Res.
, vol.23
, pp. 1075-1090
-
-
Tian, X.1
-
65
-
-
84963705843
-
Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
-
Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880-1893 (2016).
-
(2016)
Circ. Res.
, vol.118
, pp. 1880-1893
-
-
Zhang, H.1
-
66
-
-
84911451454
-
The epicardium signals the way towards heart regeneration
-
Masters, M. & Riley, P. R. The epicardium signals the way towards heart regeneration. Stem Cell Res. 13, 683-692 (2014).
-
(2014)
Stem Cell Res.
, vol.13
, pp. 683-692
-
-
Masters, M.1
Riley, P.R.2
-
67
-
-
84946615334
-
Characterisation of the human embryonic and foetal epicardium during heart development
-
Risebro, C. A., Vieira, J. M., Klotz, L. & Riley, P. R. Characterisation of the human embryonic and foetal epicardium during heart development. Development 142, 3630 (2015).
-
(2015)
Development
, vol.142
, pp. 3630
-
-
Risebro, C.A.1
Vieira, J.M.2
Klotz, L.3
Riley, P.R.4
-
68
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
-
Katz, T. C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22, 639-650 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 639-650
-
-
Katz, T.C.1
-
69
-
-
84927169682
-
Cellular origin and developmental program of coronary angiogenesis
-
Tian, X., Pu, W. T. & Zhou, B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515-530 (2015).
-
(2015)
Circ. Res.
, vol.116
, pp. 515-530
-
-
Tian, X.1
Pu, W.T.2
Zhou, B.3
-
70
-
-
79960562677
-
WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways
-
von Gise, A. et al. WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Dev. Biol. 356, 421-431 (2011).
-
(2011)
Dev. Biol.
, vol.356
, pp. 421-431
-
-
Von Gise, A.1
-
71
-
-
0028952534
-
Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice
-
Kwee, L. et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121, 489-503 (1995).
-
(1995)
Development
, vol.121
, pp. 489-503
-
-
Kwee, L.1
-
72
-
-
84871439217
-
C/EBP transcription factors mediate epicardial activation during heart development and injury
-
Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599 (2012).
-
(2012)
Science
, vol.338
, pp. 1599
-
-
Huang, G.N.1
-
73
-
-
33750483609
-
A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
-
Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607-619 (2006).
-
(2006)
Cell
, vol.127
, pp. 607-619
-
-
Lepilina, A.1
-
74
-
-
84930945313
-
Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling
-
Wang, J., Cao, J., Dickson, A. L. & Poss, K. D. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522, 226-230 (2015).
-
(2015)
Nature
, vol.522
, pp. 226-230
-
-
Wang, J.1
Cao, J.2
Dickson, A.L.3
Poss, K.D.4
-
75
-
-
79959819263
-
De novo cardiomyocytes from within the activated adult heart after injury
-
Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640-644 (2011).
-
(2011)
Nature
, vol.474
, pp. 640-644
-
-
Smart, N.1
-
76
-
-
33846243239
-
Thymosin 4 induces adult epicardial progenitor mobilization and neovascularization
-
Smart, N. et al. Thymosin 4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177-182 (2007).
-
(2007)
Nature
, vol.445
, pp. 177-182
-
-
Smart, N.1
-
77
-
-
79955498411
-
Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
-
Zhou, B. et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121, 1894-1904 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1894-1904
-
-
Zhou, B.1
-
78
-
-
84911438539
-
Extending the time window of mammalian heart regeneration by thymosin beta 4
-
Rui, L. et al. Extending the time window of mammalian heart regeneration by thymosin beta 4. J. Cell. Mol. Med. 18, 2417-2424 (2014).
-
(2014)
J. Cell. Mol. Med.
, vol.18
, pp. 2417-2424
-
-
Rui, L.1
-
79
-
-
84866952061
-
Arterial endothelial cells: Still the craftsmen of regenerated endothelium
-
Hagensen, M. K., Vanhoutte, P. M. & Bentzon, J. F. Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovasc. Res. 95, 281 (2012).
-
(2012)
Cardiovasc. Res.
, vol.95
, pp. 281
-
-
Hagensen, M.K.1
Vanhoutte, P.M.2
Bentzon, J.F.3
-
80
-
-
84959862090
-
Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart
-
He, L. et al. Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovasc. Res. 109, 419 (2016).
-
(2016)
Cardiovasc. Res.
, vol.109
, pp. 419
-
-
He, L.1
-
81
-
-
33646455462
-
Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish
-
Bayliss, P. E. et al. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat. Chem. Biol. 2, 265-273 (2006).
-
(2006)
Nat. Chem. Biol.
, vol.2
, pp. 265-273
-
-
Bayliss, P.E.1
-
82
-
-
50949099615
-
Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis
-
Eyries, M. et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ. Res. 103, 432 (2008).
-
(2008)
Circ. Res.
, vol.103
, pp. 432
-
-
Eyries, M.1
-
83
-
-
84923281901
-
Arteries are formed by vein-derived endothelial tip cells
-
Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5, 5758 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5758
-
-
Xu, C.1
-
84
-
-
79952527330
-
Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
-
Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20, 397-404 (2011).
-
(2011)
Dev. Cell
, vol.20
, pp. 397-404
-
-
Kikuchi, K.1
-
85
-
-
84996614849
-
An IGF1R-dependent pathway drives epicardial adipose tissue formation after myocardial injury
-
Zangi, L. et al. An IGF1R-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135, 59-72 (2017).
-
(2017)
Circulation
, vol.135
, pp. 59-72
-
-
Zangi, L.1
-
86
-
-
84055214880
-
Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes
-
Zhou, B. et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J. Mol. Cell. Cardiol. 52, 43-47 (2012).
-
(2012)
J. Mol. Cell. Cardiol.
, vol.52
, pp. 43-47
-
-
Zhou, B.1
-
87
-
-
79959427955
-
Tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895-2902 (2011).
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
-
88
-
-
84866146027
-
Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration
-
Gonzlez-Rosa, J. M., Peralta, M. & Mercader, N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev. Biol. 370, 173-186 (2012).
-
(2012)
Dev. Biol.
, vol.370
, pp. 173-186
-
-
Gonzlez-Rosa, J.M.1
Peralta, M.2
Mercader, N.3
-
89
-
-
84962127930
-
Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart
-
Stevens, S. M., Gise, A. v., VanDusen, N., Zhou, B. & Pu, W. T. Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Dev. Biol. 413, 153-159 (2016).
-
(2016)
Dev. Biol.
, vol.413
, pp. 153-159
-
-
Stevens, S.M.1
Gise, A.V.2
VanDusen, N.3
Zhou, B.4
Pu, W.T.5
-
90
-
-
85015852852
-
Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction
-
Ramjee, V. et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J. Clin. Invest. 127, 899-911 (2017).
-
(2017)
J. Clin. Invest.
, vol.127
, pp. 899-911
-
-
Ramjee, V.1
-
91
-
-
84902133728
-
Dynamic haematopoietic cell contribution to the developing and adult epicardium
-
Balmer, G. M. et al. Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat. Commun. 5, 4054 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4054
-
-
Balmer, G.M.1
-
92
-
-
84954512505
-
Single epicardial cell transcriptome sequencing identifies caveolin 1 as an essential factor in zebrafish heart regeneration
-
Cao, J. et al. Single epicardial cell transcriptome sequencing identifies caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143, 232 (2016).
-
(2016)
Development
, vol.143
, pp. 232
-
-
Cao, J.1
-
93
-
-
84939560620
-
Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans
-
Ruparelia, N. et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur. Heart J. 36, 1923-1934 (2015).
-
(2015)
Eur. Heart J.
, vol.36
, pp. 1923-1934
-
-
Ruparelia, N.1
-
94
-
-
84855371090
-
Regulation of the inflammatory response in cardiac repair
-
Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159-173 (2012).
-
(2012)
Circ. Res.
, vol.110
, pp. 159-173
-
-
Frangogiannis, N.G.1
-
95
-
-
36549033197
-
The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
-
Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037-3047 (2007).
-
(2007)
J. Exp. Med.
, vol.204
, pp. 3037-3047
-
-
Nahrendorf, M.1
-
96
-
-
84979582060
-
Abandoning M1/M2 for a network model of macrophage function
-
Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119, 414-417 (2016).
-
(2016)
Circ. Res.
, vol.119
, pp. 414-417
-
-
Nahrendorf, M.1
Swirski, F.K.2
-
97
-
-
84974628220
-
Alternatively activated macrophages determine repair of the infarcted adult murine heart
-
Shiraishi, M. et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J. Clin. Invest. 126, 2151-2166 (2016).
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 2151-2166
-
-
Shiraishi, M.1
-
98
-
-
84887439701
-
B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction
-
Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273-1280 (2013).
-
(2013)
Nat. Med.
, vol.19
, pp. 1273-1280
-
-
Zouggari, Y.1
-
99
-
-
84903216099
-
Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation
-
Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55-67 (2014).
-
(2014)
Circ. Res.
, vol.115
, pp. 55-67
-
-
Weirather, J.1
-
100
-
-
84966318359
-
Temporal neutrophil polarization following myocardial infarction
-
Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. 110, 51 (2016).
-
(2016)
Cardiovasc. Res.
, vol.110
, pp. 51
-
-
Ma, Y.1
-
101
-
-
84870677586
-
Acute inflammation initiates the regenerative response in the adult zebrafish brain
-
Kyritsis, N. et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338, 1353 (2012).
-
(2012)
Science
, vol.338
, pp. 1353
-
-
Kyritsis, N.1
-
102
-
-
84955513503
-
Reparative inflammation takes charge of tissue regeneration
-
Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307-315 (2016).
-
(2016)
Nature
, vol.529
, pp. 307-315
-
-
Karin, M.1
Clevers, H.2
-
103
-
-
84904006242
-
Immune modulation of stem cells and regeneration
-
Aurora, A. B. & Olson, E. N. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14-25 (2014).
-
(2014)
Cell Stem Cell
, vol.15
, pp. 14-25
-
-
Aurora, A.B.1
Olson, E.N.2
-
104
-
-
84890050252
-
A special population of regulatory T cells potentiates muscle repair
-
Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282-1295 (2013).
-
(2013)
Cell
, vol.155
, pp. 1282-1295
-
-
Burzyn, D.1
-
105
-
-
84876274371
-
Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration
-
Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376-388 (2013).
-
(2013)
Cell
, vol.153
, pp. 376-388
-
-
Heredia, J.E.1
-
106
-
-
84957585634
-
Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration
-
Zordan, P. et al. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death Dis. 5, e1031 (2014).
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1031
-
-
Zordan, P.1
-
107
-
-
84859614232
-
Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease
-
Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572-579 (2012).
-
(2012)
Nat. Med.
, vol.18
, pp. 572-579
-
-
Boulter, L.1
-
108
-
-
77749246063
-
Macrophage Wnt7b is critical for kidney repair and regeneration
-
Lin, S.-L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194-4199 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 4194-4199
-
-
Lin, S.-L.1
-
109
-
-
84943449125
-
Acute inflammation stimulates a regenerative response in the neonatal mouse heart
-
Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 25, 1137-1151 (2015).
-
(2015)
Cell Res.
, vol.25
, pp. 1137-1151
-
-
Han, C.1
-
110
-
-
84896799309
-
Macrophages are required for neonatal heart regeneration
-
Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382-1392 (2014).
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 1382-1392
-
-
Aurora, A.B.1
-
111
-
-
84909594606
-
Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart
-
Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029-16034 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 16029-16034
-
-
Lavine, K.J.1
-
112
-
-
33749167567
-
Regeneration, tissue injury and the immune response
-
Godwin, J. W. & Brockes, J. P. Regeneration, tissue injury and the immune response. J. Anat. 209, 423-432 (2006).
-
(2006)
J. Anat.
, vol.209
, pp. 423-432
-
-
Godwin, J.W.1
Brockes, J.P.2
-
113
-
-
84896781804
-
Myocardial extracellular matrix
-
Rienks, M., Papageorgiou, A.-P., Frangogiannis, N. G. & Heymans, S. Myocardial extracellular matrix. Circ. Res. 114, 872 (2014).
-
(2014)
Circ. Res.
, vol.114
, pp. 872
-
-
Rienks, M.1
Papageorgiou, A.-P.2
Frangogiannis, N.G.3
Heymans, S.4
-
114
-
-
84922333220
-
Remodelling the extracellular matrix in development and disease
-
Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786-801 (2014).
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 786-801
-
-
Bonnans, C.1
Chou, J.2
Werb, Z.3
-
115
-
-
13544253507
-
Normal newt limb regeneration requires matrix metalloproteinase function
-
Vinarsky, V., Atkinson, D. L., Stevenson, T. J., Keating, M. T. & Odelberg, S. J. Normal newt limb regeneration requires matrix metalloproteinase function. Dev. Biol. 279, 86-98 (2005).
-
(2005)
Dev. Biol.
, vol.279
, pp. 86-98
-
-
Vinarsky, V.1
Atkinson, D.L.2
Stevenson, T.J.3
Keating, M.T.4
Odelberg, S.J.5
-
116
-
-
77955054674
-
A transitional extracellular matrix instructs cell behavior during muscle regeneration
-
Calve, S., Odelberg, S. J. & Simon, H.-G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev. Biol. 344, 259-271 (2010).
-
(2010)
Dev. Biol.
, vol.344
, pp. 259-271
-
-
Calve, S.1
Odelberg, S.J.2
Simon, H.-G.3
-
117
-
-
84899044786
-
Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success
-
Godwin, J. W. & Rosenthal, N. Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 87, 66-75 (2014).
-
(2014)
Differentiation
, vol.87
, pp. 66-75
-
-
Godwin, J.W.1
Rosenthal, N.2
-
118
-
-
0035450162
-
Cardiac morphology and blood pressure in the adult zebrafish
-
Hu, N., Yost, H. J. & Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. Anat. Rec. 264, 1-12 (2001).
-
(2001)
Anat. Rec.
, vol.264
, pp. 1-12
-
-
Hu, N.1
Yost, H.J.2
Clark, E.B.3
-
119
-
-
84940995292
-
Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion
-
Yahalom-Ronen, Y., Rajchman, D., Sarig, R., Geiger, B. & Tzahor, E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife 4, e07455 (2015).
-
(2015)
ELife
, vol.4
, pp. e07455
-
-
Yahalom-Ronen, Y.1
Rajchman, D.2
Sarig, R.3
Geiger, B.4
Tzahor, E.5
-
120
-
-
84924811108
-
Human ventricular unloading induces cardiomyocyte proliferation
-
Canseco, D. C. et al. Human ventricular unloading induces cardiomyocyte proliferation. J. Am. Coll. Cardiol. 65, 892-900 (2015).
-
(2015)
J. Am. Coll. Cardiol.
, vol.65
, pp. 892-900
-
-
Canseco, D.C.1
-
121
-
-
85015687681
-
Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration
-
Chen, W. C. W. et al. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci. Adv. 2, e1600844 (2016).
-
(2016)
Sci. Adv.
, vol.2
, pp. e1600844
-
-
Chen, W.C.W.1
-
122
-
-
84884814030
-
A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration
-
Mercer, S. E., Odelberg, S. J. & Simon, H.-G. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev. Biol. 382, 457-469 (2013).
-
(2013)
Dev. Biol.
, vol.382
, pp. 457-469
-
-
Mercer, S.E.1
Odelberg, S.J.2
Simon, H.-G.3
-
123
-
-
84884821228
-
Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration
-
Wang, J., Karra, R., Dickson, A. L. & Poss, K. D. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev. Biol. 382, 427-435 (2013).
-
(2013)
Dev. Biol.
, vol.382
, pp. 427-435
-
-
Wang, J.1
Karra, R.2
Dickson, A.L.3
Poss, K.D.4
-
124
-
-
39549107343
-
Periostin is essential for cardiac healingafter acute myocardial infarction
-
Shimazaki, M. et al. Periostin is essential for cardiac healingafter acute myocardial infarction. J. Exp. Med. 205, 295 (2008).
-
(2008)
J. Exp. Med.
, vol.205
, pp. 295
-
-
Shimazaki, M.1
-
125
-
-
34547691243
-
Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair
-
Kuhn, B. et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13, 962-969 (2007).
-
(2007)
Nat. Med.
, vol.13
, pp. 962-969
-
-
Kuhn, B.1
-
126
-
-
84877890765
-
Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis
-
Ladage, D. et al. Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS ONE 8, e59656 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e59656
-
-
Ladage, D.1
-
127
-
-
84948186795
-
Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration
-
Missinato, M. A., Tobita, K., Romano, N., Caroll, J. A. & Tsang, M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc. Res. 107, 487-498 (2015).
-
(2015)
Cardiovasc. Res.
, vol.107
, pp. 487-498
-
-
Missinato, M.A.1
Tobita, K.2
Romano, N.3
Caroll, J.A.4
Tsang, M.5
-
128
-
-
84929132593
-
Drug and cell delivery for cardiac regeneration
-
Hastings, C. L. et al. Drug and cell delivery for cardiac regeneration. Adv. Drug Deliv. Rev. 84, 85-106 (2015).
-
(2015)
Adv. Drug Deliv. Rev.
, vol.84
, pp. 85-106
-
-
Hastings, C.L.1
-
129
-
-
76249112565
-
Evolution of animal regeneration: Re-emergence of a field
-
Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: re-emergence of a field. Trends Ecol. Evol. 25, 161-170 (2010).
-
(2010)
Trends Ecol. Evol.
, vol.25
, pp. 161-170
-
-
Bely, A.E.1
Nyberg, K.G.2
-
130
-
-
0027009524
-
The evolution of regeneration: Adaptive or inherent
-
Goss, R. J. The evolution of regeneration: adaptive or inherent J. Theor. Biol. 159, 241-260 (1992).
-
(1992)
J. Theor. Biol.
, vol.159
, pp. 241-260
-
-
Goss, R.J.1
-
131
-
-
84956661487
-
View from the heart: Cardiac fibroblasts in development, scarring and regeneration
-
Furtado, M. B., Nim, H. T., Boyd, S. E. & Rosenthal, N. A. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143, 387 (2016).
-
(2016)
Development
, vol.143
, pp. 387
-
-
Furtado, M.B.1
Nim, H.T.2
Boyd, S.E.3
Rosenthal, N.A.4
-
132
-
-
84979220596
-
Genetic lineage tracing defines myofibroblast origin and function in the injured heart
-
Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 12260
-
-
Kanisicak, O.1
-
133
-
-
41149097772
-
Transforming growth factor: Signaling is essential for limb regeneration in axolotls
-
Lévesque, M. et al. Transforming growth factor: signaling is essential for limb regeneration in axolotls. PLoS ONE 2, e1227 (2007).
-
(2007)
PLoS ONE
, vol.2
, pp. e1227
-
-
Lévesque, M.1
-
134
-
-
84861721454
-
Collagen reconstitution is inversely correlated with induction of limb regeneration in ambystoma mexicanum
-
Satoh, A., Hirata, A. & Makanae, A. Collagen reconstitution is inversely correlated with induction of limb regeneration in ambystoma mexicanum. Zool. Sci. 29, 191-197 (2012).
-
(2012)
Zool. Sci.
, vol.29
, pp. 191-197
-
-
Satoh, A.1
Hirata, A.2
Makanae, A.3
-
135
-
-
84964324589
-
Astrocyte scar formation AIDS central nervous system axon regeneration
-
Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195-200 (2016).
-
(2016)
Nature
, vol.532
, pp. 195-200
-
-
Anderson, M.A.1
-
136
-
-
4544384849
-
Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes
-
Bicknell, K. A., Coxon, C. H. & Brooks, G. Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem. J. 382, 411 (2004).
-
(2004)
Biochem. J.
, vol.382
, pp. 411
-
-
Bicknell, K.A.1
Coxon, C.H.2
Brooks, G.3
-
137
-
-
79953156276
-
Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle
-
Di Stefano, V., Giacca, M., Capogrossi, M. C., Crescenzi, M. & Martelli, F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J. Biol. Chem. 286, 8644-8654 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 8644-8654
-
-
Di Stefano, V.1
Giacca, M.2
Capogrossi, M.C.3
Crescenzi, M.4
Martelli, F.5
-
138
-
-
4143057167
-
Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium
-
Chaudhry, H. W. et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J. Biol. Chem. 279, 35858-35866 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 35858-35866
-
-
Chaudhry, H.W.1
-
139
-
-
11844292733
-
Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice
-
Pasumarthi, K. B. S., Nakajima, H., Nakajima, H. O., Soonpaa, M. H. & Field, L. J. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ. Res. 96, 110 (2005).
-
(2005)
Circ. Res.
, vol.96
, pp. 110
-
-
Pasumarthi, K.B.S.1
Nakajima, H.2
Nakajima, H.O.3
Soonpaa, M.H.4
Field, L.J.5
-
140
-
-
54149102852
-
E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo
-
Ebelt, H. et al. E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc. Res. 80, 219 (2008).
-
(2008)
Cardiovasc. Res.
, vol.80
, pp. 219
-
-
Ebelt, H.1
-
141
-
-
85007365643
-
Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration
-
Cheng, Y. Y. et al. Reprogramming-derived gene cocktail increases cardiomyocyte proliferation for heart regeneration. EMBO Mol. Med. 9, 251-264 (2016).
-
(2016)
EMBO Mol. Med.
, vol.9
, pp. 251-264
-
-
Cheng, Y.Y.1
-
142
-
-
33750298315
-
FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction
-
Engel, F. B., Hsieh, P. C. H., Lee, R. T. & Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 15546-15551 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 15546-15551
-
-
Engel, F.B.1
Hsieh, P.C.H.2
Lee, R.T.3
Keating, M.T.4
-
143
-
-
84969164688
-
Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion
-
Garbayo, E. et al. Catheter-based intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci. Rep. 6, 25932 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 25932
-
-
Garbayo, E.1
-
144
-
-
84893350246
-
Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration
-
Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403-1408 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 1403-1408
-
-
Zhao, L.1
-
145
-
-
85016093855
-
A phase I, single ascending dose study of cimaglermin alfa (neuregulin 1-3) in patients with systolic dysfunction and heart failure
-
Lenihan, D. J. et al. A phase I, single ascending dose study of cimaglermin alfa (neuregulin 1-3) in patients with systolic dysfunction and heart failure. JACC Basic Transl Sci. 1, 576-586 (2016).
-
(2016)
JACC Basic Transl Sci
, vol.1
, pp. 576-586
-
-
Lenihan, D.J.1
-
146
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376-381 (2012).
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
-
147
-
-
84925263676
-
A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice
-
Tian, Y. et al. A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl Med. 7, 279ra38 (2015).
-
(2015)
Sci. Transl Med.
, vol.7
, pp. 279ra38
-
-
Tian, Y.1
-
148
-
-
84867009100
-
Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle
-
Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).
-
(2012)
Nat. Commun.
, vol.3
, pp. 1076
-
-
Hesse, M.1
-
149
-
-
84986244097
-
In vivo cellular reprogramming: The next generation
-
Srivastava, D. & DeWitt, N. In vivo cellular reprogramming: the next generation. Cell 166, 1386-1396 (2016).
-
(2016)
Cell
, vol.166
, pp. 1386-1396
-
-
Srivastava, D.1
DeWitt, N.2
-
150
-
-
78951478823
-
Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration
-
Jopling, C., Boue, S. & Belmonte, J. C. I. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79-89 (2011).
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 79-89
-
-
Jopling, C.1
Boue, S.2
Belmonte, J.C.I.3
-
151
-
-
77951611220
-
Conversion of adult pancreatic α-cells to β-cells after extreme beta-cell loss
-
Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme beta-cell loss. Nature 464, 1149-1154 (2010).
-
(2010)
Nature
, vol.464
, pp. 1149-1154
-
-
Thorel, F.1
-
152
-
-
84879688282
-
In vivo cardiac reprogramming contributes to zebrafish heart regeneration
-
Zhang, R. et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498, 497-501 (2013).
-
(2013)
Nature
, vol.498
, pp. 497-501
-
-
Zhang, R.1
-
153
-
-
84876278823
-
Robust cellular reprogramming occurs spontaneously during liver regeneration
-
Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719-724 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 719-724
-
-
Yanger, K.1
-
154
-
-
84902312015
-
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
-
Chong, J. J. H. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273-277 (2014).
-
(2014)
Nature
, vol.510
, pp. 273-277
-
-
Chong, J.J.H.1
-
155
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 (2006).
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
156
-
-
84992346111
-
Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts
-
Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388-391 (2016).
-
(2016)
Nature
, vol.538
, pp. 388-391
-
-
Shiba, Y.1
-
157
-
-
79952273710
-
Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy
-
Efe, J. A. et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13, 215-222 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 215-222
-
-
Efe, J.A.1
-
158
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386 (2010).
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
-
159
-
-
84943645734
-
Recent advances in direct cardiac reprogramming
-
Srivastava, D. & Yu, P. Recent advances in direct cardiac reprogramming. Curr. Opin. Genet. Dev. 34, 77-81 (2015).
-
(2015)
Curr. Opin. Genet. Dev.
, vol.34
, pp. 77-81
-
-
Srivastava, D.1
Yu, P.2
-
160
-
-
84863626782
-
Heart repair by reprogramming non-myocytes with cardiac transcription factors
-
Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599-604 (2012).
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
-
161
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593-598 (2012).
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
-
162
-
-
84861642380
-
MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes
-
Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465 (2012).
-
(2012)
Circ. Res.
, vol.110
, pp. 1465
-
-
Jayawardena, T.M.1
-
163
-
-
85005951010
-
Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs
-
Li, Y. et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci. Rep. 6, 38815 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 38815
-
-
Li, Y.1
-
164
-
-
84883144097
-
Vascular endothelial growth factor in heart failure
-
Taimeh, Z., Loughran, J., Birks, E. J. & Bolli, R. Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 10, 519-530 (2013).
-
(2013)
Nat. Rev. Cardiol.
, vol.10
, pp. 519-530
-
-
Taimeh, Z.1
Loughran, J.2
Birks, E.J.3
Bolli, R.4
-
165
-
-
84862026102
-
VEGF gene therapy: Therapeutic angiogenesis in the clinic and beyond
-
Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622-629 (2012).
-
(2012)
Gene Ther.
, vol.19
, pp. 622-629
-
-
Giacca, M.1
Zacchigna, S.2
-
166
-
-
84926356306
-
Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells
-
Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528-1541 (2015).
-
(2015)
Development
, vol.142
, pp. 1528-1541
-
-
Iyer, D.1
-
167
-
-
84942519410
-
Epicardial FSTL1 reconstitution regenerates the adult mammalian heart
-
Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479-485 (2015).
-
(2015)
Nature
, vol.525
, pp. 479-485
-
-
Wei, K.1
-
168
-
-
84885676364
-
Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction
-
Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898-907 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 898-907
-
-
Zangi, L.1
-
169
-
-
84986596560
-
Molecular imaging of angiogenesis in cardiac regeneration
-
Mandic, L. et al. Molecular imaging of angiogenesis in cardiac regeneration. Curr. Cardiovasc. Imaging Rep. 9, 27 (2016).
-
(2016)
Curr. Cardiovasc. Imaging Rep.
, vol.9
, pp. 27
-
-
Mandic, L.1
-
170
-
-
84903703870
-
De novo formation of a distinct coronary vascular population in neonatal heart
-
Tian, X. et al. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90-94 (2014).
-
(2014)
Science
, vol.345
, pp. 90-94
-
-
Tian, X.1
-
171
-
-
84938501945
-
Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction
-
Miquerol, L. et al. Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ. Res. 116, 1765 (2015).
-
(2015)
Circ. Res.
, vol.116
, pp. 1765
-
-
Miquerol, L.1
-
172
-
-
84947997153
-
Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease
-
Norman, S. & Riley, P. R. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease. Clin. Anat. 29, 305-315 (2016).
-
(2016)
Clin. Anat.
, vol.29
, pp. 305-315
-
-
Norman, S.1
Riley, P.R.2
-
173
-
-
34548136223
-
Lymphangiogenesis in myocardial remodelling after infarction
-
Ishikawa, Y. et al. Lymphangiogenesis in myocardial remodelling after infarction. Histopathology 51, 345-353 (2007).
-
(2007)
Histopathology
, vol.51
, pp. 345-353
-
-
Ishikawa, Y.1
-
174
-
-
84930639373
-
Cardiac lymphatics are heterogeneous in origin and respond to injury
-
Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62-67 (2015).
-
(2015)
Nature
, vol.522
, pp. 62-67
-
-
Klotz, L.1
-
175
-
-
84960158338
-
Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction
-
Henri, O. et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133, 1484-1497 (2016).
-
(2016)
Circulation
, vol.133
, pp. 1484-1497
-
-
Henri, O.1
-
176
-
-
85000916204
-
Inflammatory processes in cardiovascular disease: A route to targeted therapies
-
Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol. 14, 133-144 (2016).
-
(2016)
Nat. Rev. Cardiol.
, vol.14
, pp. 133-144
-
-
Ruparelia, N.1
Chai, J.T.2
Fisher, E.A.3
Choudhury, R.P.4
-
177
-
-
84878000143
-
Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice
-
Majmudar, M. D. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127, 2038 (2013).
-
(2013)
Circulation
, vol.127
, pp. 2038
-
-
Majmudar, M.D.1
-
178
-
-
85032512307
-
Macrophages therapy for liver cirrhosis
-
ISRCTN registry.
-
ISRCTN registry. Macrophages therapy for liver cirrhosis. BioMed Central, http://www. isrctn. com/ ISRCTN10368050 (2016).
-
(2016)
BioMed Central
-
-
-
179
-
-
84955612078
-
Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease
-
Gourdie, R. G., Dimmeler, S. & Kohl, P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat. Rev. Drug Discov. 15, 620-638 (2016).
-
(2016)
Nat. Rev. Drug Discov.
, vol.15
, pp. 620-638
-
-
Gourdie, R.G.1
Dimmeler, S.2
Kohl, P.3
-
180
-
-
84975230737
-
Cardiac fibrosis in myocardial infarction - From repair and remodeling to regeneration
-
Talman, V. & Ruskoaho, H. Cardiac fibrosis in myocardial infarction - from repair and remodeling to regeneration. Cell Tissue Res. 365, 563-581 (2016).
-
(2016)
Cell Tissue Res.
, vol.365
, pp. 563-581
-
-
Talman, V.1
Ruskoaho, H.2
-
181
-
-
84930674628
-
Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure
-
Galindo, C. L. et al. Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure. J. Am. Heart Assoc. 3, e000773 (2014).
-
(2014)
J. Am. Heart Assoc.
, vol.3
, pp. e000773
-
-
Galindo, C.L.1
-
182
-
-
33645219380
-
Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats
-
Kanemitsu, H. et al. Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats. Hypertens. Res. 29, 57-64 (2006).
-
(2006)
Hypertens. Res.
, vol.29
, pp. 57-64
-
-
Kanemitsu, H.1
-
183
-
-
0037214324
-
Chymase inhibitor improves survival in hamsters with myocardial infarction
-
Hoshino, F. et al. Chymase inhibitor improves survival in hamsters with myocardial infarction. J. Cardiovasc. Pharmacol. 41, S11-S18 (2003).
-
(2003)
J. Cardiovasc. Pharmacol.
, vol.41
, pp. S11-S18
-
-
Hoshino, F.1
-
184
-
-
84911875520
-
Platelet-derived growth factor blockade on cardiac remodeling following infarction
-
Liu, C. et al. Platelet-derived growth factor blockade on cardiac remodeling following infarction. Mol. Cell. Biochem. 397, 295-304 (2014).
-
(2014)
Mol. Cell. Biochem.
, vol.397
, pp. 295-304
-
-
Liu, C.1
-
185
-
-
79151475088
-
Cardiac cell therapy: Lessons from clinical trials
-
Menasche, P. Cardiac cell therapy: lessons from clinical trials. J. Mol. Cell. Cardiol. 50, 258-265 (2011).
-
(2011)
J. Mol. Cell. Cardiol.
, vol.50
, pp. 258-265
-
-
Menasche, P.1
-
186
-
-
84897052480
-
Cell therapy for cardiac repair - Lessons from clinical trials
-
Behfar, A., Crespo-Diaz, R., Terzic, A. & Gersh, B. J. Cell therapy for cardiac repair - lessons from clinical trials. Nat. Rev. Cardiol. 11, 232-246 (2014).
-
(2014)
Nat. Rev. Cardiol.
, vol.11
, pp. 232-246
-
-
Behfar, A.1
Crespo-Diaz, R.2
Terzic, A.3
Gersh, B.J.4
-
187
-
-
33750220712
-
Bridging the regeneration gap: Genetic insights from diverse animal models
-
Alvarado, A. S. & Tsonis, P. A. Bridging the regeneration gap: genetic insights from diverse animal models. Nat. Rev. Genet. 7, 873-884 (2006).
-
(2006)
Nat. Rev. Genet.
, vol.7
, pp. 873-884
-
-
Alvarado, A.S.1
Tsonis, P.A.2
-
188
-
-
41149107026
-
Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction
-
Bujak, M. et al. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J. Am. Coll. Cardiol. 51, 1384-1392 (2008).
-
(2008)
J. Am. Coll. Cardiol.
, vol.51
, pp. 1384-1392
-
-
Bujak, M.1
-
189
-
-
84872081347
-
In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration
-
Choi, W.-Y. et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140, 660 (2013).
-
(2013)
Development
, vol.140
, pp. 660
-
-
Choi, W.-Y.1
-
190
-
-
84931281543
-
AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia
-
Ruozi, G. et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat. Commun. 6, 7388 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7388
-
-
Ruozi, G.1
-
191
-
-
84898669488
-
Heart regeneration: Opportunities and challenges for drug discovery with novel chemical and therapeutic methods or agents
-
Plowright, A. T., Engkvist, O., Gill, A., Knerr, L. & Wang, Q.-D. Heart regeneration: opportunities and challenges for drug discovery with novel chemical and therapeutic methods or agents. Angew. Chem. Int. Ed. 53, 4056-4075 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 4056-4075
-
-
Plowright, A.T.1
Engkvist, O.2
Gill, A.3
Knerr, L.4
Wang, Q.-D.5
-
192
-
-
79960557299
-
A chemical biology approach to myocardial regeneration
-
Willems, E. et al. A chemical biology approach to myocardial regeneration. J. Cardiovasc. Transl Res. 4, 340-350 (2011).
-
(2011)
J. Cardiovasc. Transl Res.
, vol.4
, pp. 340-350
-
-
Willems, E.1
-
193
-
-
84874171310
-
Cell delivery routes for stem cell therapy to the heart: Current and future approaches
-
Campbell, N. G. & Suzuki, K. Cell delivery routes for stem cell therapy to the heart: current and future approaches. J. Cardiovasc. Transl Res. 5, 713-726 (2012).
-
(2012)
J. Cardiovasc. Transl Res.
, vol.5
, pp. 713-726
-
-
Campbell, N.G.1
Suzuki, K.2
-
194
-
-
84865271952
-
Hemodynamic contribution of stem cell scaffolding in acute injured myocardium
-
Qian, L. et al. Hemodynamic contribution of stem cell scaffolding in acute injured myocardium. Tissue Eng. Part A 18, 1652-1663 (2012).
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 1652-1663
-
-
Qian, L.1
-
195
-
-
85008221017
-
Hydrogel based approaches for cardiac tissue engineering
-
Saludas, L., Pascual-Gil, S., Prsper, F., Garbayo, E. & Blanco-Prieto, M. Hydrogel based approaches for cardiac tissue engineering. Int. J. Pharm. 523, 454-475 (2017).
-
(2017)
Int. J. Pharm.
, vol.523
, pp. 454-475
-
-
Saludas, L.1
Pascual-Gil, S.2
Prsper, F.3
Garbayo, E.4
Blanco-Prieto, M.5
-
196
-
-
85019552135
-
The cancer paradigms of mammalian regeneration: Can mammals regenerate as amphibians?
-
Sarig, R. & Tzahor, E. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians? Carcinogenesis 38, 359-366 (2017).
-
(2017)
Carcinogenesis
, vol.38
, pp. 359-366
-
-
Sarig, R.1
Tzahor, E.2
-
197
-
-
84907305378
-
Translating stem cell research to cardiac disease therapies: Pitfalls and prospects for improvement
-
Rosen, M. R., Myerburg, R. J., Francis, D. P., Cole, G. D. & Marbn, E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J. Am. Coll. Cardiol. 64, 922-937 (2014).
-
(2014)
J. Am. Coll. Cardiol.
, vol.64
, pp. 922-937
-
-
Rosen, M.R.1
Myerburg, R.J.2
Francis, D.P.3
Cole, G.D.4
Marbn, E.5
-
198
-
-
84876268473
-
Phase II clinical research design in cardiology
-
Hare, J. M. et al. Phase II clinical research design in cardiology. Circulation 127, 1630 (2013).
-
(2013)
Circulation
, vol.127
, pp. 1630
-
-
Hare, J.M.1
-
199
-
-
84905736253
-
Clinical imaging in regenerative medicine
-
Naumova, A. V., Modo, M., Moore, A., Murry, C. E. & Frank, J. A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 32, 804-818 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 804-818
-
-
Naumova, A.V.1
Modo, M.2
Moore, A.3
Murry, C.E.4
Frank, J.A.5
-
200
-
-
84860200127
-
Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: The FOCUS-CCTRN trial
-
Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307, 1717-1726 (2012).
-
(2012)
JAMA
, vol.307
, pp. 1717-1726
-
-
Perin, E.C.1
-
201
-
-
84899654158
-
Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): Weighted regression and meta-analysis
-
Nowbar, A. N. et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ 348, g2688 (2014).
-
(2014)
BMJ
, vol.348
, pp. g2688
-
-
Nowbar, A.N.1
-
203
-
-
84969217686
-
Confronting stem cell hype
-
Caulfield, T., Sipp, D., Murry, C. E., Daley, G. Q. & Kimmelman, J. Confronting stem cell hype. Science 352, 776 (2016).
-
(2016)
Science
, vol.352
, pp. 776
-
-
Caulfield, T.1
Sipp, D.2
Murry, C.E.3
Daley, G.Q.4
Kimmelman, J.5
-
204
-
-
68149119072
-
Identification of splenic reservoir monocytes and their deployment to inflammatory sites
-
Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612-616 (2009).
-
(2009)
Science
, vol.325
, pp. 612-616
-
-
Swirski, F.K.1
-
205
-
-
67650079802
-
Myocardial no-reflow in humans
-
Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281-292 (2009).
-
(2009)
J. Am. Coll. Cardiol.
, vol.54
, pp. 281-292
-
-
Niccoli, G.1
Burzotta, F.2
Galiuto, L.3
Crea, F.4
-
206
-
-
84899048801
-
Crosstalk between fibroblasts and inflammatory cells
-
Van Linthout, S., Miteva, K. & Tschope, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102, 258-269 (2014).
-
(2014)
Cardiovasc. Res.
, vol.102
, pp. 258-269
-
-
Van Linthout, S.1
Miteva, K.2
Tschope, C.3
-
207
-
-
0025266820
-
Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications
-
Pfeffer, M. A. & Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161 (1990).
-
(1990)
Circulation
, vol.81
, pp. 1161
-
-
Pfeffer, M.A.1
Braunwald, E.2
-
208
-
-
0034720847
-
Left ventricular remodeling after myocardial infarction
-
Sutton, M. G. S. J. & Sharpe, N. Left ventricular remodeling after myocardial infarction. Circulation 101, 2981 (2000).
-
(2000)
Circulation
, vol.101
, pp. 2981
-
-
Sutton, M.G.S.J.1
Sharpe, N.2
-
209
-
-
0026694353
-
Pathophysiology of chronic heart failure
-
Packer, M. Pathophysiology of chronic heart failure. Lancet 340, 88-92 (1992).
-
(1992)
Lancet
, vol.340
, pp. 88-92
-
-
Packer, M.1
-
210
-
-
84883565348
-
Adrenergic nervous system in heart failure
-
Lymperopoulos, A., Rengo, G. & Koch, W. J. Adrenergic nervous system in heart failure. Circ. Res. 113, 739 (2013).
-
(2013)
Circ. Res.
, vol.113
, pp. 739
-
-
Lymperopoulos, A.1
Rengo, G.2
Koch, W.J.3
-
211
-
-
33751353758
-
Mechanisms of disease: Apoptosis in heart failure - Seeing hope in death
-
Narula, J., Haider, N., Arbustini, E. & Chandrashekhar, Y. Mechanisms of disease: apoptosis in heart failure - seeing hope in death. Nat. Clin. Pract. Cardiovasc. Med. 3, 681-688 (2006).
-
(2006)
Nat. Clin. Pract. Cardiovasc. Med.
, vol.3
, pp. 681-688
-
-
Narula, J.1
Haider, N.2
Arbustini, E.3
Chandrashekhar, Y.4
-
212
-
-
0026695294
-
The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure
-
Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20, 248-254 (1992).
-
(1992)
J. Am. Coll. Cardiol.
, vol.20
, pp. 248-254
-
-
Packer, M.1
-
213
-
-
0035956699
-
Myoblast transplantation for heart failure
-
Menasch, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279-280 (2001).
-
(2001)
Lancet
, vol.357
, pp. 279-280
-
-
Menasch, P.1
-
214
-
-
0037044406
-
Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans
-
Strauer, B. E. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913 (2002).
-
(2002)
Circulation
, vol.106
, pp. 1913
-
-
Strauer, B.E.1
-
215
-
-
0038701741
-
Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure
-
Perin, E. C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294 (2003).
-
(2003)
Circulation
, vol.107
, pp. 2294
-
-
Perin, E.C.1
-
216
-
-
3042710733
-
Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial
-
Wollert, K. C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141-148 (2004).
-
(2004)
Lancet
, vol.364
, pp. 141-148
-
-
Wollert, K.C.1
-
217
-
-
33748899627
-
Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction
-
Lunde, K. et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355, 1199-1209 (2006).
-
(2006)
N. Engl. J. Med.
, vol.355
, pp. 1199-1209
-
-
Lunde, K.1
-
218
-
-
33748910402
-
Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction
-
Schhinger, V. et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355, 1210-1221 (2006).
-
(2006)
N. Engl. J. Med.
, vol.355
, pp. 1210-1221
-
-
Schhinger, V.1
-
219
-
-
30444432961
-
Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial
-
Janssens, S. et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113-121 (2006).
-
(2006)
Lancet
, vol.367
, pp. 113-121
-
-
Janssens, S.1
-
220
-
-
41149106402
-
The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial
-
Menasch, P. et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. Circulation 117, 1189 (2008).
-
(2008)
Circulation
, vol.117
, pp. 1189
-
-
Menasch, P.1
-
221
-
-
82255175382
-
Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial
-
Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847-1857 (2011).
-
(2011)
Lancet
, vol.378
, pp. 1847-1857
-
-
Bolli, R.1
-
222
-
-
84858019974
-
Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial
-
Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895-904 (2012).
-
(2012)
Lancet
, vol.379
, pp. 895-904
-
-
Makkar, R.R.1
-
223
-
-
84877897377
-
Intracoronary injection of bone marrow derived mononuclear cells, early or late after acute myocardial infarction: Effects on global left ventricular function four months results of the SWISS-AMI trial
-
Sder, D. et al. Intracoronary injection of bone marrow derived mononuclear cells, early or late after acute myocardial infarction: effects on global left ventricular function four months results of the SWISS-AMI trial. Circulation 127, 1968-1979 (2013).
-
(2013)
Circulation
, vol.127
, pp. 1968-1979
-
-
Sder, D.1
-
224
-
-
84898841773
-
Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial
-
Karantalis, V. et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ. Res. 114, 1302-1310 (2014).
-
(2014)
Circ. Res.
, vol.114
, pp. 1302-1310
-
-
Karantalis, V.1
-
225
-
-
84939612938
-
Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: First clinical case report
-
Menasch, P. et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur. Heart J. 36, 2011-2017 (2015).
-
(2015)
Eur. Heart J.
, vol.36
, pp. 2011-2017
-
-
Menasch, P.1
-
226
-
-
84971641343
-
A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: The REGENERATE-AMI clinical trial
-
Choudry, F. et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial. Eur. Heart J. 37, 256-263 (2016).
-
(2016)
Eur. Heart J.
, vol.37
, pp. 256-263
-
-
Choudry, F.1
-
227
-
-
84896403379
-
Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart
-
Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl Res. 7, 232-241 (2014).
-
(2014)
J. Cardiovasc. Transl Res.
, vol.7
, pp. 232-241
-
-
Koudstaal, S.1
-
228
-
-
84990876778
-
Growth hormone-releasing hormone agonists reduce myocardial infarct scar in swine with subacute ischemic cardiomyopathy
-
Bagno, L. L. et al. Growth hormone-releasing hormone agonists reduce myocardial infarct scar in swine with subacute ischemic cardiomyopathy. J. Am. Heart Assoc. 4, e001464 (2015).
-
(2015)
J. Am. Heart Assoc.
, vol.4
, pp. e001464
-
-
Bagno, L.L.1
-
229
-
-
84964330151
-
Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: A randomized clinical trial
-
O'Donoghue, M. L. et al. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA 315, 1591-1599 (2016).
-
(2016)
JAMA
, vol.315
, pp. 1591-1599
-
-
O'Donoghue, M.L.1
-
230
-
-
84892682128
-
Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: The TIPTOP trial
-
Cerisano, G. et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur. Heart J. 35, 184-191 (2013).
-
(2013)
Eur. Heart J.
, vol.35
, pp. 184-191
-
-
Cerisano, G.1
-
231
-
-
84876981024
-
Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]
-
Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394-1400 (2013).
-
(2013)
Am. J. Cardiol.
, vol.111
, pp. 1394-1400
-
-
Abbate, A.1
-
232
-
-
84883818780
-
Intravenous immunoglobulin does not reduce left ventricular remodeling in patients with myocardial dysfunction during hospitalization after acute myocardial infarction
-
Gullestad, L. et al. Intravenous immunoglobulin does not reduce left ventricular remodeling in patients with myocardial dysfunction during hospitalization after acute myocardial infarction. Int. J. Cardiol. 168, 212-218 (2013).
-
(2013)
Int. J. Cardiol.
, vol.168
, pp. 212-218
-
-
Gullestad, L.1
-
233
-
-
79955877895
-
Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: A randomized controlled trial
-
Najjar, S. S. et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA 305, 1863-1872 (2011).
-
(2011)
JAMA
, vol.305
, pp. 1863-1872
-
-
Najjar, S.S.1
-
234
-
-
77951665667
-
Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study)
-
Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study). Am. J. Cardiol. 105, 1371-1377. e1 (2010).
-
(2010)
Am. J. Cardiol.
, vol.105
, pp. 1371-1377e1
-
-
Abbate, A.1
-
235
-
-
77952317892
-
A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure
-
Gao, R. et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907-1914 (2010).
-
(2010)
J. Am. Coll. Cardiol.
, vol.55
, pp. 1907-1914
-
-
Gao, R.1
-
236
-
-
33845981823
-
Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: A randomized controlled trial
-
Armstrong, P. W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 43-51 (2007).
-
(2007)
JAMA
, vol.297
, pp. 43-51
-
-
Armstrong, P.W.1
-
237
-
-
33745282396
-
Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: Results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial
-
Hudson, M. P. et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J. Am. Coll. Cardiol. 48, 15-20 (2006).
-
(2006)
J. Am. Coll. Cardiol.
, vol.48
, pp. 15-20
-
-
Hudson, M.P.1
|