메뉴 건너뛰기




Volumn 35, Issue , 2017, Pages 469-499

Antigen-presenting cells in the skin

Author keywords

Antigen presenting cells; Cutaneous immunology; Dendritic cells; Langerhans cells; Macrophages; Skin

Indexed keywords

CD11B ANTIGEN; CHEMOKINE RECEPTOR CXCR1; T LYMPHOCYTE RECEPTOR;

EID: 85018279148     PISSN: 07320582     EISSN: 15453278     Source Type: Book Series    
DOI: 10.1146/annurev-immunol-051116-052215     Document Type: Review
Times cited : (259)

References (218)
  • 1
    • 84899630165 scopus 로고    scopus 로고
    • Mechanisms regulating skin immunity and inflammation
    • Pasparakis M, Haase I, Nestle FO. 2014. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14:289-301
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 289-301
    • Pasparakis, M.1    Haase, I.2    Nestle, F.O.3
  • 3
    • 0242551508 scopus 로고    scopus 로고
    • Timeline: Metchnikoff and the phagocytosis theory
    • Tauber AI. 2003. Timeline: Metchnikoff and the phagocytosis theory.Nat. Rev.Mol. Cell Biol. 4(11):897-901
    • (2003) Nat. Rev.Mol. Cell Biol. , vol.4 , Issue.11 , pp. 897-901
    • Tauber, A.I.1
  • 4
    • 0015619335 scopus 로고
    • Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution
    • Steinman RM, Cohn ZA. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137(5):1142-62
    • (1973) J. Exp. Med. , vol.137 , Issue.5 , pp. 1142-1162
    • Steinman, R.M.1    Cohn, Z.A.2
  • 5
    • 0015949926 scopus 로고
    • Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro
    • Steinman RM, Cohn ZA. 1974. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 139(2):380-97
    • (1974) J. Exp. Med. , vol.139 , Issue.2 , pp. 380-397
    • Steinman, R.M.1    Cohn, Z.A.2
  • 8
    • 0017685245 scopus 로고
    • Ia antigen expression on human epidermal Langerhans cells
    • Rowden G, Lewis MG, Sullivan AK. 1977. Ia antigen expression on human epidermal Langerhans cells. Nature 268(5617):247-48
    • (1977) Nature , vol.268 , Issue.5617 , pp. 247-248
    • Rowden, G.1    Lewis, M.G.2    Sullivan, A.K.3
  • 9
    • 0017750370 scopus 로고
    • Epidermal Langerhans cells express Ia antigens
    • Klareskog L, Tjernlund U, Forsum U, Peterson PA. 1977. Epidermal Langerhans cells express Ia antigens. Nature 268(5617):248-50
    • (1977) Nature , vol.268 , Issue.5617 , pp. 248-250
    • Klareskog, L.1    Tjernlund, U.2    Forsum, U.3    Peterson, P.A.4
  • 10
    • 0018580178 scopus 로고
    • Epidermal Langerhans cells are derived from cells originating in bone marrow
    • Katz SI, Tamaki K, Sachs DH. 1979. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282(5736):324-26
    • (1979) Nature , vol.282 , Issue.5736 , pp. 324-326
    • Katz, S.I.1    Tamaki, K.2    Sachs, D.H.3
  • 11
    • 0018893199 scopus 로고
    • Bone marrow origin of Ia molecules purified from epidermal cells
    • Frelinger JA, Frelinger JG. 1980. Bone marrow origin of Ia molecules purified from epidermal cells. J. Investig. Dermatol. 75(1):68-70
    • (1980) J. Investig. Dermatol. , vol.75 , Issue.1 , pp. 68-70
    • Frelinger, J.A.1    Frelinger, J.G.2
  • 12
    • 0020520157 scopus 로고
    • A study of cells present in lymph draining from a contact allergic reaction in pigs sensitized to DNFB
    • Lens JW, Drexhage HA, Benson W, Balfour BM. 1983. A study of cells present in lymph draining from a contact allergic reaction in pigs sensitized to DNFB. Immunology 49(3):415
    • (1983) Immunology , vol.49 , Issue.3 , pp. 415
    • Lens, J.W.1    Drexhage, H.A.2    Benson, W.3    Balfour, B.M.4
  • 13
    • 0021917676 scopus 로고
    • Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro
    • Schuler G, Steinman RM. 1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161(3):526-46
    • (1985) J. Exp. Med. , vol.161 , Issue.3 , pp. 526-546
    • Schuler, G.1    Steinman, R.M.2
  • 14
    • 0027432320 scopus 로고
    • Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets
    • Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. 1993. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 151(11):6535-45
    • (1993) J. Immunol. , vol.151 , Issue.11 , pp. 6535-6545
    • Nestle, F.O.1    Zheng, X.G.2    Thompson, C.B.3    Turka, L.A.4    Nickoloff, B.J.5
  • 15
    • 0027137486 scopus 로고
    • Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization
    • Lenz A, Heine M, Schuler G, Romani N. 1993. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Investig. 92(6):2587-96
    • (1993) J. Clin. Investig. , vol.92 , Issue.6 , pp. 2587-2596
    • Lenz, A.1    Heine, M.2    Schuler, G.3    Romani, N.4
  • 16
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563-604
    • (2013) Annu. Rev. Immunol. , vol.31 , pp. 563-604
    • Merad, M.1    Sathe, P.2    Helft, J.3    Miller, J.4    Mortha, A.5
  • 17
    • 84884352076 scopus 로고    scopus 로고
    • Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
    • Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, et al. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39(3):599-610
    • (2013) Immunity , vol.39 , Issue.3 , pp. 599-610
    • Jakubzick, C.1    Gautier, E.L.2    Gibbings, S.L.3    Sojka, D.K.4    Schlitzer, A.5
  • 18
    • 84887616366 scopus 로고    scopus 로고
    • Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
    • Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5):925-38
    • (2013) Immunity , vol.39 , Issue.5 , pp. 925-938
    • Tamoutounour, S.1    Guilliams, M.2    Montanana Sanchis, F.3    Liu, H.4    Terhorst, D.5
  • 19
    • 84864293006 scopus 로고    scopus 로고
    • Human tissues contain CD141hi crosspresenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
    • Haniffa M, Shin A, Bigley V, McGovern N, Teo P, et al. 2012. Human tissues contain CD141hi crosspresenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60-73
    • (2012) Immunity , vol.37 , Issue.1 , pp. 60-73
    • Haniffa, M.1    Shin, A.2    Bigley, V.3    McGovern, N.4    Teo, P.5
  • 20
    • 0020050796 scopus 로고
    • Current view on the mononuclear phagocyte system
    • van Furth R. 1982. Current view on the mononuclear phagocyte system. Immunobiology 161(3-4):178-85
    • (1982) Immunobiology , vol.161 , Issue.3-4 , pp. 178-185
    • Van Furth, R.1
  • 21
    • 84931394611 scopus 로고    scopus 로고
    • Identification of cDC1-and cDC2-committedDCprogenitors reveals early lineage priming at the commonDCprogenitor stage in the bone marrow
    • Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J, et al. 2015. Identification of cDC1-and cDC2-committedDCprogenitors reveals early lineage priming at the commonDCprogenitor stage in the bone marrow. Nat. Immunol. 16(7):718-28
    • (2015) Nat. Immunol. , vol.16 , Issue.7 , pp. 718-728
    • Schlitzer, A.1    Sivakamasundari, V.2    Chen, J.3    Sumatoh, H.R.B.4    Schreuder, J.5
  • 22
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: Developmental pathways and tissue homeostasis
    • Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14(6):392-404
    • (2014) Nat. Rev. Immunol. , vol.14 , Issue.6 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 23
    • 84924743273 scopus 로고    scopus 로고
    • Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow
    • Lee J, Breton G, Oliveira TYK, Zhou YJ, Aljoufi A, et al. 2015. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212(3):385-99
    • (2015) J. Exp. Med. , vol.212 , Issue.3 , pp. 385-399
    • Lee, J.1    Breton, G.2    Oliveira, T.Y.K.3    Zhou, Y.J.4    Aljoufi, A.5
  • 26
    • 84911092143 scopus 로고    scopus 로고
    • Macrophage heterogeneity in tissues: Phenotypic diversity and functions
    • Gordon S, Pl uddemann A, Martinez Estrada F. 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 262(1):36-55
    • (2014) Immunol. Rev. , vol.262 , Issue.1 , pp. 36-55
    • Gordon, S.1    Pluddemann, A.2    Martinez Estrada, F.3
  • 27
    • 84890907345 scopus 로고    scopus 로고
    • Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection
    • Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, et al. 2014. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15(1):45-53
    • (2014) Nat. Immunol. , vol.15 , Issue.1 , pp. 45-53
    • Abtin, A.1    Jain, R.2    Mitchell, A.J.3    Roediger, B.4    Brzoska, A.J.5
  • 28
    • 56749152272 scopus 로고    scopus 로고
    • Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
    • Merad M, Ginhoux F, Collin M. 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8(12):935-47
    • (2008) Nat. Rev. Immunol. , vol.8 , Issue.12 , pp. 935-947
    • Merad, M.1    Ginhoux, F.2    Collin, M.3
  • 29
    • 73949120263 scopus 로고    scopus 로고
    • External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers
    • Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206(13):2937-46
    • (2009) J. Exp. Med. , vol.206 , Issue.13 , pp. 2937-2946
    • Kubo, A.1    Nagao, K.2    Yokouchi, M.3    Sasaki, H.4    Amagai, M.5
  • 30
    • 84859575185 scopus 로고    scopus 로고
    • Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo
    • Gaiser MR, Lammermann T, Feng X, Igyarto BZ, Kaplan DH, et al. 2012. Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. PNAS 109(15):E889-97
    • (2012) PNAS , vol.109 , Issue.15 , pp. E889-E897
    • Gaiser, M.R.1    Lammermann, T.2    Feng, X.3    Igyarto, B.Z.4    Kaplan, D.H.5
  • 31
    • 84935119898 scopus 로고    scopus 로고
    • Human and mousemononuclear phagocyte networks: A tale of two species?
    • Reynolds G, Haniffa M. 2015. Human and mousemononuclear phagocyte networks: a tale of two species? Front. Immunol. 6:330
    • (2015) Front. Immunol. , vol.6 , pp. 330
    • Reynolds, G.1    Haniffa, M.2
  • 32
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86-90
    • (2012) Science , vol.336 , Issue.6077 , pp. 86-90
    • Schulz, C.1    Gomez Perdiguero, E.2    Chorro, L.3    Szabo-Rogers, H.4    Cagnard, N.5
  • 33
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G, Wang Y, Greter M, See P, Teo P, et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209(6):1167-81
    • (2012) J. Exp. Med. , vol.209 , Issue.6 , pp. 1167-1181
    • Hoeffel, G.1    Wang, Y.2    Greter, M.3    See, P.4    Teo, P.5
  • 34
    • 84959367081 scopus 로고    scopus 로고
    • Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation
    • Wang Y, Bugatti M, Ulland TK, Vermi W, Gilfillan S, Colonna M. 2016. Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation. Eur. J. Immunol. 46(3):552-59
    • (2016) Eur. J. Immunol. , vol.46 , Issue.3 , pp. 552-559
    • Wang, Y.1    Bugatti, M.2    Ulland, T.K.3    Vermi, W.4    Gilfillan, S.5    Colonna, M.6
  • 35
    • 84870907320 scopus 로고    scopus 로고
    • Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia
    • Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, et al. 2012. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37(6):1050-60
    • (2012) Immunity , vol.37 , Issue.6 , pp. 1050-1060
    • Greter, M.1    Lelios, I.2    Pelczar, P.3    Hoeffel, G.4    Price, J.5
  • 36
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13(8):753-60
    • (2012) Nat. Immunol. , vol.13 , Issue.8 , pp. 753-760
    • Wang, Y.1    Szretter, K.J.2    Vermi, W.3    Gilfillan, S.4    Rossini, C.5
  • 37
    • 12144285752 scopus 로고    scopus 로고
    • Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation
    • Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, et al. 2004. Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23(4):969-79
    • (2004) EMBO J. , vol.23 , Issue.4 , pp. 969-979
    • Fainaru, O.1    Woolf, E.2    Lotem, J.3    Yarmus, M.4    Brenner, O.5
  • 38
    • 0037386339 scopus 로고    scopus 로고
    • Transcriptional profiling identifies Id2 function in dendritic cell development
    • Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC, et al. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4(4):380-86
    • (2003) Nat. Immunol. , vol.4 , Issue.4 , pp. 380-386
    • Hacker, C.1    Kirsch, R.D.2    Ju, X.-S.3    Hieronymus, T.4    Gust, T.C.5
  • 39
    • 84888114656 scopus 로고    scopus 로고
    • Identification of bonemorphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
    • Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, et al. 2013. Identification of bonemorphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J. Exp. Med. 210(12):2597-610
    • (2013) J. Exp. Med. , vol.210 , Issue.12 , pp. 2597-2610
    • Yasmin, N.1    Bauer, T.2    Modak, M.3    Wagner, K.4    Schuster, C.5
  • 41
    • 78649629136 scopus 로고    scopus 로고
    • TGF-βis required to maintain the pool of immature Langerhans cells in the epidermis
    • Kel JM, Girard-Madoux MJH, Reizis B, Clausen BE. 2010. TGF-βis required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185(6):3248-55
    • (2010) J. Immunol. , vol.185 , Issue.6 , pp. 3248-3255
    • Kel, J.M.1    Girard-Madoux, M.J.H.2    Reizis, B.3    Clausen, B.E.4
  • 43
    • 84959105586 scopus 로고    scopus 로고
    • Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β
    • Mohammed J, Beura LK, Bobr A, Astry B, Chicoine B, et al. 2016. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17:414-21
    • (2016) Nat. Immunol. , vol.17 , pp. 414-421
    • Mohammed, J.1    Beura, L.K.2    Bobr, A.3    Astry, B.4    Chicoine, B.5
  • 44
    • 84931564512 scopus 로고    scopus 로고
    • The clash of Langerhans cell homeostasis in skin: Should i stay or should i go?
    • Hieronymus T, Zenke M, Baek J-H, Sere K. 2015. The clash of Langerhans cell homeostasis in skin: Should I stay or should I go? Semin. Cell Dev. Biol. 41:30-38
    • (2015) Semin. Cell Dev. Biol. , vol.41 , pp. 30-38
    • Hieronymus, T.1    Zenke, M.2    Baek, J.-H.3    Sere, K.4
  • 45
    • 84922179711 scopus 로고    scopus 로고
    • CD1c+ blood dendritic cells have Langerhans cell potential
    • Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. 2015. CD1c+ blood dendritic cells have Langerhans cell potential. Blood 125(3):470-73
    • (2015) Blood , vol.125 , Issue.3 , pp. 470-473
    • Milne, P.1    Bigley, V.2    Gunawan, M.3    Haniffa, M.4    Collin, M.5
  • 46
    • 84907611125 scopus 로고    scopus 로고
    • Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β
    • Martinez-Cingolani C, Grandclaudon M, Jeanmougin M, Jouve M, Zollinger R, Soumelis V. 2014. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β. Blood 124(15):2411-20
    • (2014) Blood , vol.124 , Issue.15 , pp. 2411-2420
    • Martinez-Cingolani, C.1    Grandclaudon, M.2    Jeanmougin, M.3    Jouve, M.4    Zollinger, R.5    Soumelis, V.6
  • 47
    • 0036906526 scopus 로고    scopus 로고
    • Langerhans cells renew in the skin throughout life under steady-state conditions
    • Merad M, Manz MG, Karsunky H, Wagers A, Peters W, et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3(12):1135-41
    • (2002) Nat. Immunol. , vol.3 , Issue.12 , pp. 1135-1141
    • Merad, M.1    Manz, M.G.2    Karsunky, H.3    Wagers, A.4    Peters, W.5
  • 48
    • 84884214656 scopus 로고    scopus 로고
    • Multicolor fatemapping of Langerhans cell homeostasis
    • Ghigo C, Mondor I, Jorquera A, Nowak J, Wienert S, et al. 2013. Multicolor fatemapping of Langerhans cell homeostasis. J. Exp. Med. 210(9):1657-64
    • (2013) J. Exp. Med. , vol.210 , Issue.9 , pp. 1657-1664
    • Ghigo, C.1    Mondor, I.2    Jorquera, A.3    Nowak, J.4    Wienert, S.5
  • 49
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, et al. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206(13):3089-100
    • (2009) J. Exp. Med. , vol.206 , Issue.13 , pp. 3089-3100
    • Chorro, L.1    Sarde, A.2    Li, M.3    Woollard, K.J.4    Chambon, P.5
  • 51
    • 78751680917 scopus 로고    scopus 로고
    • Self-renewal capacity of human epidermal Langerhans cells: Observationsmade on a composite tissue allograft
    • Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard J-M. 2011. Self-renewal capacity of human epidermal Langerhans cells: observationsmade on a composite tissue allograft. Exp. Dermatol. 20(2):145-46
    • (2011) Exp. Dermatol. , vol.20 , Issue.2 , pp. 145-146
    • Kanitakis, J.1    Morelon, E.2    Petruzzo, P.3    Badet, L.4    Dubernard, J.-M.5
  • 52
    • 31344469849 scopus 로고    scopus 로고
    • The fate of human Langerhans cells in hematopoietic stem cell transplantation
    • Collin MP, Hart DNJ, Jackson GH, Cook G, Cavet J, et al. 2006. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 203:27
    • (2006) J. Exp. Med. , vol.203 , pp. 27
    • Collin, M.P.1    Hart, D.N.J.2    Jackson, G.H.3    Cook, G.4    Cavet, J.5
  • 53
    • 84986893432 scopus 로고    scopus 로고
    • CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation
    • Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, et al. 2015. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat. Immunol. 16(10):1060-68
    • (2015) Nat. Immunol. , vol.16 , Issue.10 , pp. 1060-1068
    • Price, J.G.1    Idoyaga, J.2    Salmon, H.3    Hogstad, B.4    Bigarella, C.L.5
  • 56
    • 0022577964 scopus 로고
    • Ontogeny of Ia-positive and Thy-1-positive leukocytes ofmurine epidermis
    • Romani N, Schuler G, Fritsch P. 1986. Ontogeny of Ia-positive and Thy-1-positive leukocytes ofmurine epidermis. J. Investig. Dermatol. 86(2):129-33
    • (1986) J. Investig. Dermatol. , vol.86 , Issue.2 , pp. 129-133
    • Romani, N.1    Schuler, G.2    Fritsch, P.3
  • 58
    • 84864124259 scopus 로고    scopus 로고
    • Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
    • Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, et al. 2012. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13(8):744-52
    • (2012) Nat. Immunol. , vol.13 , Issue.8 , pp. 744-752
    • Nagao, K.1    Kobayashi, T.2    Moro, K.3    Ohyama, M.4    Adachi, T.5
  • 59
    • 44049092407 scopus 로고    scopus 로고
    • Discovery of a cytokine and its receptor by functional screening of the extracellular proteome
    • Lin H, Lee E, Hestir K, Leo C, Huang M, et al. 2008. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807-11
    • (2008) Science , vol.320 , Issue.5877 , pp. 807-811
    • Lin, H.1    Lee, E.2    Hestir, K.3    Leo, C.4    Huang, M.5
  • 60
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13(8):753-60
    • (2012) Nat. Immunol. , vol.13 , Issue.8 , pp. 753-760
    • Wang, Y.1    Szretter, K.J.2    Vermi, W.3    Gilfillan, S.4    Rossini, C.5
  • 61
    • 84870907320 scopus 로고    scopus 로고
    • Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia
    • Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, et al. 2012. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37(6):1050-60
    • (2012) Immunity , vol.37 , Issue.6 , pp. 1050-1060
    • Greter, M.1    Lelios, I.2    Pelczar, P.3    Hoeffel, G.4    Price, J.5
  • 62
    • 73949101833 scopus 로고    scopus 로고
    • The origin and development of nonlymphoid tissue CD103+ DCs
    • Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206(13):3115-30
    • (2009) J. Exp. Med. , vol.206 , Issue.13 , pp. 3115-3130
    • Ginhoux, F.1    Liu, K.2    Helft, J.3    Bogunovic, M.4    Greter, M.5
  • 63
    • 84905107360 scopus 로고    scopus 로고
    • Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny
    • Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14(8):571-78
    • (2014) Nat. Rev. Immunol. , vol.14 , Issue.8 , pp. 571-578
    • Guilliams, M.1    Ginhoux, F.2    Jakubzick, C.3    Naik, S.H.4    Onai, N.5
  • 64
    • 84865394054 scopus 로고    scopus 로고
    • Histo-cytometry: A method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes
    • Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37(2):364-76
    • (2012) Immunity , vol.37 , Issue.2 , pp. 364-376
    • Gerner, M.Y.1    Kastenmuller, W.2    Ifrim, I.3    Kabat, J.4    Germain, R.N.5
  • 65
    • 84901368457 scopus 로고    scopus 로고
    • The origins and functions of dendritic cells and macrophages in the skin
    • Malissen B, Tamoutounour S, Henri S. 2014. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14(6):417-28
    • (2014) Nat. Rev. Immunol. , vol.14 , Issue.6 , pp. 417-428
    • Malissen, B.1    Tamoutounour, S.2    Henri, S.3
  • 66
    • 70449518424 scopus 로고    scopus 로고
    • Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ Tcells
    • Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, et al. 2009. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ Tcells. Immunity 31(5):823-33
    • (2009) Immunity , vol.31 , Issue.5 , pp. 823-833
    • Dorner, B.G.1    Dorner, M.B.2    Zhou, X.3    Opitz, C.4    Mora, A.5
  • 67
    • 84859993076 scopus 로고    scopus 로고
    • The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments
    • Zhang J-G, Czabotar PE, Policheni AN, Caminschi I, Wan SS, et al. 2012. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36(4):646-57
    • (2012) Immunity , vol.36 , Issue.4 , pp. 646-657
    • Zhang, J.-G.1    Czabotar, P.E.2    Policheni, A.N.3    Caminschi, I.4    Wan, S.S.5
  • 68
    • 84859957011 scopus 로고    scopus 로고
    • F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells
    • Ahrens S, Zelenay S, Sancho D, Hanc P, Kjær S, et al. 2012. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36(4):635-45
    • (2012) Immunity , vol.36 , Issue.4 , pp. 635-645
    • Ahrens, S.1    Zelenay, S.2    Sancho, D.3    Hanc, P.4    Kjær, S.5
  • 69
    • 14044270784 scopus 로고    scopus 로고
    • IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity
    • Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, et al. 2005. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174(5):2573-81
    • (2005) J. Immunol. , vol.174 , Issue.5 , pp. 2573-2581
    • Tamura, T.1    Tailor, P.2    Yamaoka, K.3    Kong, H.J.4    Tsujimura, H.5
  • 70
    • 77349083495 scopus 로고    scopus 로고
    • Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8a+ conventional dendritic cells
    • Edelson BT, Wumesh KC, Juang R, Kohyama M, Benoit LA, et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8a+ conventional dendritic cells. J. Exp. Med. 207(4):823-36
    • (2010) J. Exp. Med. , vol.207 , Issue.4 , pp. 823-836
    • Edelson, B.T.1    Wumesh, K.C.2    Juang, R.3    Kohyama, M.4    Benoit, L.A.5
  • 71
    • 84865418665 scopus 로고    scopus 로고
    • Deciphering the transcriptional network of the dendritic cell lineage
    • Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13(9):888-99
    • (2012) Nat. Immunol. , vol.13 , Issue.9 , pp. 888-899
    • Miller, J.C.1    Brown, B.D.2    Shay, T.3    Gautier, E.L.4    Jojic, V.5
  • 72
    • 37549051226 scopus 로고    scopus 로고
    • Identification of a novel population of Langerin+ dendritic cells
    • Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, et al. 2007. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204(13):3147-56
    • (2007) J. Exp. Med. , vol.204 , Issue.13 , pp. 3147-3156
    • Bursch, L.S.1    Wang, L.2    Igyarto, B.3    Kissenpfennig, A.4    Malissen, B.5
  • 73
    • 44049097818 scopus 로고    scopus 로고
    • The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues
    • Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, et al. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9(6):676-83
    • (2008) Nat. Immunol. , vol.9 , Issue.6 , pp. 676-683
    • Waskow, C.1    Liu, K.2    Darrasse-Jeze, G.3    Guermonprez, P.4    Ginhoux, F.5
  • 74
    • 0034210658 scopus 로고    scopus 로고
    • Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells
    • McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, et al. 2000. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489-97
    • (2000) Blood , vol.95 , Issue.11 , pp. 3489-3497
    • McKenna, H.J.1    Stocking, K.L.2    Miller, R.E.3    Brasel, K.4    De Smedt, T.5
  • 75
    • 56449097442 scopus 로고    scopus 로고
    • Batf3 deficiency reveals a critical role for CD8a+ dendritic cells in cytotoxic T cell immunity
    • Hildner K, Hildner K, Edelson BT, Edelson BT, Purtha WE, et al. 2008. Batf3 deficiency reveals a critical role for CD8a+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097-100
    • (2008) Science , vol.322 , Issue.5904 , pp. 1097-1100
    • Hildner, K.1    Hildner, K.2    Edelson, B.T.3    Edelson, B.T.4    Purtha, W.E.5
  • 76
    • 84860240081 scopus 로고    scopus 로고
    • DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues
    • Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, et al. 2012. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119(25):6052-62
    • (2012) Blood , vol.119 , Issue.25 , pp. 6052-6062
    • Poulin, L.F.1    Reyal, Y.2    Uronen-Hansson, H.3    Schraml, B.U.4    Sancho, D.5
  • 77
    • 84905995910 scopus 로고    scopus 로고
    • Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells
    • Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, et al. 2014. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J. Immunol. 193(4):1622-35
    • (2014) J. Immunol. , vol.193 , Issue.4 , pp. 1622-1635
    • Balan, S.1    Ollion, V.2    Colletti, N.3    Chelbi, R.4    Montanana Sanchis, F.5
  • 79
    • 84867884822 scopus 로고    scopus 로고
    • Compensatory dendritic cell development mediated by BATF-IRF interactions
    • Tussiwand R, Lee W-L, Murphy TL, Mashayekhi M, Wumesh KC, et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:502-7
    • (2012) Nature , vol.490 , pp. 502-507
    • Tussiwand, R.1    Lee, W.-L.2    Murphy, T.L.3    Mashayekhi, M.4    Wumesh, K.C.5
  • 80
    • 84931406064 scopus 로고    scopus 로고
    • Batf3 maintains autoactivation of Irf8 for commitment of a CD8a+ conventional DC clonogenic progenitor
    • Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, et al. 2015. Batf3 maintains autoactivation of Irf8 for commitment of a CD8a+ conventional DC clonogenic progenitor. Nat. Immunol. 16(7):708-17
    • (2015) Nat. Immunol. , vol.16 , Issue.7 , pp. 708-717
    • Grajales-Reyes, G.E.1    Iwata, A.2    Albring, J.3    Wu, X.4    Tussiwand, R.5
  • 81
    • 76149133088 scopus 로고    scopus 로고
    • CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells
    • Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, et al. 2010. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207(1):189-206
    • (2010) J. Exp. Med. , vol.207 , Issue.1 , pp. 189-206
    • Henri, S.1    Poulin, L.F.2    Tamoutounour, S.3    Ardouin, L.4    Guilliams, M.5
  • 82
    • 0031570952 scopus 로고    scopus 로고
    • Dendritic cell subtypes in mouse lymphoid organs: Cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes
    • Vremec D, Shortman K. 1997. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol. 159(2):565-73
    • (1997) J. Immunol. , vol.159 , Issue.2 , pp. 565-573
    • Vremec, D.1    Shortman, K.2
  • 83
    • 77349100571 scopus 로고    scopus 로고
    • The CD8+ dendritic cell subset
    • Shortman K, Heath WR. 2010. The CD8+ dendritic cell subset. Immunol. Rev. 234(1):18-31
    • (2010) Immunol. Rev. , vol.234 , Issue.1 , pp. 18-31
    • Shortman, K.1    Heath, W.R.2
  • 85
    • 84864125760 scopus 로고    scopus 로고
    • Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria
    • Piva L, Tetlak P, Claser C, Karjalainen K, Renia L, Ruedl C. 2012. Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J. Immunol. 189(3):1128-32
    • (2012) J. Immunol. , vol.189 , Issue.3 , pp. 1128-1132
    • Piva, L.1    Tetlak, P.2    Claser, C.3    Karjalainen, K.4    Renia, L.5    Ruedl, C.6
  • 86
    • 84938908100 scopus 로고    scopus 로고
    • Identification of teleost skin CD8a+ dendritic-like cells, representing a potential common ancestor for mammalian cross-presenting dendritic cells
    • Granja AG, Leal E, Pignatelli J, Castro R, Abos B, et al. 2015. Identification of teleost skin CD8a+ dendritic-like cells, representing a potential common ancestor for mammalian cross-presenting dendritic cells. J. Immunol. 195(4):1825-37
    • (2015) J. Immunol. , vol.195 , Issue.4 , pp. 1825-1837
    • Granja, A.G.1    Leal, E.2    Pignatelli, J.3    Castro, R.4    Abos, B.5
  • 87
    • 78649511233 scopus 로고    scopus 로고
    • Existence of CD8a-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species
    • Contreras V, Urien C, Guiton R, Alexandre Y, Vu Manh T-P, et al. 2010. Existence of CD8a-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. J. Immunol. 185(6):3313-25
    • (2010) J. Immunol. , vol.185 , Issue.6 , pp. 3313-3325
    • Contreras, V.1    Urien, C.2    Guiton, R.3    Alexandre, Y.4    Vu Manh, T.-P.5
  • 88
    • 84892177710 scopus 로고    scopus 로고
    • Rapid detection of dendritic cell andmonocyte disorders usingCD4as a lineage marker of the human peripheral blood antigen-presenting cell compartment
    • Jardine L, Barge D, Ames-Draycott A, Pagan S, Cookson S, et al. 2013. Rapid detection of dendritic cell andmonocyte disorders usingCD4as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front. Immunol. 4:495
    • (2013) Front. Immunol. , vol.4 , pp. 495
    • Jardine, L.1    Barge, D.2    Ames-Draycott, A.3    Pagan, S.4    Cookson, S.5
  • 89
    • 84878191150 scopus 로고    scopus 로고
    • IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
    • Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, et al. 2013. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970-83
    • (2013) Immunity , vol.38 , Issue.5 , pp. 970-983
    • Schlitzer, A.1    McGovern, N.2    Teo, P.3    Zelante, T.4    Atarashi, K.5
  • 90
    • 84866527686 scopus 로고    scopus 로고
    • IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation
    • Bajana S, Roach K, Turner S, Paul J, Kovats S. 2012. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189(7):3368-77
    • (2012) J. Immunol. , vol.189 , Issue.7 , pp. 3368-3377
    • Bajana, S.1    Roach, K.2    Turner, S.3    Paul, J.4    Kovats, S.5
  • 91
    • 41349119601 scopus 로고    scopus 로고
    • The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
    • Tailor P, Tamura T, Morse HC III, Ozato K. 2008. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111:1942-45
    • (2008) Blood , vol.111 , pp. 1942-1945
    • Tailor, P.1    Tamura, T.2    Morse, H.C.3    Ozato, K.4
  • 92
    • 63049112195 scopus 로고    scopus 로고
    • Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation
    • Haniffa M, Ginhoux F, Wang X-N, Bigley V, Abel M, et al. 2009. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206(2):371-85
    • (2009) J. Exp. Med. , vol.206 , Issue.2 , pp. 371-385
    • Haniffa, M.1    Ginhoux, F.2    Wang, X.-N.3    Bigley, V.4    Abel, M.5
  • 94
    • 84885778452 scopus 로고    scopus 로고
    • Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells
    • Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P, et al. 2013. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 17:722-32
    • (2013) Immunity , vol.17 , pp. 722-732
    • Gao, Y.1    Nish, S.A.2    Jiang, R.3    Hou, L.4    Licona-Limon, P.5
  • 95
    • 84907026928 scopus 로고    scopus 로고
    • CD326loCD103loCD11blo dermal dendritic cells are activated by thymic stromal lymphopoietin during contact sensitization in mice
    • Ochiai S, Roediger B, Abtin A, Shklovskaya E, Fazekas de St Groth B, et al. 2014. CD326loCD103loCD11blo dermal dendritic cells are activated by thymic stromal lymphopoietin during contact sensitization in mice. J. Immunol. 193(5):2504-11
    • (2014) J. Immunol. , vol.193 , Issue.5 , pp. 2504-2511
    • Ochiai, S.1    Roediger, B.2    Abtin, A.3    Shklovskaya, E.4    Fazekas De St Groth, B.5
  • 96
    • 84929661740 scopus 로고    scopus 로고
    • Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses
    • Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A, et al. 2015. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42(5):916-28
    • (2015) Immunity , vol.42 , Issue.5 , pp. 916-928
    • Tussiwand, R.1    Everts, B.2    Grajales-Reyes, G.E.3    Kretzer, N.M.4    Iwata, A.5
  • 97
    • 84929698759 scopus 로고    scopus 로고
    • Kruppel-ling of IRF4-dependent DCs into two functionally distinct DC subsets
    • Bedoui S, Heath WR. 2015. Kruppel-ling of IRF4-dependent DCs into two functionally distinct DC subsets. Immunity 42(5):785-87
    • (2015) Immunity , vol.42 , Issue.5 , pp. 785-787
    • Bedoui, S.1    Heath, W.R.2
  • 98
    • 27744509044 scopus 로고    scopus 로고
    • Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages
    • Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, et al. 2005. Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J. Immunol. 175(10):6570-79
    • (2005) J. Immunol. , vol.175 , Issue.10 , pp. 6570-6579
    • Lehtonen, A.1    Veckman, V.2    Nikula, T.3    Lahesmaa, R.4    Kinnunen, L.5
  • 99
    • 84907966318 scopus 로고    scopus 로고
    • Human dermal CD14+ cells are a transient population of monocyte-derived macrophages
    • McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, et al. 2014. Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity 41(3):465-77
    • (2014) Immunity , vol.41 , Issue.3 , pp. 465-477
    • McGovern, N.1    Schlitzer, A.2    Gunawan, M.3    Jardine, L.4    Shin, A.5
  • 100
    • 79951693243 scopus 로고    scopus 로고
    • The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
    • Bigley V, Haniffa M, Doulatov S, Wang X-N, Dickinson R, et al. 2011. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208(2):227-34
    • (2011) J. Exp. Med. , vol.208 , Issue.2 , pp. 227-234
    • Bigley, V.1    Haniffa, M.2    Doulatov, S.3    Wang, X.-N.4    Dickinson, R.5
  • 101
    • 84960354901 scopus 로고    scopus 로고
    • Tissue-resident macrophage ontogeny and homeostasis
    • Ginhoux F, Guilliams M. 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439-49
    • (2016) Immunity , vol.44 , Issue.3 , pp. 439-449
    • Ginhoux, F.1    Guilliams, M.2
  • 102
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159(6):1312-26
    • (2014) Cell , vol.159 , Issue.6 , pp. 1312-1326
    • Lavin, Y.1    Winter, D.2    Blecher-Gonen, R.3    David, E.4    Keren-Shaul, H.5
  • 103
    • 84887616366 scopus 로고    scopus 로고
    • Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
    • Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5):925-38
    • (2013) Immunity , vol.39 , Issue.5 , pp. 925-938
    • Tamoutounour, S.1    Guilliams, M.2    Montanana Sanchis, F.3    Liu, H.4    Terhorst, D.5
  • 104
    • 84920724792 scopus 로고    scopus 로고
    • Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
    • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159(6):1327-40
    • (2014) Cell , vol.159 , Issue.6 , pp. 1327-1340
    • Gosselin, D.1    Link, V.M.2    Romanoski, C.E.3    Fonseca, G.J.4    Eichenfield, D.Z.5
  • 105
    • 84864297838 scopus 로고    scopus 로고
    • Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
    • Satpathy AT, Wumesh KC, Albring JC, Edelson BT, Kretzer NM, et al. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209(6):1135-52
    • (2012) J. Exp. Med. , vol.209 , Issue.6 , pp. 1135-1152
    • Satpathy, A.T.1    Wumesh, K.C.2    Albring, J.C.3    Edelson, B.T.4    Kretzer, N.M.5
  • 106
    • 84864296761 scopus 로고    scopus 로고
    • Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
    • Meredith MM, Liu K, Darasse-Jeze G, Kamphorst AO, Schreiber HA, et al. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209(6):1153-65
    • (2012) J. Exp. Med. , vol.209 , Issue.6 , pp. 1153-1165
    • Meredith, M.M.1    Liu, K.2    Darasse-Jeze, G.3    Kamphorst, A.O.4    Schreiber, H.A.5
  • 107
    • 0037625155 scopus 로고    scopus 로고
    • TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
    • Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59-70
    • (2003) Immunity , vol.19 , Issue.1 , pp. 59-70
    • Serbina, N.V.1    Salazar-Mather, T.P.2    Biron, C.A.3    Kuziel, W.A.4    Pamer, E.G.5
  • 108
    • 30044435436 scopus 로고    scopus 로고
    • Increase in TNF-a and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a)
    • Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin S-L, et al. 2005. Increase in TNF-a and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). PNAS 102(52):19057-62
    • (2005) PNAS , vol.102 , Issue.52 , pp. 19057-19062
    • Lowes, M.A.1    Chamian, F.2    Abello, M.V.3    Fuentes-Duculan, J.4    Lin, S.-L.5
  • 109
    • 0029922964 scopus 로고    scopus 로고
    • Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema
    • Wollenberg A, Kraft S, Hanau D, Bieber T. 1996. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Investig. Dermatol. 106(3):446-53
    • (1996) J. Investig. Dermatol. , vol.106 , Issue.3 , pp. 446-453
    • Wollenberg, A.1    Kraft, S.2    Hanau, D.3    Bieber, T.4
  • 110
    • 79952309024 scopus 로고    scopus 로고
    • Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses
    • 787-94e9
    • Hansel A, Gunther C, Ingwersen J, Starke J, Schmitz M, et al. 2011. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 127(3):787-94.e-9
    • (2011) J. Allergy Clin. Immunol. , vol.127 , Issue.3
    • Hansel, A.1    Gunther, C.2    Ingwersen, J.3    Starke, J.4    Schmitz, M.5
  • 112
    • 0030949479 scopus 로고    scopus 로고
    • The enigmatic plasmacytoid Tcells develop into dendritic cells with interleukin (IL)-3 andCD40-ligand
    • Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. 1997. The enigmatic plasmacytoid Tcells develop into dendritic cells with interleukin (IL)-3 andCD40-ligand. J. Exp. Med. 185(6):1101-11
    • (1997) J. Exp. Med. , vol.185 , Issue.6 , pp. 1101-1111
    • Grouard, G.1    Rissoan, M.C.2    Filgueira, L.3    Durand, I.4    Banchereau, J.5    Liu, Y.J.6
  • 113
    • 67449128181 scopus 로고    scopus 로고
    • CD2distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions
    • Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, et al. 2009.CD2distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182(11):6815-23
    • (2009) J. Immunol. , vol.182 , Issue.11 , pp. 6815-6823
    • Matsui, T.1    Connolly, J.E.2    Michnevitz, M.3    Chaussabel, D.4    Yu, C.I.5
  • 115
    • 84937967684 scopus 로고    scopus 로고
    • The multifaceted biology of plasmacytoid dendritic cells
    • Swiecki M, Colonna M. 2015. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15(8):471-85
    • (2015) Nat. Rev. Immunol. , vol.15 , Issue.8 , pp. 471-485
    • Swiecki, M.1    Colonna, M.2
  • 116
    • 0032773794 scopus 로고    scopus 로고
    • Plasmacytoid monocytesmigrate to inflamed lymph nodes and produce large amounts of type i interferon
    • Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, et al. 1999. Plasmacytoid monocytesmigrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5(8):919-23
    • (1999) Nat. Med. , vol.5 , Issue.8 , pp. 919-923
    • Cella, M.1    Jarrossay, D.2    Facchetti, F.3    Alebardi, O.4    Nakajima, H.5
  • 117
    • 42049093255 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus
    • McNiff JM, Kaplan DH. 2008. Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus. J. Cutan. Pathol. 35(5):452-56
    • (2008) J. Cutan. Pathol. , vol.35 , Issue.5 , pp. 452-456
    • McNiff, J.M.1    Kaplan, D.H.2
  • 118
    • 22344438901 scopus 로고    scopus 로고
    • Plasmacytoid predendritic cells initiate psoriasis through interferon-aproduction
    • Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, et al. 2005. Plasmacytoid predendritic cells initiate psoriasis through interferon-aproduction. J. Exp. Med. 202(1):135-43
    • (2005) J. Exp. Med. , vol.202 , Issue.1 , pp. 135-143
    • Nestle, F.O.1    Conrad, C.2    Tun-Kyi, A.3    Homey, B.4    Gombert, M.5
  • 119
    • 0033546053 scopus 로고    scopus 로고
    • The nature of the principal type 1 interferon-producing cells in human blood
    • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, et al. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835-37
    • (1999) Science , vol.284 , Issue.5421 , pp. 1835-1837
    • Siegal, F.P.1    Kadowaki, N.2    Shodell, M.3    Fitzgerald-Bocarsly, P.A.4    Shah, K.5
  • 120
    • 0032546352 scopus 로고    scopus 로고
    • Dendritic cells and the control of immunity
    • Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392(6673):245-52
    • (1998) Nature , vol.392 , Issue.6673 , pp. 245-252
    • Banchereau, J.1    Steinman, R.M.2
  • 122
    • 77349093593 scopus 로고    scopus 로고
    • Defining dendritic cells by conditional and constitutive cell ablation
    • Bar-On L, Jung S. 2010. Defining dendritic cells by conditional and constitutive cell ablation. Immunol. Rev. 234(1):76-89
    • (2010) Immunol. Rev. , vol.234 , Issue.1 , pp. 76-89
    • Bar-On, L.1    Jung, S.2
  • 123
    • 84894078016 scopus 로고    scopus 로고
    • The evolution of cellular deficiency in GATA2 mutation
    • Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, et al. 2014. The evolution of cellular deficiency in GATA2 mutation. Blood 123(6):863-74
    • (2014) Blood , vol.123 , Issue.6 , pp. 863-874
    • Dickinson, R.E.1    Milne, P.2    Jardine, L.3    Zandi, S.4    Swierczek, S.I.5
  • 124
    • 0035903326 scopus 로고    scopus 로고
    • Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo
    • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, et al. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194(6):769-79
    • (2001) J. Exp. Med. , vol.194 , Issue.6 , pp. 769-779
    • Hawiger, D.1    Inaba, K.2    Dorsett, Y.3    Guo, M.4    Mahnke, K.5
  • 125
    • 0037122011 scopus 로고    scopus 로고
    • Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class i products and peripheral CD8+ T cell tolerance
    • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196(12):1627-38
    • (2002) J. Exp. Med. , vol.196 , Issue.12 , pp. 1627-1638
    • Bonifaz, L.1    Bonnyay, D.2    Mahnke, K.3    Rivera, M.4    Nussenzweig, M.C.5    Steinman, R.M.6
  • 126
    • 77951737543 scopus 로고    scopus 로고
    • Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A
    • Joffre OP, Sancho D, Zelenay S, Keller AM, Reis e Sousa C. 2010. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur. J. Immunol. 40(5):1255-65
    • (2010) Eur. J. Immunol. , vol.40 , Issue.5 , pp. 1255-1265
    • Joffre, O.P.1    Sancho, D.2    Zelenay, S.3    Keller, A.M.4    Reis e Sousa, C.5
  • 127
    • 84906568561 scopus 로고    scopus 로고
    • Classical Flt3L-dependent dendritic cells control immunity to protein vaccine
    • Anandasabapathy N, Feder R, Mollah S, Tse S-W, Longhi MP, et al. 2014. Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. J. Exp. Med. 211(9):1875-91
    • (2014) J. Exp. Med. , vol.211 , Issue.9 , pp. 1875-1891
    • Anandasabapathy, N.1    Feder, R.2    Mollah, S.3    Tse, S.-W.4    Longhi, M.P.5
  • 128
    • 35348968837 scopus 로고    scopus 로고
    • Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation
    • Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, et al. 2007. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610-24
    • (2007) Immunity , vol.27 , Issue.4 , pp. 610-624
    • Jiang, A.1    Bloom, O.2    Ono, S.3    Cui, W.4    Unternaehrer, J.5
  • 129
    • 77955634800 scopus 로고    scopus 로고
    • Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine
    • Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, et al. 2010. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849-53
    • (2010) Science , vol.329 , Issue.5993 , pp. 849-853
    • Manicassamy, S.1    Reizis, B.2    Ravindran, R.3    Nakaya, H.4    Salazar-Gonzalez, R.M.5
  • 130
    • 84928206908 scopus 로고    scopus 로고
    • Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance
    • Baratin M, Foray C, Demaria O, Habbeddine M, Pollet E, et al. 2015. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42(4):627-39
    • (2015) Immunity , vol.42 , Issue.4 , pp. 627-639
    • Baratin, M.1    Foray, C.2    Demaria, O.3    Habbeddine, M.4    Pollet, E.5
  • 131
    • 43449135305 scopus 로고    scopus 로고
    • TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function
    • Zhou L, Lopes JE, Chong MMW, Ivanov II, Min R, et al. 2008. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function. Nature 453(7192):236-40
    • (2008) Nature , vol.453 , Issue.7192 , pp. 236-240
    • Zhou, L.1    Lopes, J.E.2    Chong, M.M.W.3    Ivanov, I.I.4    Min, R.5
  • 132
    • 17144400393 scopus 로고    scopus 로고
    • TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25 + regulatory T cells
    • Marie JC, Letterio JJ, GavinM, Rudensky AY. 2005. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25 + regulatory T cells. J. Exp. Med. 201(7):1061-67
    • (2005) J. Exp. Med. , vol.201 , Issue.7 , pp. 1061-1067
    • Marie, J.C.1    Letterio, J.J.2    Gavin, M.3    Rudensky, A.Y.4
  • 133
    • 55549084247 scopus 로고    scopus 로고
    • Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells
    • Hill JA, Hall JA, Sun C-M, Cai Q, Ghyselinck N, et al. 2008. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29(5):758-70
    • (2008) Immunity , vol.29 , Issue.5 , pp. 758-770
    • Hill, J.A.1    Hall, J.A.2    Sun, C.-M.3    Cai, Q.4    Ghyselinck, N.5
  • 134
    • 84873331871 scopus 로고    scopus 로고
    • Specialized role of migratory dendritic cells in peripheral tolerance induction
    • Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, et al. 2013. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Investig. 123:844-54
    • (2013) J. Clin. Investig. , vol.123 , pp. 844-854
    • Idoyaga, J.1    Fiorese, C.2    Zbytnuik, L.3    Lubkin, A.4    Miller, J.5
  • 135
    • 84928958293 scopus 로고    scopus 로고
    • Skin dendritic cells induce follicular helper T cells and protective humoral immune responses
    • Yao C, Zurawski SM, Jarrett ES, Chicoine B, Crabtree J, et al. 2015. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol. 136:1387-97.e7
    • (2015) J. Allergy Clin. Immunol. , vol.136 , pp. 1387-1387e7
    • Yao, C.1    Zurawski, S.M.2    Jarrett, E.S.3    Chicoine, B.4    Crabtree, J.5
  • 136
    • 84924535047 scopus 로고    scopus 로고
    • Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates
    • Li J, Ahmet F, Sullivan LC, Brooks AG, Kent SJ, et al. 2015. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur. J. Immunol. 45(3):854-64
    • (2015) Eur. J. Immunol. , vol.45 , Issue.3 , pp. 854-864
    • Li, J.1    Ahmet, F.2    Sullivan, L.C.3    Brooks, A.G.4    Kent, S.J.5
  • 137
    • 84861462335 scopus 로고    scopus 로고
    • Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells
    • Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 2012. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36(5):873-84
    • (2012) Immunity , vol.36 , Issue.5 , pp. 873-884
    • Seneschal, J.1    Clark, R.A.2    Gehad, A.3    Baecher-Allan, C.M.4    Kupper, T.S.5
  • 138
  • 139
    • 77950408684 scopus 로고    scopus 로고
    • Skin-draining lymph nodes contain dermis-derived CD103-dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells
    • Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P, et al. 2010. Skin-draining lymph nodes contain dermis-derived CD103-dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood 115(10):1958-68
    • (2010) Blood , vol.115 , Issue.10 , pp. 1958-1968
    • Guilliams, M.1    Crozat, K.2    Henri, S.3    Tamoutounour, S.4    Grenot, P.5
  • 140
    • 84863116620 scopus 로고    scopus 로고
    • Targeting self-and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells
    • Li D, Romain G, Flamar A-L, Duluc D, Dullaers M, et al. 2012. Targeting self-and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med. 209(1):109-21
    • (2012) J. Exp. Med. , vol.209 , Issue.1 , pp. 109-121
    • Li, D.1    Romain, G.2    Flamar, A.-L.3    Duluc, D.4    Dullaers, M.5
  • 141
    • 77953502765 scopus 로고    scopus 로고
    • Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens
    • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, et al. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207(6):1247-60
    • (2010) J. Exp. Med. , vol.207 , Issue.6 , pp. 1247-1260
    • Jongbloed, S.L.1    Kassianos, A.J.2    McDonald, K.J.3    Clark, G.J.4    Ju, X.5
  • 143
    • 80051906942 scopus 로고    scopus 로고
    • Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
    • Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, et al. 2011. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35(2):260-72
    • (2011) Immunity , vol.35 , Issue.2 , pp. 260-272
    • Igyarto, B.Z.1    Haley, K.2    Ortner, D.3    Bobr, A.4    Gerami-Nejad, M.5
  • 144
    • 84928704650 scopus 로고    scopus 로고
    • Commensal-dendritic-cell interaction specifies a unique protective skin immune signature
    • Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ, et al. 2015. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104-8
    • (2015) Nature , vol.520 , Issue.7545 , pp. 104-108
    • Naik, S.1    Bouladoux, N.2    Linehan, J.L.3    Han, S.-J.4    Harrison, O.J.5
  • 145
    • 65249099085 scopus 로고    scopus 로고
    • Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells
    • Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, et al. 2009. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10(5):488-95
    • (2009) Nat. Immunol. , vol.10 , Issue.5 , pp. 488-495
    • Bedoui, S.1    Whitney, P.G.2    Waithman, J.3    Eidsmo, L.4    Wakim, L.5
  • 146
    • 84941739187 scopus 로고    scopus 로고
    • Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection
    • Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. 2015. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43:554-65
    • (2015) Immunity , vol.43 , pp. 554-565
    • Hor, J.L.1    Whitney, P.G.2    Zaid, A.3    Brooks, A.G.4    Heath, W.R.5    Mueller, S.N.6
  • 147
    • 84941356605 scopus 로고    scopus 로고
    • Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions
    • Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, et al. 2015. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162(6):1322-37
    • (2015) Cell , vol.162 , Issue.6 , pp. 1322-1337
    • Eickhoff, S.1    Brewitz, A.2    Gerner, M.Y.3    Klauschen, F.4    Komander, K.5
  • 148
    • 84955493687 scopus 로고    scopus 로고
    • Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node
    • Kitano M, Yamazaki C, Takumi A, Ikeno T, Hemmi H, et al. 2016. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. PNAS 113(4):1044-49
    • (2016) PNAS , vol.113 , Issue.4 , pp. 1044-1049
    • Kitano, M.1    Yamazaki, C.2    Takumi, A.3    Ikeno, T.4    Hemmi, H.5
  • 149
    • 0036883606 scopus 로고    scopus 로고
    • A modification of the epidermal scarification model of herpes simplex virus infection to achieve a reproducible and uniform progression of disease
    • Goel N, Lee HK, Docherty JJ, Zamora M, Linehan MM, et al. 2002. A modification of the epidermal scarification model of herpes simplex virus infection to achieve a reproducible and uniform progression of disease. J. Virol. Methods 106(2):153-58
    • (2002) J. Virol. Methods , vol.106 , Issue.2 , pp. 153-158
    • Goel, N.1    Lee, H.K.2    Docherty, J.J.3    Zamora, M.4    Linehan, M.M.5
  • 150
    • 84918531042 scopus 로고    scopus 로고
    • Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance
    • Flacher V, Tripp CH, Mairhofer DG, Steinman RM, Stoitzner P, et al. 2014. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol. Med. 6(9):1191-204
    • (2014) EMBO Mol. Med. , vol.6 , Issue.9 , pp. 1191-1204
    • Flacher, V.1    Tripp, C.H.2    Mairhofer, D.G.3    Steinman, R.M.4    Stoitzner, P.5
  • 151
    • 84863800955 scopus 로고    scopus 로고
    • Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation
    • Chu C-C, Ali N, Karagiannis P, DiMeglio P, Skowera A, et al. 2012. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J. Exp. Med. 209(5):935-45
    • (2012) J. Exp. Med. , vol.209 , Issue.5 , pp. 935-945
    • Chu, C.-C.1    Ali, N.2    Karagiannis, P.3    DiMeglio, P.4    Skowera, A.5
  • 152
    • 84935049583 scopus 로고    scopus 로고
    • Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells
    • Artyomov MN, Munk A, Gorvel L, Korenfeld D, Cella M, et al. 2015. Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. J. Exp. Med. 212(5):743-57
    • (2015) J. Exp. Med. , vol.212 , Issue.5 , pp. 743-757
    • Artyomov, M.N.1    Munk, A.2    Gorvel, L.3    Korenfeld, D.4    Cella, M.5
  • 153
    • 80051915459 scopus 로고    scopus 로고
    • CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites
    • Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, et al. 2011. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35(2):249-59
    • (2011) Immunity , vol.35 , Issue.2 , pp. 249-259
    • Mashayekhi, M.1    Sandau, M.M.2    Dunay, I.R.3    Frickel, E.M.4    Khan, A.5
  • 154
    • 84921065511 scopus 로고    scopus 로고
    • Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice
    • Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D. 2015. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur. J. Immunol. 45(1):119-29
    • (2015) Eur. J. Immunol. , vol.45 , Issue.1 , pp. 119-129
    • Martinez-Lopez, M.1    Iborra, S.2    Conde-Garrosa, R.3    Sancho, D.4
  • 155
    • 84923000491 scopus 로고    scopus 로고
    • Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
    • Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed J, et al. 2015. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42(2):356-66
    • (2015) Immunity , vol.42 , Issue.2 , pp. 356-366
    • Kashem, S.W.1    Igyarto, B.Z.2    Gerami-Nejad, M.3    Kumamoto, Y.4    Mohammed, J.5
  • 156
    • 0037455066 scopus 로고    scopus 로고
    • Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2
    • Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, et al. 2003. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197(2):153-62
    • (2003) J. Exp. Med. , vol.197 , Issue.2 , pp. 153-162
    • Zhao, X.1    Deak, E.2    Soderberg, K.3    Linehan, M.4    Spezzano, D.5
  • 157
    • 84946040280 scopus 로고    scopus 로고
    • BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming
    • Bollampalli VP, Harumi Yamashiro L, Feng X, Bierschenk D, Gao Y, et al. 2015. BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming. PLOS Pathog. 11(10):e1005206
    • (2015) PLOS Pathog. , vol.11 , Issue.10 , pp. e1005206
    • Bollampalli, V.P.1    Harumi Yamashiro, L.2    Feng, X.3    Bierschenk, D.4    Gao, Y.5
  • 158
    • 34247104151 scopus 로고    scopus 로고
    • Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania
    • Leon B, Lopez-BravoM, Ardavin C. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26(4):519-31
    • (2007) Immunity , vol.26 , Issue.4 , pp. 519-531
    • Leon, B.1    Lopez-Bravo, M.2    Ardavin, C.3
  • 159
    • 77956932553 scopus 로고    scopus 로고
    • Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways
    • Zhan Y, Xu Y, Seah S, Brady JL, Carrington EM, et al. 2010. Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. J. Immunol. 185(4):2125-33
    • (2010) J. Immunol. , vol.185 , Issue.4 , pp. 2125-2133
    • Zhan, Y.1    Xu, Y.2    Seah, S.3    Brady, J.L.4    Carrington, E.M.5
  • 160
    • 66149111441 scopus 로고    scopus 로고
    • MGL2 dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo
    • Kumamoto Y, Denda-Nagai K, Aida S, Higashi N, Irimura T. 2009. MGL2 dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLOS ONE 4(5):e5619
    • (2009) PLOS ONE , vol.4 , Issue.5 , pp. e5619
    • Kumamoto, Y.1    Denda-Nagai, K.2    Aida, S.3    Higashi, N.4    Irimura, T.5
  • 161
    • 84887450143 scopus 로고    scopus 로고
    • Cutting edge: Identification of the thymic stromal lymphopoietinresponsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity
    • Kitajima M, Ziegler SF. 2013. Cutting edge: Identification of the thymic stromal lymphopoietinresponsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J. Immunol. 191(10):4903-7
    • (2013) J. Immunol. , vol.191 , Issue.10 , pp. 4903-4907
    • Kitajima, M.1    Ziegler, S.F.2
  • 162
    • 84875421490 scopus 로고    scopus 로고
    • The transcription factor STAT5 is critical in dendritic cells for the development ofTH2 but notTH1 responses
    • Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, et al. 2013. The transcription factor STAT5 is critical in dendritic cells for the development ofTH2 but notTH1 responses. Nat. Immunol. 14(4):364-71
    • (2013) Nat. Immunol. , vol.14 , Issue.4 , pp. 364-371
    • Bell, B.D.1    Kitajima, M.2    Larson, R.P.3    Stoklasek, T.A.4    Dang, K.5
  • 163
    • 84961163619 scopus 로고    scopus 로고
    • Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12
    • Everts B, Tussiwand R, Dreesen L, Fairfax KC, Huang SC-C, et al. 2016. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 213(1):35-51
    • (2016) J. Exp. Med. , vol.213 , Issue.1 , pp. 35-51
    • Everts, B.1    Tussiwand, R.2    Dreesen, L.3    Fairfax, K.C.4    Sc-C, H.5
  • 164
    • 84952637013 scopus 로고    scopus 로고
    • Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses
    • Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, et al. 2016. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17(1):57-64
    • (2016) Nat. Immunol. , vol.17 , Issue.1 , pp. 57-64
    • Halim, T.Y.F.1    Hwang, Y.Y.2    Scanlon, S.T.3    Zaghouani, H.4    Garbi, N.5
  • 166
    • 84861162719 scopus 로고    scopus 로고
    • Th17 cells in immunity to Candida albicans
    • Hernandez-Santos N, Gaffen SL. 2012. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11(5):425-35
    • (2012) Cell Host Microbe , vol.11 , Issue.5 , pp. 425-435
    • Hernandez-Santos, N.1    Gaffen, S.L.2
  • 167
    • 80055107954 scopus 로고    scopus 로고
    • DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
    • Randall KL, Chan SS-Y, Ma CS, Fung I, Mei Y, et al. 2011. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208(11):2305-20
    • (2011) J. Exp. Med. , vol.208 , Issue.11 , pp. 2305-2320
    • Randall, K.L.1    Chan, S.S.-Y.2    Ma, C.S.3    Fung, I.4    Mei, Y.5
  • 168
    • 84861078339 scopus 로고    scopus 로고
    • DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses
    • Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, et al. 2012. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119(19):4451-61
    • (2012) Blood , vol.119 , Issue.19 , pp. 4451-4461
    • Harada, Y.1    Tanaka, Y.2    Terasawa, M.3    Pieczyk, M.4    Habiro, K.5
  • 169
    • 84860318542 scopus 로고    scopus 로고
    • Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration
    • Haley K, Igyarto BZ, Ortner D, Bobr A, Kashem S, et al. 2012. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188(9):4334-39
    • (2012) J. Immunol. , vol.188 , Issue.9 , pp. 4334-4339
    • Haley, K.1    Igyarto, B.Z.2    Ortner, D.3    Bobr, A.4    Kashem, S.5
  • 170
    • 84928184443 scopus 로고    scopus 로고
    • Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis
    • Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, et al. 2015. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42(4):756-66
    • (2015) Immunity , vol.42 , Issue.4 , pp. 756-766
    • Kobayashi, T.1    Glatz, M.2    Horiuchi, K.3    Kawasaki, H.4    Akiyama, H.5
  • 171
    • 60549093645 scopus 로고    scopus 로고
    • Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses
    • Mathers AR, Janelsins BM, Rubin JP, Tkacheva OA, ShufeskyWJ, et al. 2009. Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J. Immunol. 182(2):921-33
    • (2009) J. Immunol. , vol.182 , Issue.2 , pp. 921-933
    • Mathers, A.R.1    Janelsins, B.M.2    Rubin, J.P.3    Tkacheva, O.A.4    Shufesky, W.J.5
  • 172
    • 84944225948 scopus 로고    scopus 로고
    • Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells
    • Linehan JL, Dileepan T, Kashem SW, Kaplan DH, Cleary P, Jenkins MK. 2015. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells. PNAS 112(41):12782-87
    • (2015) PNAS , vol.112 , Issue.41 , pp. 12782-12787
    • Linehan, J.L.1    Dileepan, T.2    Kashem, S.W.3    Kaplan, D.H.4    Cleary, P.5    Jenkins, M.K.6
  • 173
    • 84859158015 scopus 로고    scopus 로고
    • Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling
    • Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, et al. 2012. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol. 129(4):1048-55.e6
    • (2012) J. Allergy Clin. Immunol. , vol.129 , Issue.4 , pp. 1048-1048e6
    • Nakajima, S.1    Igyarto, B.Z.2    Honda, T.3    Egawa, G.4    Otsuka, A.5
  • 174
    • 84923673310 scopus 로고    scopus 로고
    • Langerhans cells promote early germinal center formation in response to Leishmania-derived cutaneous antigens
    • Zimara N, Florian C, Schmid M, Malissen B, Kissenpfennig A, et al. 2014. Langerhans cells promote early germinal center formation in response to Leishmania-derived cutaneous antigens. Eur. J. Immunol. 44(10):2955-67
    • (2014) Eur. J. Immunol. , vol.44 , Issue.10 , pp. 2955-2967
    • Zimara, N.1    Florian, C.2    Schmid, M.3    Malissen, B.4    Kissenpfennig, A.5
  • 176
    • 84988672765 scopus 로고    scopus 로고
    • CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens
    • Kumamoto Y, Hirai T, Wong PW, Kaplan DH, Iwasaki A. 2016. CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens. eLife 2016:17979
    • (2016) ELife , vol.2016 , pp. 17979
    • Kumamoto, Y.1    Hirai, T.2    Wong, P.W.3    Kaplan, D.H.4    Iwasaki, A.5
  • 177
    • 79960544931 scopus 로고    scopus 로고
    • Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype
    • Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, et al. 2011. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. 187(2):842-50
    • (2011) J. Immunol. , vol.187 , Issue.2 , pp. 842-850
    • Lahoud, M.H.1    Ahmet, F.2    Kitsoulis, S.3    Wan, S.S.4    Vremec, D.5
  • 180
    • 84908146020 scopus 로고    scopus 로고
    • Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin
    • Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, et al. 2014. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15(11):1064-69
    • (2014) Nat. Immunol. , vol.15 , Issue.11 , pp. 1064-1069
    • Natsuaki, Y.1    Egawa, G.2    Nakamizo, S.3    Ono, S.4    Hanakawa, S.5
  • 181
    • 84907479665 scopus 로고    scopus 로고
    • T cell memory: A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells
    • Iijima N, Iwasaki A. 2014. T cell memory: a local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346(6205):93-98
    • (2014) Science , vol.346 , Issue.6205 , pp. 93-98
    • Iijima, N.1    Iwasaki, A.2
  • 182
    • 84968690743 scopus 로고    scopus 로고
    • Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation
    • Collins N, Jiang X, Zaid A, Macleod BL, Li J, et al. 2016. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7:11514
    • (2016) Nat. Commun. , vol.7 , pp. 11514
    • Collins, N.1    Jiang, X.2    Zaid, A.3    Macleod, B.L.4    Li, J.5
  • 183
    • 84900862778 scopus 로고    scopus 로고
    • Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis
    • Kim T-G, Jee H, Fuentes-Duculan J, Wu WH, Byamba D, et al. 2014. Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J. Investig. Dermatol. 134(5):1462-65
    • (2014) J. Investig. Dermatol. , vol.134 , Issue.5 , pp. 1462-1465
    • Kim, T.-G.1    Jee, H.2    Fuentes-Duculan, J.3    Wu, W.H.4    Byamba, D.5
  • 184
    • 84898037662 scopus 로고    scopus 로고
    • Persistence of skin-resident memory T cells within an epidermal niche
    • Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, et al. 2014. Persistence of skin-resident memory T cells within an epidermal niche. PNAS 111(14):5307-12
    • (2014) PNAS , vol.111 , Issue.14 , pp. 5307-5312
    • Zaid, A.1    Mackay, L.K.2    Rahimpour, A.3    Braun, A.4    Veldhoen, M.5
  • 185
    • 38149001476 scopus 로고    scopus 로고
    • Dendritic cell-induced memory T cell activation in nonlymphoid tissues
    • Wakim LM, Waithman J, vanRooijen N, Heath WR, Carbone FR. 2008. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319(5860):198-202
    • (2008) Science , vol.319 , Issue.5860 , pp. 198-202
    • Wakim, L.M.1    Waithman, J.2    VanRooijen, N.3    Heath, W.R.4    Carbone, F.R.5
  • 186
    • 60149101114 scopus 로고    scopus 로고
    • Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin
    • McLachlan JB, Catron DM, Moon JJ, Jenkins MK. 2009. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatoryTcells in inflamed skin. Immunity 30(2):277-88
    • (2009) Immunity , vol.30 , Issue.2 , pp. 277-288
    • McLachlan, J.B.1    Catron, D.M.2    Moon, J.J.3    Jenkins, M.K.4
  • 187
    • 84455191813 scopus 로고    scopus 로고
    • IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity
    • Girard-Madoux MJH, Kel JM, Reizis B, Clausen BE. 2012. IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity. J. Allergy Clin. Immunol. 129(1):143-50.e10
    • (2012) J. Allergy Clin. Immunol. , vol.129 , Issue.1 , pp. 143-143e10
    • Girard-Madoux, M.J.H.1    Kel, J.M.2    Reizis, B.3    Clausen, B.E.4
  • 188
    • 2542448243 scopus 로고    scopus 로고
    • CD1: Antigen presentation and T cell function
    • Brigl M, Brenner MB. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22(1):817-90
    • (2004) Annu. Rev. Immunol. , vol.22 , Issue.1 , pp. 817-890
    • Brigl, M.1    Brenner, M.B.2
  • 189
    • 84892799782 scopus 로고    scopus 로고
    • CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens
    • de Jong A, Cheng T-Y, Huang S, Gras S, Birkinshaw RW, et al. 2014. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15(2):177-85
    • (2014) Nat. Immunol. , vol.15 , Issue.2 , pp. 177-185
    • De Jong, A.1    Cheng, T.-Y.2    Huang, S.3    Gras, S.4    Birkinshaw, R.W.5
  • 190
    • 11144353750 scopus 로고    scopus 로고
    • Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells
    • Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, et al. 2004. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Investig. 113(5):701-8
    • (2004) J. Clin. Investig. , vol.113 , Issue.5 , pp. 701-708
    • Hunger, R.E.1    Sieling, P.A.2    Ochoa, M.T.3    Sugaya, M.4    Burdick, A.E.5
  • 192
    • 84958617542 scopus 로고    scopus 로고
    • Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase
    • Jarrett R, Salio M, Lloyd-Lavery A, Subramaniam S, Bourgeois E, et al. 2016. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci. Transl. Med. 8(325):325ra18
    • (2016) Sci. Transl. Med. , vol.8 , Issue.325 , pp. 325ra18
    • Jarrett, R.1    Salio, M.2    Lloyd-Lavery, A.3    Subramaniam, S.4    Bourgeois, E.5
  • 193
    • 84983528036 scopus 로고    scopus 로고
    • CD1a on Langerhans cells controls inflammatory skin disease
    • Kim JH, Hu Y, Yongqing T, Kim J, Hughes VA, et al. 2016. CD1a on Langerhans cells controls inflammatory skin disease. Nat. Immunol. 17:1159-66
    • (2016) Nat. Immunol. , vol.17 , pp. 1159-1166
    • Kim, J.H.1    Hu, Y.2    Yongqing, T.3    Kim, J.4    Hughes, V.A.5
  • 194
    • 84997764950 scopus 로고    scopus 로고
    • Complete humanCD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence
    • Cerny D, Thi Le DH, The TD, Zuest R, Kg S, et al. 2016. Complete humanCD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J. Allergy Clin. Immunol. 138(6):1709-12.e11
    • (2016) J. Allergy Clin. Immunol. , vol.138 , Issue.6 , pp. 1709-1709e11
    • Cerny, D.1    Thi Le, D.H.2    The, T.D.3    Zuest, R.4    Kg, S.5
  • 195
    • 84878257398 scopus 로고    scopus 로고
    • Deficiency in IL-17-committed V4+ d T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis
    • Gray EE, Ramirez-Valle F, Xu Y, Wu S, Wu Z, et al. 2013. Deficiency in IL-17-committed V4+d T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14(6):584-92
    • (2013) Nat. Immunol. , vol.14 , Issue.6 , pp. 584-592
    • Gray, E.E.1    Ramirez-Valle, F.2    Xu, Y.3    Wu, S.4    Wu, Z.5
  • 196
    • 79952725610 scopus 로고    scopus 로고
    • Cutaneous immunosurveillance by selfrenewing dermal dT cells
    • Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, et al. 2011. Cutaneous immunosurveillance by selfrenewing dermal dT cells. J. Exp. Med. 208(3):505-18
    • (2011) J. Exp. Med. , vol.208 , Issue.3 , pp. 505-518
    • Sumaria, N.1    Roediger, B.2    Ng, L.G.3    Qin, J.4    Pinto, R.5
  • 197
    • 77951861324 scopus 로고    scopus 로고
    • IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice
    • Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, et al. 2010. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Investig. 120(5):1762-73
    • (2010) J. Clin. Investig. , vol.120 , Issue.5 , pp. 1762-1773
    • Cho, J.S.1    Pietras, E.M.2    Garcia, N.C.3    Ramos, R.I.4    Farzam, D.M.5
  • 199
    • 84901976634 scopus 로고    scopus 로고
    • Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation
    • Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A, et al. 2014. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510(7503):157-61
    • (2014) Nature , vol.510 , Issue.7503 , pp. 157-161
    • Riol-Blanco, L.1    Ordovas-Montanes, J.2    Perro, M.3    Naval, E.4    Thiriot, A.5
  • 200
    • 84941645578 scopus 로고    scopus 로고
    • Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity
    • Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. 2015. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43(3):515-26
    • (2015) Immunity , vol.43 , Issue.3 , pp. 515-526
    • Kashem, S.W.1    Riedl, M.S.2    Yao, C.3    Honda, C.N.4    Vulchanova, L.5    Kaplan, D.H.6
  • 201
    • 84902537284 scopus 로고    scopus 로고
    • IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17Aproducing dT cells
    • Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, et al. 2014. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17Aproducing dT cells. J. Investig. Dermatol. 134(7):1912-21
    • (2014) J. Investig. Dermatol. , vol.134 , Issue.7 , pp. 1912-1921
    • Yoshiki, R.1    Kabashima, K.2    Honda, T.3    Nakamizo, S.4    Sawada, Y.5
  • 202
    • 84879547366 scopus 로고    scopus 로고
    • Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice
    • Wohn C, Ober-Blobaum JL, Haak S, Pantelyushin S, Cheong C, et al. 2013. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. PNAS 110(26):10723-28
    • (2013) PNAS , vol.110 , Issue.26 , pp. 10723-10728
    • Wohn, C.1    Ober-Blobaum, J.L.2    Haak, S.3    Pantelyushin, S.4    Cheong, C.5
  • 203
    • 0023891977 scopus 로고
    • Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes
    • Gaspari AA, Katz SI. 1988. Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J. Immunol. 140(9):2956-63
    • (1988) J. Immunol. , vol.140 , Issue.9 , pp. 2956-2963
    • Gaspari, A.A.1    Katz, S.I.2
  • 204
    • 84936891126 scopus 로고    scopus 로고
    • Activation of HIF-1aand LL-37 by commensal bacteria inhibits Candida albicans colonization
    • Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, et al. 2015. Activation of HIF-1aand LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21(7):808-14
    • (2015) Nat. Med. , vol.21 , Issue.7 , pp. 808-814
    • Fan, D.1    Coughlin, L.A.2    Neubauer, M.M.3    Kim, J.4    Kim, M.S.5
  • 205
    • 0024852106 scopus 로고
    • Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermalTlymphocytic infiltration in allergic contact dermatitis (Rhus dermatitis)
    • Griffiths CE, Nickoloff BJ. 1989. Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermalTlymphocytic infiltration in allergic contact dermatitis (Rhus dermatitis). Am. J. Pathol. 135(6):1045-53
    • (1989) Am. J. Pathol. , vol.135 , Issue.6 , pp. 1045-1053
    • Griffiths, C.E.1    Nickoloff, B.J.2
  • 206
    • 78649629136 scopus 로고    scopus 로고
    • TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis
    • Kel JM, Girard-Madoux MJH, Reizis B, Clausen BE. 2010. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185(6):3248-55
    • (2010) J. Immunol. , vol.185 , Issue.6 , pp. 3248-3255
    • Kel, J.M.1    Girard-Madoux, M.J.H.2    Reizis, B.3    Clausen, B.E.4
  • 207
    • 84862987203 scopus 로고    scopus 로고
    • Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration
    • Bobr A, Igyarto BZ, Haley KM, Li MO, Flavell RA, Kaplan DH. 2012. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. PNAS 109(26):10492-97
    • (2012) PNAS , vol.109 , Issue.26 , pp. 10492-10497
    • Bobr, A.1    Igyarto, B.Z.2    Haley, K.M.3    Li, M.O.4    Flavell, R.A.5    Kaplan, D.H.6
  • 208
    • 84855487102 scopus 로고    scopus 로고
    • Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma
    • Modi BG, Neustadter J, Binda E, Lewis J, Filler RB, et al. 2012. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science 335(6064):104-8
    • (2012) Science , vol.335 , Issue.6064 , pp. 104-108
    • Modi, B.G.1    Neustadter, J.2    Binda, E.3    Lewis, J.4    Filler, R.B.5
  • 209
    • 84928394792 scopus 로고    scopus 로고
    • Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells
    • Lewis JM, Burgler CD, Fraser JA, Liao H, Golubets K, et al. 2015. Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells. J. Investig. Dermatol. 135(5):1405-14
    • (2015) J. Investig. Dermatol. , vol.135 , Issue.5 , pp. 1405-1414
    • Lewis, J.M.1    Burgler, C.D.2    Fraser, J.A.3    Liao, H.4    Golubets, K.5
  • 211
    • 80355136945 scopus 로고    scopus 로고
    • Host type i IFN signals are required for antitumor CD8+ T cell responses through CD8a+ dendritic cells
    • Fuertes MB, Kacha AK, Kline J, Woo S-R, Kranz DM, et al. 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8a+ dendritic cells. J. Exp. Med. 208(10):2005-16
    • (2011) J. Exp. Med. , vol.208 , Issue.10 , pp. 2005-2016
    • Fuertes, M.B.1    Kacha, A.K.2    Kline, J.3    Woo, S.-R.4    Kranz, D.M.5
  • 212
    • 84911937777 scopus 로고    scopus 로고
    • Dissecting the tumormyeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity
    • Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, et al. 2014. Dissecting the tumormyeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26(5):638-52
    • (2014) Cancer Cell , vol.26 , Issue.5 , pp. 638-652
    • Broz, M.L.1    Binnewies, M.2    Boldajipour, B.3    Nelson, A.E.4    Pollack, J.L.5
  • 213
    • 84964344569 scopus 로고    scopus 로고
    • Expansion and activation ofCD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition
    • Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, et al. 2016. Expansion and activation ofCD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924-38
    • (2016) Immunity , vol.44 , Issue.4 , pp. 924-938
    • Salmon, H.1    Idoyaga, J.2    Rahman, A.3    Leboeuf, M.4    Remark, R.5
  • 214
    • 84900869746 scopus 로고    scopus 로고
    • Paradigm shift in dendritic cell-based immunotherapy: From in vitro generated monocyte-derived DCs to naturally circulating DC subsets
    • Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJM. 2014. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 5(Suppl. 8):165
    • (2014) Front. Immunol. , vol.5 , pp. 165
    • Wimmers, F.1    Schreibelt, G.2    Skold, A.E.3    Figdor, C.G.4    De Vries, I.J.M.5
  • 215
    • 84942236803 scopus 로고    scopus 로고
    • Somaticmutation in cancer and normal cells
    • Martincorena I, Campbell PJ. 2015. Somaticmutation in cancer and normal cells. Science 349(6255):1483-89
    • (2015) Science , vol.349 , Issue.6255 , pp. 1483-1489
    • Martincorena, I.1    Campbell, P.J.2
  • 216
    • 84929991442 scopus 로고    scopus 로고
    • Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin
    • Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880-86
    • (2015) Science , vol.348 , Issue.6237 , pp. 880-886
    • Martincorena, I.1    Roshan, A.2    Gerstung, M.3    Ellis, P.4    Van Loo, P.5
  • 217
    • 84907223092 scopus 로고    scopus 로고
    • Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
    • Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, et al. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559-63
    • (2014) Nature , vol.513 , Issue.7519 , pp. 559-563
    • Colegio, O.R.1    Chu, N.-Q.2    Szabo, A.L.3    Chu, T.4    Rhebergen, A.M.5
  • 218
    • 84936953099 scopus 로고    scopus 로고
    • Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
    • Spranger S, Bao R, Gajewski TF. 2015. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231-35
    • (2015) Nature , vol.523 , Issue.7559 , pp. 231-235
    • Spranger, S.1    Bao, R.2    Gajewski, T.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.