-
3
-
-
0242551508
-
Timeline: Metchnikoff and the phagocytosis theory
-
Tauber AI. 2003. Timeline: Metchnikoff and the phagocytosis theory.Nat. Rev.Mol. Cell Biol. 4(11):897-901
-
(2003)
Nat. Rev.Mol. Cell Biol.
, vol.4
, Issue.11
, pp. 897-901
-
-
Tauber, A.I.1
-
4
-
-
0015619335
-
Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution
-
Steinman RM, Cohn ZA. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137(5):1142-62
-
(1973)
J. Exp. Med.
, vol.137
, Issue.5
, pp. 1142-1162
-
-
Steinman, R.M.1
Cohn, Z.A.2
-
5
-
-
0015949926
-
Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro
-
Steinman RM, Cohn ZA. 1974. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 139(2):380-97
-
(1974)
J. Exp. Med.
, vol.139
, Issue.2
, pp. 380-397
-
-
Steinman, R.M.1
Cohn, Z.A.2
-
6
-
-
0017200812
-
Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes
-
Silberberg-Sinakin I, Thorbecke GJ, Baer RL, Rosenthal SA, Berezowsky V. 1976. Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell. Immunol. 25(2):137-51
-
(1976)
Cell. Immunol.
, vol.25
, Issue.2
, pp. 137-151
-
-
Silberberg-Sinakin, I.1
Thorbecke, G.J.2
Baer, R.L.3
Rosenthal, S.A.4
Berezowsky, V.5
-
7
-
-
0017381151
-
EpidermalLangerhans cells bear Fc and C3 receptors
-
Stingl G, Wolff-Schreiner EC, Pichler WJ, Gschnait F, Knapp W, Wolff K. 1977. EpidermalLangerhans cells bear Fc and C3 receptors. Nature 268(5617):245-46
-
(1977)
Nature
, vol.268
, Issue.5617
, pp. 245-246
-
-
Stingl, G.1
Wolff-Schreiner, E.C.2
Pichler, W.J.3
Gschnait, F.4
Knapp, W.5
Wolff, K.6
-
8
-
-
0017685245
-
Ia antigen expression on human epidermal Langerhans cells
-
Rowden G, Lewis MG, Sullivan AK. 1977. Ia antigen expression on human epidermal Langerhans cells. Nature 268(5617):247-48
-
(1977)
Nature
, vol.268
, Issue.5617
, pp. 247-248
-
-
Rowden, G.1
Lewis, M.G.2
Sullivan, A.K.3
-
9
-
-
0017750370
-
Epidermal Langerhans cells express Ia antigens
-
Klareskog L, Tjernlund U, Forsum U, Peterson PA. 1977. Epidermal Langerhans cells express Ia antigens. Nature 268(5617):248-50
-
(1977)
Nature
, vol.268
, Issue.5617
, pp. 248-250
-
-
Klareskog, L.1
Tjernlund, U.2
Forsum, U.3
Peterson, P.A.4
-
10
-
-
0018580178
-
Epidermal Langerhans cells are derived from cells originating in bone marrow
-
Katz SI, Tamaki K, Sachs DH. 1979. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282(5736):324-26
-
(1979)
Nature
, vol.282
, Issue.5736
, pp. 324-326
-
-
Katz, S.I.1
Tamaki, K.2
Sachs, D.H.3
-
11
-
-
0018893199
-
Bone marrow origin of Ia molecules purified from epidermal cells
-
Frelinger JA, Frelinger JG. 1980. Bone marrow origin of Ia molecules purified from epidermal cells. J. Investig. Dermatol. 75(1):68-70
-
(1980)
J. Investig. Dermatol.
, vol.75
, Issue.1
, pp. 68-70
-
-
Frelinger, J.A.1
Frelinger, J.G.2
-
12
-
-
0020520157
-
A study of cells present in lymph draining from a contact allergic reaction in pigs sensitized to DNFB
-
Lens JW, Drexhage HA, Benson W, Balfour BM. 1983. A study of cells present in lymph draining from a contact allergic reaction in pigs sensitized to DNFB. Immunology 49(3):415
-
(1983)
Immunology
, vol.49
, Issue.3
, pp. 415
-
-
Lens, J.W.1
Drexhage, H.A.2
Benson, W.3
Balfour, B.M.4
-
13
-
-
0021917676
-
Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro
-
Schuler G, Steinman RM. 1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161(3):526-46
-
(1985)
J. Exp. Med.
, vol.161
, Issue.3
, pp. 526-546
-
-
Schuler, G.1
Steinman, R.M.2
-
14
-
-
0027432320
-
Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets
-
Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. 1993. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 151(11):6535-45
-
(1993)
J. Immunol.
, vol.151
, Issue.11
, pp. 6535-6545
-
-
Nestle, F.O.1
Zheng, X.G.2
Thompson, C.B.3
Turka, L.A.4
Nickoloff, B.J.5
-
15
-
-
0027137486
-
Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization
-
Lenz A, Heine M, Schuler G, Romani N. 1993. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Investig. 92(6):2587-96
-
(1993)
J. Clin. Investig.
, vol.92
, Issue.6
, pp. 2587-2596
-
-
Lenz, A.1
Heine, M.2
Schuler, G.3
Romani, N.4
-
16
-
-
84875528275
-
The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
-
Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563-604
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 563-604
-
-
Merad, M.1
Sathe, P.2
Helft, J.3
Miller, J.4
Mortha, A.5
-
17
-
-
84884352076
-
Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
-
Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, et al. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39(3):599-610
-
(2013)
Immunity
, vol.39
, Issue.3
, pp. 599-610
-
-
Jakubzick, C.1
Gautier, E.L.2
Gibbings, S.L.3
Sojka, D.K.4
Schlitzer, A.5
-
18
-
-
84887616366
-
Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
-
Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5):925-38
-
(2013)
Immunity
, vol.39
, Issue.5
, pp. 925-938
-
-
Tamoutounour, S.1
Guilliams, M.2
Montanana Sanchis, F.3
Liu, H.4
Terhorst, D.5
-
19
-
-
84864293006
-
Human tissues contain CD141hi crosspresenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
-
Haniffa M, Shin A, Bigley V, McGovern N, Teo P, et al. 2012. Human tissues contain CD141hi crosspresenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60-73
-
(2012)
Immunity
, vol.37
, Issue.1
, pp. 60-73
-
-
Haniffa, M.1
Shin, A.2
Bigley, V.3
McGovern, N.4
Teo, P.5
-
20
-
-
0020050796
-
Current view on the mononuclear phagocyte system
-
van Furth R. 1982. Current view on the mononuclear phagocyte system. Immunobiology 161(3-4):178-85
-
(1982)
Immunobiology
, vol.161
, Issue.3-4
, pp. 178-185
-
-
Van Furth, R.1
-
21
-
-
84931394611
-
Identification of cDC1-and cDC2-committedDCprogenitors reveals early lineage priming at the commonDCprogenitor stage in the bone marrow
-
Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J, et al. 2015. Identification of cDC1-and cDC2-committedDCprogenitors reveals early lineage priming at the commonDCprogenitor stage in the bone marrow. Nat. Immunol. 16(7):718-28
-
(2015)
Nat. Immunol.
, vol.16
, Issue.7
, pp. 718-728
-
-
Schlitzer, A.1
Sivakamasundari, V.2
Chen, J.3
Sumatoh, H.R.B.4
Schreuder, J.5
-
22
-
-
84901358607
-
Monocytes and macrophages: Developmental pathways and tissue homeostasis
-
Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14(6):392-404
-
(2014)
Nat. Rev. Immunol.
, vol.14
, Issue.6
, pp. 392-404
-
-
Ginhoux, F.1
Jung, S.2
-
23
-
-
84924743273
-
Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow
-
Lee J, Breton G, Oliveira TYK, Zhou YJ, Aljoufi A, et al. 2015. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212(3):385-99
-
(2015)
J. Exp. Med.
, vol.212
, Issue.3
, pp. 385-399
-
-
Lee, J.1
Breton, G.2
Oliveira, T.Y.K.3
Zhou, Y.J.4
Aljoufi, A.5
-
25
-
-
78449298644
-
CD1a-autoreactive T cells are a normal component of the human αβT cell repertoire
-
de Jong A, Pena-Cruz V, Cheng T-Y, Clark RA, Van Rhijn I, Moody DB. 2010. CD1a-autoreactive T cells are a normal component of the human αβT cell repertoire. Nat. Immunol. 11(12):1102-9
-
(2010)
Nat. Immunol.
, vol.11
, Issue.12
, pp. 1102-1109
-
-
De Jong, A.1
Pena-Cruz, V.2
Cheng, T.-Y.3
Clark, R.A.4
Van Rhijn, I.5
Moody, D.B.6
-
26
-
-
84911092143
-
Macrophage heterogeneity in tissues: Phenotypic diversity and functions
-
Gordon S, Pl uddemann A, Martinez Estrada F. 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 262(1):36-55
-
(2014)
Immunol. Rev.
, vol.262
, Issue.1
, pp. 36-55
-
-
Gordon, S.1
Pluddemann, A.2
Martinez Estrada, F.3
-
27
-
-
84890907345
-
Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection
-
Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, et al. 2014. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15(1):45-53
-
(2014)
Nat. Immunol.
, vol.15
, Issue.1
, pp. 45-53
-
-
Abtin, A.1
Jain, R.2
Mitchell, A.J.3
Roediger, B.4
Brzoska, A.J.5
-
28
-
-
56749152272
-
Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
-
Merad M, Ginhoux F, Collin M. 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8(12):935-47
-
(2008)
Nat. Rev. Immunol.
, vol.8
, Issue.12
, pp. 935-947
-
-
Merad, M.1
Ginhoux, F.2
Collin, M.3
-
29
-
-
73949120263
-
External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers
-
Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206(13):2937-46
-
(2009)
J. Exp. Med.
, vol.206
, Issue.13
, pp. 2937-2946
-
-
Kubo, A.1
Nagao, K.2
Yokouchi, M.3
Sasaki, H.4
Amagai, M.5
-
30
-
-
84859575185
-
Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo
-
Gaiser MR, Lammermann T, Feng X, Igyarto BZ, Kaplan DH, et al. 2012. Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. PNAS 109(15):E889-97
-
(2012)
PNAS
, vol.109
, Issue.15
, pp. E889-E897
-
-
Gaiser, M.R.1
Lammermann, T.2
Feng, X.3
Igyarto, B.Z.4
Kaplan, D.H.5
-
31
-
-
84935119898
-
Human and mousemononuclear phagocyte networks: A tale of two species?
-
Reynolds G, Haniffa M. 2015. Human and mousemononuclear phagocyte networks: a tale of two species? Front. Immunol. 6:330
-
(2015)
Front. Immunol.
, vol.6
, pp. 330
-
-
Reynolds, G.1
Haniffa, M.2
-
32
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86-90
-
(2012)
Science
, vol.336
, Issue.6077
, pp. 86-90
-
-
Schulz, C.1
Gomez Perdiguero, E.2
Chorro, L.3
Szabo-Rogers, H.4
Cagnard, N.5
-
33
-
-
84864298329
-
Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
-
Hoeffel G, Wang Y, Greter M, See P, Teo P, et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209(6):1167-81
-
(2012)
J. Exp. Med.
, vol.209
, Issue.6
, pp. 1167-1181
-
-
Hoeffel, G.1
Wang, Y.2
Greter, M.3
See, P.4
Teo, P.5
-
34
-
-
84959367081
-
Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation
-
Wang Y, Bugatti M, Ulland TK, Vermi W, Gilfillan S, Colonna M. 2016. Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation. Eur. J. Immunol. 46(3):552-59
-
(2016)
Eur. J. Immunol.
, vol.46
, Issue.3
, pp. 552-559
-
-
Wang, Y.1
Bugatti, M.2
Ulland, T.K.3
Vermi, W.4
Gilfillan, S.5
Colonna, M.6
-
35
-
-
84870907320
-
Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia
-
Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, et al. 2012. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37(6):1050-60
-
(2012)
Immunity
, vol.37
, Issue.6
, pp. 1050-1060
-
-
Greter, M.1
Lelios, I.2
Pelczar, P.3
Hoeffel, G.4
Price, J.5
-
36
-
-
84864152036
-
IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
-
Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13(8):753-60
-
(2012)
Nat. Immunol.
, vol.13
, Issue.8
, pp. 753-760
-
-
Wang, Y.1
Szretter, K.J.2
Vermi, W.3
Gilfillan, S.4
Rossini, C.5
-
37
-
-
12144285752
-
Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation
-
Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, et al. 2004. Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23(4):969-79
-
(2004)
EMBO J.
, vol.23
, Issue.4
, pp. 969-979
-
-
Fainaru, O.1
Woolf, E.2
Lotem, J.3
Yarmus, M.4
Brenner, O.5
-
38
-
-
0037386339
-
Transcriptional profiling identifies Id2 function in dendritic cell development
-
Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC, et al. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4(4):380-86
-
(2003)
Nat. Immunol.
, vol.4
, Issue.4
, pp. 380-386
-
-
Hacker, C.1
Kirsch, R.D.2
Ju, X.-S.3
Hieronymus, T.4
Gust, T.C.5
-
39
-
-
84888114656
-
Identification of bonemorphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
-
Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, et al. 2013. Identification of bonemorphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J. Exp. Med. 210(12):2597-610
-
(2013)
J. Exp. Med.
, vol.210
, Issue.12
, pp. 2597-2610
-
-
Yasmin, N.1
Bauer, T.2
Modak, M.3
Wagner, K.4
Schuster, C.5
-
40
-
-
35748948090
-
Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells
-
Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. 2007. Autocrine/paracrine TGFβ1 is required for the development of epidermal Langerhans cells. J. Exp. Med. 204(11):2545-52
-
(2007)
J. Exp. Med.
, vol.204
, Issue.11
, pp. 2545-2552
-
-
Kaplan, D.H.1
Li, M.O.2
Jenison, M.C.3
Shlomchik, W.D.4
Flavell, R.A.5
Shlomchik, M.J.6
-
41
-
-
78649629136
-
TGF-βis required to maintain the pool of immature Langerhans cells in the epidermis
-
Kel JM, Girard-Madoux MJH, Reizis B, Clausen BE. 2010. TGF-βis required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185(6):3248-55
-
(2010)
J. Immunol.
, vol.185
, Issue.6
, pp. 3248-3255
-
-
Kel, J.M.1
Girard-Madoux, M.J.H.2
Reizis, B.3
Clausen, B.E.4
-
42
-
-
84862987203
-
Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration
-
Bobr A, Igyarto BZ, Haley KM, Li MO, Flavell RA, Kaplan DH. 2012. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. PNAS 109:10492-97
-
(2012)
PNAS
, vol.109
, pp. 10492-10497
-
-
Bobr, A.1
Igyarto, B.Z.2
Haley, K.M.3
Li, M.O.4
Flavell, R.A.5
Kaplan, D.H.6
-
43
-
-
84959105586
-
Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β
-
Mohammed J, Beura LK, Bobr A, Astry B, Chicoine B, et al. 2016. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17:414-21
-
(2016)
Nat. Immunol.
, vol.17
, pp. 414-421
-
-
Mohammed, J.1
Beura, L.K.2
Bobr, A.3
Astry, B.4
Chicoine, B.5
-
44
-
-
84931564512
-
The clash of Langerhans cell homeostasis in skin: Should i stay or should i go?
-
Hieronymus T, Zenke M, Baek J-H, Sere K. 2015. The clash of Langerhans cell homeostasis in skin: Should I stay or should I go? Semin. Cell Dev. Biol. 41:30-38
-
(2015)
Semin. Cell Dev. Biol.
, vol.41
, pp. 30-38
-
-
Hieronymus, T.1
Zenke, M.2
Baek, J.-H.3
Sere, K.4
-
45
-
-
84922179711
-
CD1c+ blood dendritic cells have Langerhans cell potential
-
Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. 2015. CD1c+ blood dendritic cells have Langerhans cell potential. Blood 125(3):470-73
-
(2015)
Blood
, vol.125
, Issue.3
, pp. 470-473
-
-
Milne, P.1
Bigley, V.2
Gunawan, M.3
Haniffa, M.4
Collin, M.5
-
46
-
-
84907611125
-
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β
-
Martinez-Cingolani C, Grandclaudon M, Jeanmougin M, Jouve M, Zollinger R, Soumelis V. 2014. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β. Blood 124(15):2411-20
-
(2014)
Blood
, vol.124
, Issue.15
, pp. 2411-2420
-
-
Martinez-Cingolani, C.1
Grandclaudon, M.2
Jeanmougin, M.3
Jouve, M.4
Zollinger, R.5
Soumelis, V.6
-
47
-
-
0036906526
-
Langerhans cells renew in the skin throughout life under steady-state conditions
-
Merad M, Manz MG, Karsunky H, Wagers A, Peters W, et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3(12):1135-41
-
(2002)
Nat. Immunol.
, vol.3
, Issue.12
, pp. 1135-1141
-
-
Merad, M.1
Manz, M.G.2
Karsunky, H.3
Wagers, A.4
Peters, W.5
-
48
-
-
84884214656
-
Multicolor fatemapping of Langerhans cell homeostasis
-
Ghigo C, Mondor I, Jorquera A, Nowak J, Wienert S, et al. 2013. Multicolor fatemapping of Langerhans cell homeostasis. J. Exp. Med. 210(9):1657-64
-
(2013)
J. Exp. Med.
, vol.210
, Issue.9
, pp. 1657-1664
-
-
Ghigo, C.1
Mondor, I.2
Jorquera, A.3
Nowak, J.4
Wienert, S.5
-
49
-
-
73949147392
-
Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
-
Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, et al. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206(13):3089-100
-
(2009)
J. Exp. Med.
, vol.206
, Issue.13
, pp. 3089-3100
-
-
Chorro, L.1
Sarde, A.2
Li, M.3
Woollard, K.J.4
Chambon, P.5
-
51
-
-
78751680917
-
Self-renewal capacity of human epidermal Langerhans cells: Observationsmade on a composite tissue allograft
-
Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard J-M. 2011. Self-renewal capacity of human epidermal Langerhans cells: observationsmade on a composite tissue allograft. Exp. Dermatol. 20(2):145-46
-
(2011)
Exp. Dermatol.
, vol.20
, Issue.2
, pp. 145-146
-
-
Kanitakis, J.1
Morelon, E.2
Petruzzo, P.3
Badet, L.4
Dubernard, J.-M.5
-
52
-
-
31344469849
-
The fate of human Langerhans cells in hematopoietic stem cell transplantation
-
Collin MP, Hart DNJ, Jackson GH, Cook G, Cavet J, et al. 2006. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 203:27
-
(2006)
J. Exp. Med.
, vol.203
, pp. 27
-
-
Collin, M.P.1
Hart, D.N.J.2
Jackson, G.H.3
Cook, G.4
Cavet, J.5
-
53
-
-
84986893432
-
CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation
-
Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, et al. 2015. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat. Immunol. 16(10):1060-68
-
(2015)
Nat. Immunol.
, vol.16
, Issue.10
, pp. 1060-1068
-
-
Price, J.G.1
Idoyaga, J.2
Salmon, H.3
Hogstad, B.4
Bigarella, C.L.5
-
54
-
-
33645953640
-
Langerhans cells arise from monocytes in vivo
-
Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, et al. 2006. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7(3):265-73
-
(2006)
Nat. Immunol.
, vol.7
, Issue.3
, pp. 265-273
-
-
Ginhoux, F.1
Tacke, F.2
Angeli, V.3
Bogunovic, M.4
Loubeau, M.5
-
55
-
-
84869229157
-
-
Sere K, Baek J-H, Ober-Blobaum J, Muller-Newen G, Tacke F, et al. 2012. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 37(5):905-16
-
(2012)
Two Distinct Types of Langerhans Cells Populate the Skin during Steady State and Inflammation. Immunity
, vol.37
, Issue.5
, pp. 905-916
-
-
Sere, K.1
Baek, J.-H.2
Ober-Blobaum, J.3
Muller-Newen, G.4
Tacke, F.5
-
56
-
-
0022577964
-
Ontogeny of Ia-positive and Thy-1-positive leukocytes ofmurine epidermis
-
Romani N, Schuler G, Fritsch P. 1986. Ontogeny of Ia-positive and Thy-1-positive leukocytes ofmurine epidermis. J. Investig. Dermatol. 86(2):129-33
-
(1986)
J. Investig. Dermatol.
, vol.86
, Issue.2
, pp. 129-133
-
-
Romani, N.1
Schuler, G.2
Fritsch, P.3
-
57
-
-
14244258925
-
Fetal and neonatal murine skin harbors Langerhans cell precursors
-
Chang-Rodriguez S, Hoetzenecker W, Schwarzler C, Biedermann T, Saeland S, Elbe-Burger A. 2004. Fetal and neonatal murine skin harbors Langerhans cell precursors. J. Leukoc. Biol. 77(3):352-60
-
(2004)
J. Leukoc. Biol.
, vol.77
, Issue.3
, pp. 352-360
-
-
Chang-Rodriguez, S.1
Hoetzenecker, W.2
Schwarzler, C.3
Biedermann, T.4
Saeland, S.5
Elbe-Burger, A.6
-
58
-
-
84864124259
-
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
-
Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, et al. 2012. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13(8):744-52
-
(2012)
Nat. Immunol.
, vol.13
, Issue.8
, pp. 744-752
-
-
Nagao, K.1
Kobayashi, T.2
Moro, K.3
Ohyama, M.4
Adachi, T.5
-
59
-
-
44049092407
-
Discovery of a cytokine and its receptor by functional screening of the extracellular proteome
-
Lin H, Lee E, Hestir K, Leo C, Huang M, et al. 2008. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807-11
-
(2008)
Science
, vol.320
, Issue.5877
, pp. 807-811
-
-
Lin, H.1
Lee, E.2
Hestir, K.3
Leo, C.4
Huang, M.5
-
60
-
-
84864152036
-
IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
-
Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13(8):753-60
-
(2012)
Nat. Immunol.
, vol.13
, Issue.8
, pp. 753-760
-
-
Wang, Y.1
Szretter, K.J.2
Vermi, W.3
Gilfillan, S.4
Rossini, C.5
-
61
-
-
84870907320
-
Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia
-
Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, et al. 2012. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37(6):1050-60
-
(2012)
Immunity
, vol.37
, Issue.6
, pp. 1050-1060
-
-
Greter, M.1
Lelios, I.2
Pelczar, P.3
Hoeffel, G.4
Price, J.5
-
62
-
-
73949101833
-
The origin and development of nonlymphoid tissue CD103+ DCs
-
Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206(13):3115-30
-
(2009)
J. Exp. Med.
, vol.206
, Issue.13
, pp. 3115-3130
-
-
Ginhoux, F.1
Liu, K.2
Helft, J.3
Bogunovic, M.4
Greter, M.5
-
63
-
-
84905107360
-
Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny
-
Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14(8):571-78
-
(2014)
Nat. Rev. Immunol.
, vol.14
, Issue.8
, pp. 571-578
-
-
Guilliams, M.1
Ginhoux, F.2
Jakubzick, C.3
Naik, S.H.4
Onai, N.5
-
64
-
-
84865394054
-
Histo-cytometry: A method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes
-
Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37(2):364-76
-
(2012)
Immunity
, vol.37
, Issue.2
, pp. 364-376
-
-
Gerner, M.Y.1
Kastenmuller, W.2
Ifrim, I.3
Kabat, J.4
Germain, R.N.5
-
65
-
-
84901368457
-
The origins and functions of dendritic cells and macrophages in the skin
-
Malissen B, Tamoutounour S, Henri S. 2014. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14(6):417-28
-
(2014)
Nat. Rev. Immunol.
, vol.14
, Issue.6
, pp. 417-428
-
-
Malissen, B.1
Tamoutounour, S.2
Henri, S.3
-
66
-
-
70449518424
-
Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ Tcells
-
Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, et al. 2009. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ Tcells. Immunity 31(5):823-33
-
(2009)
Immunity
, vol.31
, Issue.5
, pp. 823-833
-
-
Dorner, B.G.1
Dorner, M.B.2
Zhou, X.3
Opitz, C.4
Mora, A.5
-
67
-
-
84859993076
-
The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments
-
Zhang J-G, Czabotar PE, Policheni AN, Caminschi I, Wan SS, et al. 2012. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36(4):646-57
-
(2012)
Immunity
, vol.36
, Issue.4
, pp. 646-657
-
-
Zhang, J.-G.1
Czabotar, P.E.2
Policheni, A.N.3
Caminschi, I.4
Wan, S.S.5
-
68
-
-
84859957011
-
F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells
-
Ahrens S, Zelenay S, Sancho D, Hanc P, Kjær S, et al. 2012. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36(4):635-45
-
(2012)
Immunity
, vol.36
, Issue.4
, pp. 635-645
-
-
Ahrens, S.1
Zelenay, S.2
Sancho, D.3
Hanc, P.4
Kjær, S.5
-
69
-
-
14044270784
-
IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity
-
Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, et al. 2005. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174(5):2573-81
-
(2005)
J. Immunol.
, vol.174
, Issue.5
, pp. 2573-2581
-
-
Tamura, T.1
Tailor, P.2
Yamaoka, K.3
Kong, H.J.4
Tsujimura, H.5
-
70
-
-
77349083495
-
Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8a+ conventional dendritic cells
-
Edelson BT, Wumesh KC, Juang R, Kohyama M, Benoit LA, et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8a+ conventional dendritic cells. J. Exp. Med. 207(4):823-36
-
(2010)
J. Exp. Med.
, vol.207
, Issue.4
, pp. 823-836
-
-
Edelson, B.T.1
Wumesh, K.C.2
Juang, R.3
Kohyama, M.4
Benoit, L.A.5
-
71
-
-
84865418665
-
Deciphering the transcriptional network of the dendritic cell lineage
-
Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13(9):888-99
-
(2012)
Nat. Immunol.
, vol.13
, Issue.9
, pp. 888-899
-
-
Miller, J.C.1
Brown, B.D.2
Shay, T.3
Gautier, E.L.4
Jojic, V.5
-
72
-
-
37549051226
-
Identification of a novel population of Langerin+ dendritic cells
-
Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, et al. 2007. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204(13):3147-56
-
(2007)
J. Exp. Med.
, vol.204
, Issue.13
, pp. 3147-3156
-
-
Bursch, L.S.1
Wang, L.2
Igyarto, B.3
Kissenpfennig, A.4
Malissen, B.5
-
73
-
-
44049097818
-
The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues
-
Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, et al. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9(6):676-83
-
(2008)
Nat. Immunol.
, vol.9
, Issue.6
, pp. 676-683
-
-
Waskow, C.1
Liu, K.2
Darrasse-Jeze, G.3
Guermonprez, P.4
Ginhoux, F.5
-
74
-
-
0034210658
-
Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells
-
McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, et al. 2000. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489-97
-
(2000)
Blood
, vol.95
, Issue.11
, pp. 3489-3497
-
-
McKenna, H.J.1
Stocking, K.L.2
Miller, R.E.3
Brasel, K.4
De Smedt, T.5
-
75
-
-
56449097442
-
Batf3 deficiency reveals a critical role for CD8a+ dendritic cells in cytotoxic T cell immunity
-
Hildner K, Hildner K, Edelson BT, Edelson BT, Purtha WE, et al. 2008. Batf3 deficiency reveals a critical role for CD8a+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097-100
-
(2008)
Science
, vol.322
, Issue.5904
, pp. 1097-1100
-
-
Hildner, K.1
Hildner, K.2
Edelson, B.T.3
Edelson, B.T.4
Purtha, W.E.5
-
76
-
-
84860240081
-
DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues
-
Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, et al. 2012. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119(25):6052-62
-
(2012)
Blood
, vol.119
, Issue.25
, pp. 6052-6062
-
-
Poulin, L.F.1
Reyal, Y.2
Uronen-Hansson, H.3
Schraml, B.U.4
Sancho, D.5
-
77
-
-
84905995910
-
Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells
-
Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, et al. 2014. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J. Immunol. 193(4):1622-35
-
(2014)
J. Immunol.
, vol.193
, Issue.4
, pp. 1622-1635
-
-
Balan, S.1
Ollion, V.2
Colletti, N.3
Chelbi, R.4
Montanana Sanchis, F.5
-
78
-
-
79960219807
-
IRF8 mutations and human dendritic-cell immunodeficiency
-
Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, et al. 2011. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365(2):127-38
-
(2011)
N. Engl. J. Med.
, vol.365
, Issue.2
, pp. 127-138
-
-
Hambleton, S.1
Salem, S.2
Bustamante, J.3
Bigley, V.4
Boisson-Dupuis, S.5
-
79
-
-
84867884822
-
Compensatory dendritic cell development mediated by BATF-IRF interactions
-
Tussiwand R, Lee W-L, Murphy TL, Mashayekhi M, Wumesh KC, et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:502-7
-
(2012)
Nature
, vol.490
, pp. 502-507
-
-
Tussiwand, R.1
Lee, W.-L.2
Murphy, T.L.3
Mashayekhi, M.4
Wumesh, K.C.5
-
80
-
-
84931406064
-
Batf3 maintains autoactivation of Irf8 for commitment of a CD8a+ conventional DC clonogenic progenitor
-
Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, et al. 2015. Batf3 maintains autoactivation of Irf8 for commitment of a CD8a+ conventional DC clonogenic progenitor. Nat. Immunol. 16(7):708-17
-
(2015)
Nat. Immunol.
, vol.16
, Issue.7
, pp. 708-717
-
-
Grajales-Reyes, G.E.1
Iwata, A.2
Albring, J.3
Wu, X.4
Tussiwand, R.5
-
81
-
-
76149133088
-
CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells
-
Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, et al. 2010. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207(1):189-206
-
(2010)
J. Exp. Med.
, vol.207
, Issue.1
, pp. 189-206
-
-
Henri, S.1
Poulin, L.F.2
Tamoutounour, S.3
Ardouin, L.4
Guilliams, M.5
-
82
-
-
0031570952
-
Dendritic cell subtypes in mouse lymphoid organs: Cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes
-
Vremec D, Shortman K. 1997. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol. 159(2):565-73
-
(1997)
J. Immunol.
, vol.159
, Issue.2
, pp. 565-573
-
-
Vremec, D.1
Shortman, K.2
-
83
-
-
77349100571
-
The CD8+ dendritic cell subset
-
Shortman K, Heath WR. 2010. The CD8+ dendritic cell subset. Immunol. Rev. 234(1):18-31
-
(2010)
Immunol. Rev.
, vol.234
, Issue.1
, pp. 18-31
-
-
Shortman, K.1
Heath, W.R.2
-
84
-
-
0035879278
-
The dendritic cell populations of mouse lymph nodes
-
Henri S, Vremec D, Kamath A, Waithman J, Williams S, et al. 2001. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167(2):741-48
-
(2001)
J. Immunol.
, vol.167
, Issue.2
, pp. 741-748
-
-
Henri, S.1
Vremec, D.2
Kamath, A.3
Waithman, J.4
Williams, S.5
-
85
-
-
84864125760
-
Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria
-
Piva L, Tetlak P, Claser C, Karjalainen K, Renia L, Ruedl C. 2012. Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J. Immunol. 189(3):1128-32
-
(2012)
J. Immunol.
, vol.189
, Issue.3
, pp. 1128-1132
-
-
Piva, L.1
Tetlak, P.2
Claser, C.3
Karjalainen, K.4
Renia, L.5
Ruedl, C.6
-
86
-
-
84938908100
-
Identification of teleost skin CD8a+ dendritic-like cells, representing a potential common ancestor for mammalian cross-presenting dendritic cells
-
Granja AG, Leal E, Pignatelli J, Castro R, Abos B, et al. 2015. Identification of teleost skin CD8a+ dendritic-like cells, representing a potential common ancestor for mammalian cross-presenting dendritic cells. J. Immunol. 195(4):1825-37
-
(2015)
J. Immunol.
, vol.195
, Issue.4
, pp. 1825-1837
-
-
Granja, A.G.1
Leal, E.2
Pignatelli, J.3
Castro, R.4
Abos, B.5
-
87
-
-
78649511233
-
Existence of CD8a-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species
-
Contreras V, Urien C, Guiton R, Alexandre Y, Vu Manh T-P, et al. 2010. Existence of CD8a-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. J. Immunol. 185(6):3313-25
-
(2010)
J. Immunol.
, vol.185
, Issue.6
, pp. 3313-3325
-
-
Contreras, V.1
Urien, C.2
Guiton, R.3
Alexandre, Y.4
Vu Manh, T.-P.5
-
88
-
-
84892177710
-
Rapid detection of dendritic cell andmonocyte disorders usingCD4as a lineage marker of the human peripheral blood antigen-presenting cell compartment
-
Jardine L, Barge D, Ames-Draycott A, Pagan S, Cookson S, et al. 2013. Rapid detection of dendritic cell andmonocyte disorders usingCD4as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front. Immunol. 4:495
-
(2013)
Front. Immunol.
, vol.4
, pp. 495
-
-
Jardine, L.1
Barge, D.2
Ames-Draycott, A.3
Pagan, S.4
Cookson, S.5
-
89
-
-
84878191150
-
IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
-
Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, et al. 2013. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970-83
-
(2013)
Immunity
, vol.38
, Issue.5
, pp. 970-983
-
-
Schlitzer, A.1
McGovern, N.2
Teo, P.3
Zelante, T.4
Atarashi, K.5
-
90
-
-
84866527686
-
IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation
-
Bajana S, Roach K, Turner S, Paul J, Kovats S. 2012. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189(7):3368-77
-
(2012)
J. Immunol.
, vol.189
, Issue.7
, pp. 3368-3377
-
-
Bajana, S.1
Roach, K.2
Turner, S.3
Paul, J.4
Kovats, S.5
-
91
-
-
41349119601
-
The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
-
Tailor P, Tamura T, Morse HC III, Ozato K. 2008. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111:1942-45
-
(2008)
Blood
, vol.111
, pp. 1942-1945
-
-
Tailor, P.1
Tamura, T.2
Morse, H.C.3
Ozato, K.4
-
92
-
-
63049112195
-
Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation
-
Haniffa M, Ginhoux F, Wang X-N, Bigley V, Abel M, et al. 2009. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206(2):371-85
-
(2009)
J. Exp. Med.
, vol.206
, Issue.2
, pp. 371-385
-
-
Haniffa, M.1
Ginhoux, F.2
Wang, X.-N.3
Bigley, V.4
Abel, M.5
-
93
-
-
84885831956
-
CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity
-
Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. 2013. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39(4):733-43
-
(2013)
Immunity
, vol.39
, Issue.4
, pp. 733-743
-
-
Kumamoto, Y.1
Linehan, M.2
Weinstein, J.S.3
Laidlaw, B.J.4
Craft, J.E.5
Iwasaki, A.6
-
94
-
-
84885778452
-
Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells
-
Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P, et al. 2013. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 17:722-32
-
(2013)
Immunity
, vol.17
, pp. 722-732
-
-
Gao, Y.1
Nish, S.A.2
Jiang, R.3
Hou, L.4
Licona-Limon, P.5
-
95
-
-
84907026928
-
CD326loCD103loCD11blo dermal dendritic cells are activated by thymic stromal lymphopoietin during contact sensitization in mice
-
Ochiai S, Roediger B, Abtin A, Shklovskaya E, Fazekas de St Groth B, et al. 2014. CD326loCD103loCD11blo dermal dendritic cells are activated by thymic stromal lymphopoietin during contact sensitization in mice. J. Immunol. 193(5):2504-11
-
(2014)
J. Immunol.
, vol.193
, Issue.5
, pp. 2504-2511
-
-
Ochiai, S.1
Roediger, B.2
Abtin, A.3
Shklovskaya, E.4
Fazekas De St Groth, B.5
-
96
-
-
84929661740
-
Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses
-
Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A, et al. 2015. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42(5):916-28
-
(2015)
Immunity
, vol.42
, Issue.5
, pp. 916-928
-
-
Tussiwand, R.1
Everts, B.2
Grajales-Reyes, G.E.3
Kretzer, N.M.4
Iwata, A.5
-
97
-
-
84929698759
-
Kruppel-ling of IRF4-dependent DCs into two functionally distinct DC subsets
-
Bedoui S, Heath WR. 2015. Kruppel-ling of IRF4-dependent DCs into two functionally distinct DC subsets. Immunity 42(5):785-87
-
(2015)
Immunity
, vol.42
, Issue.5
, pp. 785-787
-
-
Bedoui, S.1
Heath, W.R.2
-
98
-
-
27744509044
-
Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages
-
Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, et al. 2005. Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J. Immunol. 175(10):6570-79
-
(2005)
J. Immunol.
, vol.175
, Issue.10
, pp. 6570-6579
-
-
Lehtonen, A.1
Veckman, V.2
Nikula, T.3
Lahesmaa, R.4
Kinnunen, L.5
-
99
-
-
84907966318
-
Human dermal CD14+ cells are a transient population of monocyte-derived macrophages
-
McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, et al. 2014. Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity 41(3):465-77
-
(2014)
Immunity
, vol.41
, Issue.3
, pp. 465-477
-
-
McGovern, N.1
Schlitzer, A.2
Gunawan, M.3
Jardine, L.4
Shin, A.5
-
100
-
-
79951693243
-
The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
-
Bigley V, Haniffa M, Doulatov S, Wang X-N, Dickinson R, et al. 2011. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208(2):227-34
-
(2011)
J. Exp. Med.
, vol.208
, Issue.2
, pp. 227-234
-
-
Bigley, V.1
Haniffa, M.2
Doulatov, S.3
Wang, X.-N.4
Dickinson, R.5
-
101
-
-
84960354901
-
Tissue-resident macrophage ontogeny and homeostasis
-
Ginhoux F, Guilliams M. 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439-49
-
(2016)
Immunity
, vol.44
, Issue.3
, pp. 439-449
-
-
Ginhoux, F.1
Guilliams, M.2
-
102
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159(6):1312-26
-
(2014)
Cell
, vol.159
, Issue.6
, pp. 1312-1326
-
-
Lavin, Y.1
Winter, D.2
Blecher-Gonen, R.3
David, E.4
Keren-Shaul, H.5
-
103
-
-
84887616366
-
Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
-
Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5):925-38
-
(2013)
Immunity
, vol.39
, Issue.5
, pp. 925-938
-
-
Tamoutounour, S.1
Guilliams, M.2
Montanana Sanchis, F.3
Liu, H.4
Terhorst, D.5
-
104
-
-
84920724792
-
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
-
Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159(6):1327-40
-
(2014)
Cell
, vol.159
, Issue.6
, pp. 1327-1340
-
-
Gosselin, D.1
Link, V.M.2
Romanoski, C.E.3
Fonseca, G.J.4
Eichenfield, D.Z.5
-
105
-
-
84864297838
-
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
-
Satpathy AT, Wumesh KC, Albring JC, Edelson BT, Kretzer NM, et al. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209(6):1135-52
-
(2012)
J. Exp. Med.
, vol.209
, Issue.6
, pp. 1135-1152
-
-
Satpathy, A.T.1
Wumesh, K.C.2
Albring, J.C.3
Edelson, B.T.4
Kretzer, N.M.5
-
106
-
-
84864296761
-
Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
-
Meredith MM, Liu K, Darasse-Jeze G, Kamphorst AO, Schreiber HA, et al. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209(6):1153-65
-
(2012)
J. Exp. Med.
, vol.209
, Issue.6
, pp. 1153-1165
-
-
Meredith, M.M.1
Liu, K.2
Darasse-Jeze, G.3
Kamphorst, A.O.4
Schreiber, H.A.5
-
107
-
-
0037625155
-
TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
-
Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59-70
-
(2003)
Immunity
, vol.19
, Issue.1
, pp. 59-70
-
-
Serbina, N.V.1
Salazar-Mather, T.P.2
Biron, C.A.3
Kuziel, W.A.4
Pamer, E.G.5
-
108
-
-
30044435436
-
Increase in TNF-a and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a)
-
Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin S-L, et al. 2005. Increase in TNF-a and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). PNAS 102(52):19057-62
-
(2005)
PNAS
, vol.102
, Issue.52
, pp. 19057-19062
-
-
Lowes, M.A.1
Chamian, F.2
Abello, M.V.3
Fuentes-Duculan, J.4
Lin, S.-L.5
-
109
-
-
0029922964
-
Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema
-
Wollenberg A, Kraft S, Hanau D, Bieber T. 1996. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Investig. Dermatol. 106(3):446-53
-
(1996)
J. Investig. Dermatol.
, vol.106
, Issue.3
, pp. 446-453
-
-
Wollenberg, A.1
Kraft, S.2
Hanau, D.3
Bieber, T.4
-
110
-
-
79952309024
-
Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses
-
787-94e9
-
Hansel A, Gunther C, Ingwersen J, Starke J, Schmitz M, et al. 2011. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 127(3):787-94.e-9
-
(2011)
J. Allergy Clin. Immunol.
, vol.127
, Issue.3
-
-
Hansel, A.1
Gunther, C.2
Ingwersen, J.3
Starke, J.4
Schmitz, M.5
-
111
-
-
79953059788
-
Plasmacytoid dendritic cells: Recent progress and open questions
-
Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. 2011. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29:163-83
-
(2011)
Annu. Rev. Immunol.
, vol.29
, pp. 163-183
-
-
Reizis, B.1
Bunin, A.2
Ghosh, H.S.3
Lewis, K.L.4
Sisirak, V.5
-
112
-
-
0030949479
-
The enigmatic plasmacytoid Tcells develop into dendritic cells with interleukin (IL)-3 andCD40-ligand
-
Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. 1997. The enigmatic plasmacytoid Tcells develop into dendritic cells with interleukin (IL)-3 andCD40-ligand. J. Exp. Med. 185(6):1101-11
-
(1997)
J. Exp. Med.
, vol.185
, Issue.6
, pp. 1101-1111
-
-
Grouard, G.1
Rissoan, M.C.2
Filgueira, L.3
Durand, I.4
Banchereau, J.5
Liu, Y.J.6
-
113
-
-
67449128181
-
CD2distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions
-
Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, et al. 2009.CD2distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182(11):6815-23
-
(2009)
J. Immunol.
, vol.182
, Issue.11
, pp. 6815-6823
-
-
Matsui, T.1
Connolly, J.E.2
Michnevitz, M.3
Chaussabel, D.4
Yu, C.I.5
-
114
-
-
77957085835
-
-
Bar-On L, Birnberg T, Lewis KL, Bruder D, Hildner K. CX3CR1+ CD8a+ dendritic cells are a steadystate population related to plasmacytoid dendritic cells PNAS 107:14745-50
-
CX3CR1+ CD8a+ Dendritic Cells Are A Steadystate Population Related to Plasmacytoid Dendritic Cells PNAS
, vol.107
, pp. 14745-14750
-
-
Bar-On, L.1
Birnberg, T.2
Lewis, K.L.3
Bruder, D.4
Hildner, K.5
-
115
-
-
84937967684
-
The multifaceted biology of plasmacytoid dendritic cells
-
Swiecki M, Colonna M. 2015. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15(8):471-85
-
(2015)
Nat. Rev. Immunol.
, vol.15
, Issue.8
, pp. 471-485
-
-
Swiecki, M.1
Colonna, M.2
-
116
-
-
0032773794
-
Plasmacytoid monocytesmigrate to inflamed lymph nodes and produce large amounts of type i interferon
-
Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, et al. 1999. Plasmacytoid monocytesmigrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5(8):919-23
-
(1999)
Nat. Med.
, vol.5
, Issue.8
, pp. 919-923
-
-
Cella, M.1
Jarrossay, D.2
Facchetti, F.3
Alebardi, O.4
Nakajima, H.5
-
117
-
-
42049093255
-
Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus
-
McNiff JM, Kaplan DH. 2008. Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus. J. Cutan. Pathol. 35(5):452-56
-
(2008)
J. Cutan. Pathol.
, vol.35
, Issue.5
, pp. 452-456
-
-
McNiff, J.M.1
Kaplan, D.H.2
-
118
-
-
22344438901
-
Plasmacytoid predendritic cells initiate psoriasis through interferon-aproduction
-
Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, et al. 2005. Plasmacytoid predendritic cells initiate psoriasis through interferon-aproduction. J. Exp. Med. 202(1):135-43
-
(2005)
J. Exp. Med.
, vol.202
, Issue.1
, pp. 135-143
-
-
Nestle, F.O.1
Conrad, C.2
Tun-Kyi, A.3
Homey, B.4
Gombert, M.5
-
119
-
-
0033546053
-
The nature of the principal type 1 interferon-producing cells in human blood
-
Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, et al. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835-37
-
(1999)
Science
, vol.284
, Issue.5421
, pp. 1835-1837
-
-
Siegal, F.P.1
Kadowaki, N.2
Shodell, M.3
Fitzgerald-Bocarsly, P.A.4
Shah, K.5
-
120
-
-
0032546352
-
Dendritic cells and the control of immunity
-
Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392(6673):245-52
-
(1998)
Nature
, vol.392
, Issue.6673
, pp. 245-252
-
-
Banchereau, J.1
Steinman, R.M.2
-
122
-
-
77349093593
-
Defining dendritic cells by conditional and constitutive cell ablation
-
Bar-On L, Jung S. 2010. Defining dendritic cells by conditional and constitutive cell ablation. Immunol. Rev. 234(1):76-89
-
(2010)
Immunol. Rev.
, vol.234
, Issue.1
, pp. 76-89
-
-
Bar-On, L.1
Jung, S.2
-
123
-
-
84894078016
-
The evolution of cellular deficiency in GATA2 mutation
-
Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, et al. 2014. The evolution of cellular deficiency in GATA2 mutation. Blood 123(6):863-74
-
(2014)
Blood
, vol.123
, Issue.6
, pp. 863-874
-
-
Dickinson, R.E.1
Milne, P.2
Jardine, L.3
Zandi, S.4
Swierczek, S.I.5
-
124
-
-
0035903326
-
Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo
-
Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, et al. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194(6):769-79
-
(2001)
J. Exp. Med.
, vol.194
, Issue.6
, pp. 769-779
-
-
Hawiger, D.1
Inaba, K.2
Dorsett, Y.3
Guo, M.4
Mahnke, K.5
-
125
-
-
0037122011
-
Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class i products and peripheral CD8+ T cell tolerance
-
Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196(12):1627-38
-
(2002)
J. Exp. Med.
, vol.196
, Issue.12
, pp. 1627-1638
-
-
Bonifaz, L.1
Bonnyay, D.2
Mahnke, K.3
Rivera, M.4
Nussenzweig, M.C.5
Steinman, R.M.6
-
126
-
-
77951737543
-
Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A
-
Joffre OP, Sancho D, Zelenay S, Keller AM, Reis e Sousa C. 2010. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur. J. Immunol. 40(5):1255-65
-
(2010)
Eur. J. Immunol.
, vol.40
, Issue.5
, pp. 1255-1265
-
-
Joffre, O.P.1
Sancho, D.2
Zelenay, S.3
Keller, A.M.4
Reis e Sousa, C.5
-
127
-
-
84906568561
-
Classical Flt3L-dependent dendritic cells control immunity to protein vaccine
-
Anandasabapathy N, Feder R, Mollah S, Tse S-W, Longhi MP, et al. 2014. Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. J. Exp. Med. 211(9):1875-91
-
(2014)
J. Exp. Med.
, vol.211
, Issue.9
, pp. 1875-1891
-
-
Anandasabapathy, N.1
Feder, R.2
Mollah, S.3
Tse, S.-W.4
Longhi, M.P.5
-
128
-
-
35348968837
-
Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation
-
Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, et al. 2007. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610-24
-
(2007)
Immunity
, vol.27
, Issue.4
, pp. 610-624
-
-
Jiang, A.1
Bloom, O.2
Ono, S.3
Cui, W.4
Unternaehrer, J.5
-
129
-
-
77955634800
-
Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine
-
Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, et al. 2010. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849-53
-
(2010)
Science
, vol.329
, Issue.5993
, pp. 849-853
-
-
Manicassamy, S.1
Reizis, B.2
Ravindran, R.3
Nakaya, H.4
Salazar-Gonzalez, R.M.5
-
130
-
-
84928206908
-
Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance
-
Baratin M, Foray C, Demaria O, Habbeddine M, Pollet E, et al. 2015. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42(4):627-39
-
(2015)
Immunity
, vol.42
, Issue.4
, pp. 627-639
-
-
Baratin, M.1
Foray, C.2
Demaria, O.3
Habbeddine, M.4
Pollet, E.5
-
131
-
-
43449135305
-
TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function
-
Zhou L, Lopes JE, Chong MMW, Ivanov II, Min R, et al. 2008. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function. Nature 453(7192):236-40
-
(2008)
Nature
, vol.453
, Issue.7192
, pp. 236-240
-
-
Zhou, L.1
Lopes, J.E.2
Chong, M.M.W.3
Ivanov, I.I.4
Min, R.5
-
132
-
-
17144400393
-
TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25 + regulatory T cells
-
Marie JC, Letterio JJ, GavinM, Rudensky AY. 2005. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25 + regulatory T cells. J. Exp. Med. 201(7):1061-67
-
(2005)
J. Exp. Med.
, vol.201
, Issue.7
, pp. 1061-1067
-
-
Marie, J.C.1
Letterio, J.J.2
Gavin, M.3
Rudensky, A.Y.4
-
133
-
-
55549084247
-
Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells
-
Hill JA, Hall JA, Sun C-M, Cai Q, Ghyselinck N, et al. 2008. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29(5):758-70
-
(2008)
Immunity
, vol.29
, Issue.5
, pp. 758-770
-
-
Hill, J.A.1
Hall, J.A.2
Sun, C.-M.3
Cai, Q.4
Ghyselinck, N.5
-
134
-
-
84873331871
-
Specialized role of migratory dendritic cells in peripheral tolerance induction
-
Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, et al. 2013. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Investig. 123:844-54
-
(2013)
J. Clin. Investig.
, vol.123
, pp. 844-854
-
-
Idoyaga, J.1
Fiorese, C.2
Zbytnuik, L.3
Lubkin, A.4
Miller, J.5
-
135
-
-
84928958293
-
Skin dendritic cells induce follicular helper T cells and protective humoral immune responses
-
Yao C, Zurawski SM, Jarrett ES, Chicoine B, Crabtree J, et al. 2015. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol. 136:1387-97.e7
-
(2015)
J. Allergy Clin. Immunol.
, vol.136
, pp. 1387-1387e7
-
-
Yao, C.1
Zurawski, S.M.2
Jarrett, E.S.3
Chicoine, B.4
Crabtree, J.5
-
136
-
-
84924535047
-
Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates
-
Li J, Ahmet F, Sullivan LC, Brooks AG, Kent SJ, et al. 2015. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur. J. Immunol. 45(3):854-64
-
(2015)
Eur. J. Immunol.
, vol.45
, Issue.3
, pp. 854-864
-
-
Li, J.1
Ahmet, F.2
Sullivan, L.C.3
Brooks, A.G.4
Kent, S.J.5
-
137
-
-
84861462335
-
Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells
-
Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. 2012. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36(5):873-84
-
(2012)
Immunity
, vol.36
, Issue.5
, pp. 873-884
-
-
Seneschal, J.1
Clark, R.A.2
Gehad, A.3
Baecher-Allan, C.M.4
Kupper, T.S.5
-
138
-
-
84949546369
-
Immune homeostasis enforced by co-localized effector and regulatory T cells
-
Liu Z, Gerner MY, van Panhuys N, Levine AG, Rudensky AY, Germain RN. 2015. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528(7581):225-30
-
(2015)
Nature
, vol.528
, Issue.7581
, pp. 225-230
-
-
Liu, Z.1
Gerner, M.Y.2
Van Panhuys, N.3
Levine, A.G.4
Rudensky, A.Y.5
Germain, R.N.6
-
139
-
-
77950408684
-
Skin-draining lymph nodes contain dermis-derived CD103-dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells
-
Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P, et al. 2010. Skin-draining lymph nodes contain dermis-derived CD103-dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood 115(10):1958-68
-
(2010)
Blood
, vol.115
, Issue.10
, pp. 1958-1968
-
-
Guilliams, M.1
Crozat, K.2
Henri, S.3
Tamoutounour, S.4
Grenot, P.5
-
140
-
-
84863116620
-
Targeting self-and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells
-
Li D, Romain G, Flamar A-L, Duluc D, Dullaers M, et al. 2012. Targeting self-and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med. 209(1):109-21
-
(2012)
J. Exp. Med.
, vol.209
, Issue.1
, pp. 109-121
-
-
Li, D.1
Romain, G.2
Flamar, A.-L.3
Duluc, D.4
Dullaers, M.5
-
141
-
-
77953502765
-
Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens
-
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, et al. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207(6):1247-60
-
(2010)
J. Exp. Med.
, vol.207
, Issue.6
, pp. 1247-1260
-
-
Jongbloed, S.L.1
Kassianos, A.J.2
McDonald, K.J.3
Clark, G.J.4
Ju, X.5
-
142
-
-
84864332935
-
Cross-presentation by dendritic cells
-
Joffre OP, Segura E, Savina A, Amigorena S. 2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12(8):557-69
-
(2012)
Nat. Rev. Immunol.
, vol.12
, Issue.8
, pp. 557-569
-
-
Joffre, O.P.1
Segura, E.2
Savina, A.3
Amigorena, S.4
-
143
-
-
80051906942
-
Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses
-
Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, et al. 2011. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35(2):260-72
-
(2011)
Immunity
, vol.35
, Issue.2
, pp. 260-272
-
-
Igyarto, B.Z.1
Haley, K.2
Ortner, D.3
Bobr, A.4
Gerami-Nejad, M.5
-
144
-
-
84928704650
-
Commensal-dendritic-cell interaction specifies a unique protective skin immune signature
-
Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ, et al. 2015. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104-8
-
(2015)
Nature
, vol.520
, Issue.7545
, pp. 104-108
-
-
Naik, S.1
Bouladoux, N.2
Linehan, J.L.3
Han, S.-J.4
Harrison, O.J.5
-
145
-
-
65249099085
-
Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells
-
Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, et al. 2009. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10(5):488-95
-
(2009)
Nat. Immunol.
, vol.10
, Issue.5
, pp. 488-495
-
-
Bedoui, S.1
Whitney, P.G.2
Waithman, J.3
Eidsmo, L.4
Wakim, L.5
-
146
-
-
84941739187
-
Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection
-
Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. 2015. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43:554-65
-
(2015)
Immunity
, vol.43
, pp. 554-565
-
-
Hor, J.L.1
Whitney, P.G.2
Zaid, A.3
Brooks, A.G.4
Heath, W.R.5
Mueller, S.N.6
-
147
-
-
84941356605
-
Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions
-
Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, et al. 2015. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162(6):1322-37
-
(2015)
Cell
, vol.162
, Issue.6
, pp. 1322-1337
-
-
Eickhoff, S.1
Brewitz, A.2
Gerner, M.Y.3
Klauschen, F.4
Komander, K.5
-
148
-
-
84955493687
-
Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node
-
Kitano M, Yamazaki C, Takumi A, Ikeno T, Hemmi H, et al. 2016. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. PNAS 113(4):1044-49
-
(2016)
PNAS
, vol.113
, Issue.4
, pp. 1044-1049
-
-
Kitano, M.1
Yamazaki, C.2
Takumi, A.3
Ikeno, T.4
Hemmi, H.5
-
149
-
-
0036883606
-
A modification of the epidermal scarification model of herpes simplex virus infection to achieve a reproducible and uniform progression of disease
-
Goel N, Lee HK, Docherty JJ, Zamora M, Linehan MM, et al. 2002. A modification of the epidermal scarification model of herpes simplex virus infection to achieve a reproducible and uniform progression of disease. J. Virol. Methods 106(2):153-58
-
(2002)
J. Virol. Methods
, vol.106
, Issue.2
, pp. 153-158
-
-
Goel, N.1
Lee, H.K.2
Docherty, J.J.3
Zamora, M.4
Linehan, M.M.5
-
150
-
-
84918531042
-
Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance
-
Flacher V, Tripp CH, Mairhofer DG, Steinman RM, Stoitzner P, et al. 2014. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol. Med. 6(9):1191-204
-
(2014)
EMBO Mol. Med.
, vol.6
, Issue.9
, pp. 1191-1204
-
-
Flacher, V.1
Tripp, C.H.2
Mairhofer, D.G.3
Steinman, R.M.4
Stoitzner, P.5
-
151
-
-
84863800955
-
Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation
-
Chu C-C, Ali N, Karagiannis P, DiMeglio P, Skowera A, et al. 2012. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J. Exp. Med. 209(5):935-45
-
(2012)
J. Exp. Med.
, vol.209
, Issue.5
, pp. 935-945
-
-
Chu, C.-C.1
Ali, N.2
Karagiannis, P.3
DiMeglio, P.4
Skowera, A.5
-
152
-
-
84935049583
-
Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells
-
Artyomov MN, Munk A, Gorvel L, Korenfeld D, Cella M, et al. 2015. Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. J. Exp. Med. 212(5):743-57
-
(2015)
J. Exp. Med.
, vol.212
, Issue.5
, pp. 743-757
-
-
Artyomov, M.N.1
Munk, A.2
Gorvel, L.3
Korenfeld, D.4
Cella, M.5
-
153
-
-
80051915459
-
CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites
-
Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, et al. 2011. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35(2):249-59
-
(2011)
Immunity
, vol.35
, Issue.2
, pp. 249-259
-
-
Mashayekhi, M.1
Sandau, M.M.2
Dunay, I.R.3
Frickel, E.M.4
Khan, A.5
-
154
-
-
84921065511
-
Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice
-
Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D. 2015. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur. J. Immunol. 45(1):119-29
-
(2015)
Eur. J. Immunol.
, vol.45
, Issue.1
, pp. 119-129
-
-
Martinez-Lopez, M.1
Iborra, S.2
Conde-Garrosa, R.3
Sancho, D.4
-
155
-
-
84923000491
-
Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
-
Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed J, et al. 2015. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42(2):356-66
-
(2015)
Immunity
, vol.42
, Issue.2
, pp. 356-366
-
-
Kashem, S.W.1
Igyarto, B.Z.2
Gerami-Nejad, M.3
Kumamoto, Y.4
Mohammed, J.5
-
156
-
-
0037455066
-
Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2
-
Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, et al. 2003. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197(2):153-62
-
(2003)
J. Exp. Med.
, vol.197
, Issue.2
, pp. 153-162
-
-
Zhao, X.1
Deak, E.2
Soderberg, K.3
Linehan, M.4
Spezzano, D.5
-
157
-
-
84946040280
-
BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming
-
Bollampalli VP, Harumi Yamashiro L, Feng X, Bierschenk D, Gao Y, et al. 2015. BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming. PLOS Pathog. 11(10):e1005206
-
(2015)
PLOS Pathog.
, vol.11
, Issue.10
, pp. e1005206
-
-
Bollampalli, V.P.1
Harumi Yamashiro, L.2
Feng, X.3
Bierschenk, D.4
Gao, Y.5
-
158
-
-
34247104151
-
Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania
-
Leon B, Lopez-BravoM, Ardavin C. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26(4):519-31
-
(2007)
Immunity
, vol.26
, Issue.4
, pp. 519-531
-
-
Leon, B.1
Lopez-Bravo, M.2
Ardavin, C.3
-
159
-
-
77956932553
-
Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways
-
Zhan Y, Xu Y, Seah S, Brady JL, Carrington EM, et al. 2010. Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. J. Immunol. 185(4):2125-33
-
(2010)
J. Immunol.
, vol.185
, Issue.4
, pp. 2125-2133
-
-
Zhan, Y.1
Xu, Y.2
Seah, S.3
Brady, J.L.4
Carrington, E.M.5
-
160
-
-
66149111441
-
MGL2 dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo
-
Kumamoto Y, Denda-Nagai K, Aida S, Higashi N, Irimura T. 2009. MGL2 dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLOS ONE 4(5):e5619
-
(2009)
PLOS ONE
, vol.4
, Issue.5
, pp. e5619
-
-
Kumamoto, Y.1
Denda-Nagai, K.2
Aida, S.3
Higashi, N.4
Irimura, T.5
-
161
-
-
84887450143
-
Cutting edge: Identification of the thymic stromal lymphopoietinresponsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity
-
Kitajima M, Ziegler SF. 2013. Cutting edge: Identification of the thymic stromal lymphopoietinresponsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J. Immunol. 191(10):4903-7
-
(2013)
J. Immunol.
, vol.191
, Issue.10
, pp. 4903-4907
-
-
Kitajima, M.1
Ziegler, S.F.2
-
162
-
-
84875421490
-
The transcription factor STAT5 is critical in dendritic cells for the development ofTH2 but notTH1 responses
-
Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, et al. 2013. The transcription factor STAT5 is critical in dendritic cells for the development ofTH2 but notTH1 responses. Nat. Immunol. 14(4):364-71
-
(2013)
Nat. Immunol.
, vol.14
, Issue.4
, pp. 364-371
-
-
Bell, B.D.1
Kitajima, M.2
Larson, R.P.3
Stoklasek, T.A.4
Dang, K.5
-
163
-
-
84961163619
-
Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12
-
Everts B, Tussiwand R, Dreesen L, Fairfax KC, Huang SC-C, et al. 2016. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 213(1):35-51
-
(2016)
J. Exp. Med.
, vol.213
, Issue.1
, pp. 35-51
-
-
Everts, B.1
Tussiwand, R.2
Dreesen, L.3
Fairfax, K.C.4
Sc-C, H.5
-
164
-
-
84952637013
-
Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses
-
Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, et al. 2016. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17(1):57-64
-
(2016)
Nat. Immunol.
, vol.17
, Issue.1
, pp. 57-64
-
-
Halim, T.Y.F.1
Hwang, Y.Y.2
Scanlon, S.T.3
Zaghouani, H.4
Garbi, N.5
-
166
-
-
84861162719
-
Th17 cells in immunity to Candida albicans
-
Hernandez-Santos N, Gaffen SL. 2012. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11(5):425-35
-
(2012)
Cell Host Microbe
, vol.11
, Issue.5
, pp. 425-435
-
-
Hernandez-Santos, N.1
Gaffen, S.L.2
-
167
-
-
80055107954
-
DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
-
Randall KL, Chan SS-Y, Ma CS, Fung I, Mei Y, et al. 2011. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208(11):2305-20
-
(2011)
J. Exp. Med.
, vol.208
, Issue.11
, pp. 2305-2320
-
-
Randall, K.L.1
Chan, S.S.-Y.2
Ma, C.S.3
Fung, I.4
Mei, Y.5
-
168
-
-
84861078339
-
DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses
-
Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, et al. 2012. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119(19):4451-61
-
(2012)
Blood
, vol.119
, Issue.19
, pp. 4451-4461
-
-
Harada, Y.1
Tanaka, Y.2
Terasawa, M.3
Pieczyk, M.4
Habiro, K.5
-
169
-
-
84860318542
-
Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration
-
Haley K, Igyarto BZ, Ortner D, Bobr A, Kashem S, et al. 2012. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188(9):4334-39
-
(2012)
J. Immunol.
, vol.188
, Issue.9
, pp. 4334-4339
-
-
Haley, K.1
Igyarto, B.Z.2
Ortner, D.3
Bobr, A.4
Kashem, S.5
-
170
-
-
84928184443
-
Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis
-
Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, et al. 2015. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42(4):756-66
-
(2015)
Immunity
, vol.42
, Issue.4
, pp. 756-766
-
-
Kobayashi, T.1
Glatz, M.2
Horiuchi, K.3
Kawasaki, H.4
Akiyama, H.5
-
171
-
-
60549093645
-
Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses
-
Mathers AR, Janelsins BM, Rubin JP, Tkacheva OA, ShufeskyWJ, et al. 2009. Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. J. Immunol. 182(2):921-33
-
(2009)
J. Immunol.
, vol.182
, Issue.2
, pp. 921-933
-
-
Mathers, A.R.1
Janelsins, B.M.2
Rubin, J.P.3
Tkacheva, O.A.4
Shufesky, W.J.5
-
172
-
-
84944225948
-
Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells
-
Linehan JL, Dileepan T, Kashem SW, Kaplan DH, Cleary P, Jenkins MK. 2015. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells. PNAS 112(41):12782-87
-
(2015)
PNAS
, vol.112
, Issue.41
, pp. 12782-12787
-
-
Linehan, J.L.1
Dileepan, T.2
Kashem, S.W.3
Kaplan, D.H.4
Cleary, P.5
Jenkins, M.K.6
-
173
-
-
84859158015
-
Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling
-
Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, et al. 2012. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol. 129(4):1048-55.e6
-
(2012)
J. Allergy Clin. Immunol.
, vol.129
, Issue.4
, pp. 1048-1048e6
-
-
Nakajima, S.1
Igyarto, B.Z.2
Honda, T.3
Egawa, G.4
Otsuka, A.5
-
174
-
-
84923673310
-
Langerhans cells promote early germinal center formation in response to Leishmania-derived cutaneous antigens
-
Zimara N, Florian C, Schmid M, Malissen B, Kissenpfennig A, et al. 2014. Langerhans cells promote early germinal center formation in response to Leishmania-derived cutaneous antigens. Eur. J. Immunol. 44(10):2955-67
-
(2014)
Eur. J. Immunol.
, vol.44
, Issue.10
, pp. 2955-2967
-
-
Zimara, N.1
Florian, C.2
Schmid, M.3
Malissen, B.4
Kissenpfennig, A.5
-
175
-
-
84885831956
-
CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity
-
Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. 2013. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39(4):733-43
-
(2013)
Immunity
, vol.39
, Issue.4
, pp. 733-743
-
-
Kumamoto, Y.1
Linehan, M.2
Weinstein, J.S.3
Laidlaw, B.J.4
Craft, J.E.5
Iwasaki, A.6
-
176
-
-
84988672765
-
CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens
-
Kumamoto Y, Hirai T, Wong PW, Kaplan DH, Iwasaki A. 2016. CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens. eLife 2016:17979
-
(2016)
ELife
, vol.2016
, pp. 17979
-
-
Kumamoto, Y.1
Hirai, T.2
Wong, P.W.3
Kaplan, D.H.4
Iwasaki, A.5
-
177
-
-
79960544931
-
Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype
-
Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, et al. 2011. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. 187(2):842-50
-
(2011)
J. Immunol.
, vol.187
, Issue.2
, pp. 842-850
-
-
Lahoud, M.H.1
Ahmet, F.2
Kitsoulis, S.3
Wan, S.S.4
Vremec, D.5
-
178
-
-
84887479428
-
Evolution of B cell responses to Clec9A-targeted antigen
-
Park HY, Light A, Lahoud MH, Caminschi I, Tarlinton DM, Shortman K. 2013. Evolution of B cell responses to Clec9A-targeted antigen. J. Immunol. 191(10):4919-25
-
(2013)
J. Immunol.
, vol.191
, Issue.10
, pp. 4919-4925
-
-
Park, H.Y.1
Light, A.2
Lahoud, M.H.3
Caminschi, I.4
Tarlinton, D.M.5
Shortman, K.6
-
179
-
-
33646046528
-
The vast majority of CLA+ T cells are resident in normal skin
-
Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, et al. 2006. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176(7):4431-39
-
(2006)
J. Immunol.
, vol.176
, Issue.7
, pp. 4431-4439
-
-
Clark, R.A.1
Chong, B.2
Mirchandani, N.3
Brinster, N.K.4
Yamanaka, K.5
-
180
-
-
84908146020
-
Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin
-
Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, et al. 2014. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15(11):1064-69
-
(2014)
Nat. Immunol.
, vol.15
, Issue.11
, pp. 1064-1069
-
-
Natsuaki, Y.1
Egawa, G.2
Nakamizo, S.3
Ono, S.4
Hanakawa, S.5
-
181
-
-
84907479665
-
T cell memory: A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells
-
Iijima N, Iwasaki A. 2014. T cell memory: a local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346(6205):93-98
-
(2014)
Science
, vol.346
, Issue.6205
, pp. 93-98
-
-
Iijima, N.1
Iwasaki, A.2
-
182
-
-
84968690743
-
Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation
-
Collins N, Jiang X, Zaid A, Macleod BL, Li J, et al. 2016. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7:11514
-
(2016)
Nat. Commun.
, vol.7
, pp. 11514
-
-
Collins, N.1
Jiang, X.2
Zaid, A.3
Macleod, B.L.4
Li, J.5
-
183
-
-
84900862778
-
Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis
-
Kim T-G, Jee H, Fuentes-Duculan J, Wu WH, Byamba D, et al. 2014. Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J. Investig. Dermatol. 134(5):1462-65
-
(2014)
J. Investig. Dermatol.
, vol.134
, Issue.5
, pp. 1462-1465
-
-
Kim, T.-G.1
Jee, H.2
Fuentes-Duculan, J.3
Wu, W.H.4
Byamba, D.5
-
184
-
-
84898037662
-
Persistence of skin-resident memory T cells within an epidermal niche
-
Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, et al. 2014. Persistence of skin-resident memory T cells within an epidermal niche. PNAS 111(14):5307-12
-
(2014)
PNAS
, vol.111
, Issue.14
, pp. 5307-5312
-
-
Zaid, A.1
Mackay, L.K.2
Rahimpour, A.3
Braun, A.4
Veldhoen, M.5
-
185
-
-
38149001476
-
Dendritic cell-induced memory T cell activation in nonlymphoid tissues
-
Wakim LM, Waithman J, vanRooijen N, Heath WR, Carbone FR. 2008. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319(5860):198-202
-
(2008)
Science
, vol.319
, Issue.5860
, pp. 198-202
-
-
Wakim, L.M.1
Waithman, J.2
VanRooijen, N.3
Heath, W.R.4
Carbone, F.R.5
-
186
-
-
60149101114
-
Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin
-
McLachlan JB, Catron DM, Moon JJ, Jenkins MK. 2009. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatoryTcells in inflamed skin. Immunity 30(2):277-88
-
(2009)
Immunity
, vol.30
, Issue.2
, pp. 277-288
-
-
McLachlan, J.B.1
Catron, D.M.2
Moon, J.J.3
Jenkins, M.K.4
-
187
-
-
84455191813
-
IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity
-
Girard-Madoux MJH, Kel JM, Reizis B, Clausen BE. 2012. IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity. J. Allergy Clin. Immunol. 129(1):143-50.e10
-
(2012)
J. Allergy Clin. Immunol.
, vol.129
, Issue.1
, pp. 143-143e10
-
-
Girard-Madoux, M.J.H.1
Kel, J.M.2
Reizis, B.3
Clausen, B.E.4
-
188
-
-
2542448243
-
CD1: Antigen presentation and T cell function
-
Brigl M, Brenner MB. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22(1):817-90
-
(2004)
Annu. Rev. Immunol.
, vol.22
, Issue.1
, pp. 817-890
-
-
Brigl, M.1
Brenner, M.B.2
-
189
-
-
84892799782
-
CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens
-
de Jong A, Cheng T-Y, Huang S, Gras S, Birkinshaw RW, et al. 2014. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15(2):177-85
-
(2014)
Nat. Immunol.
, vol.15
, Issue.2
, pp. 177-185
-
-
De Jong, A.1
Cheng, T.-Y.2
Huang, S.3
Gras, S.4
Birkinshaw, R.W.5
-
190
-
-
11144353750
-
Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells
-
Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, et al. 2004. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Investig. 113(5):701-8
-
(2004)
J. Clin. Investig.
, vol.113
, Issue.5
, pp. 701-708
-
-
Hunger, R.E.1
Sieling, P.A.2
Ochoa, M.T.3
Sugaya, M.4
Burdick, A.E.5
-
191
-
-
84922746478
-
Bee venom processes human skin lipids for presentation by CD1a
-
Bourgeois EA, Subramaniam S, ChengT-Y, de Jong A, Layre E, et al. 2015. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212(2):149-63
-
(2015)
J. Exp. Med.
, vol.212
, Issue.2
, pp. 149-163
-
-
Bourgeois, E.A.1
Subramaniam, S.2
Cheng, T.-Y.3
De Jong, A.4
Layre, E.5
-
192
-
-
84958617542
-
Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase
-
Jarrett R, Salio M, Lloyd-Lavery A, Subramaniam S, Bourgeois E, et al. 2016. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci. Transl. Med. 8(325):325ra18
-
(2016)
Sci. Transl. Med.
, vol.8
, Issue.325
, pp. 325ra18
-
-
Jarrett, R.1
Salio, M.2
Lloyd-Lavery, A.3
Subramaniam, S.4
Bourgeois, E.5
-
193
-
-
84983528036
-
CD1a on Langerhans cells controls inflammatory skin disease
-
Kim JH, Hu Y, Yongqing T, Kim J, Hughes VA, et al. 2016. CD1a on Langerhans cells controls inflammatory skin disease. Nat. Immunol. 17:1159-66
-
(2016)
Nat. Immunol.
, vol.17
, pp. 1159-1166
-
-
Kim, J.H.1
Hu, Y.2
Yongqing, T.3
Kim, J.4
Hughes, V.A.5
-
194
-
-
84997764950
-
Complete humanCD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence
-
Cerny D, Thi Le DH, The TD, Zuest R, Kg S, et al. 2016. Complete humanCD1a deficiency on Langerhans cells due to a rare point mutation in the coding sequence. J. Allergy Clin. Immunol. 138(6):1709-12.e11
-
(2016)
J. Allergy Clin. Immunol.
, vol.138
, Issue.6
, pp. 1709-1709e11
-
-
Cerny, D.1
Thi Le, D.H.2
The, T.D.3
Zuest, R.4
Kg, S.5
-
195
-
-
84878257398
-
Deficiency in IL-17-committed V4+ d T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis
-
Gray EE, Ramirez-Valle F, Xu Y, Wu S, Wu Z, et al. 2013. Deficiency in IL-17-committed V4+d T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14(6):584-92
-
(2013)
Nat. Immunol.
, vol.14
, Issue.6
, pp. 584-592
-
-
Gray, E.E.1
Ramirez-Valle, F.2
Xu, Y.3
Wu, S.4
Wu, Z.5
-
196
-
-
79952725610
-
Cutaneous immunosurveillance by selfrenewing dermal dT cells
-
Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, et al. 2011. Cutaneous immunosurveillance by selfrenewing dermal dT cells. J. Exp. Med. 208(3):505-18
-
(2011)
J. Exp. Med.
, vol.208
, Issue.3
, pp. 505-518
-
-
Sumaria, N.1
Roediger, B.2
Ng, L.G.3
Qin, J.4
Pinto, R.5
-
197
-
-
77951861324
-
IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice
-
Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, et al. 2010. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Investig. 120(5):1762-73
-
(2010)
J. Clin. Investig.
, vol.120
, Issue.5
, pp. 1762-1773
-
-
Cho, J.S.1
Pietras, E.M.2
Garcia, N.C.3
Ramos, R.I.4
Farzam, D.M.5
-
198
-
-
84941645578
-
-
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. 2015. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. 43(3):515-26
-
(2015)
Nociceptive Sensory Fibers Drive interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity
, vol.43
, Issue.3
, pp. 515-526
-
-
Kashem, S.W.1
Riedl, M.S.2
Yao, C.3
Honda, C.N.4
Vulchanova, L.5
Kaplan, D.H.6
-
199
-
-
84901976634
-
Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation
-
Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A, et al. 2014. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510(7503):157-61
-
(2014)
Nature
, vol.510
, Issue.7503
, pp. 157-161
-
-
Riol-Blanco, L.1
Ordovas-Montanes, J.2
Perro, M.3
Naval, E.4
Thiriot, A.5
-
200
-
-
84941645578
-
Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity
-
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. 2015. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43(3):515-26
-
(2015)
Immunity
, vol.43
, Issue.3
, pp. 515-526
-
-
Kashem, S.W.1
Riedl, M.S.2
Yao, C.3
Honda, C.N.4
Vulchanova, L.5
Kaplan, D.H.6
-
201
-
-
84902537284
-
IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17Aproducing dT cells
-
Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, et al. 2014. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17Aproducing dT cells. J. Investig. Dermatol. 134(7):1912-21
-
(2014)
J. Investig. Dermatol.
, vol.134
, Issue.7
, pp. 1912-1921
-
-
Yoshiki, R.1
Kabashima, K.2
Honda, T.3
Nakamizo, S.4
Sawada, Y.5
-
202
-
-
84879547366
-
Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice
-
Wohn C, Ober-Blobaum JL, Haak S, Pantelyushin S, Cheong C, et al. 2013. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. PNAS 110(26):10723-28
-
(2013)
PNAS
, vol.110
, Issue.26
, pp. 10723-10728
-
-
Wohn, C.1
Ober-Blobaum, J.L.2
Haak, S.3
Pantelyushin, S.4
Cheong, C.5
-
203
-
-
0023891977
-
Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes
-
Gaspari AA, Katz SI. 1988. Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J. Immunol. 140(9):2956-63
-
(1988)
J. Immunol.
, vol.140
, Issue.9
, pp. 2956-2963
-
-
Gaspari, A.A.1
Katz, S.I.2
-
204
-
-
84936891126
-
Activation of HIF-1aand LL-37 by commensal bacteria inhibits Candida albicans colonization
-
Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, et al. 2015. Activation of HIF-1aand LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21(7):808-14
-
(2015)
Nat. Med.
, vol.21
, Issue.7
, pp. 808-814
-
-
Fan, D.1
Coughlin, L.A.2
Neubauer, M.M.3
Kim, J.4
Kim, M.S.5
-
205
-
-
0024852106
-
Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermalTlymphocytic infiltration in allergic contact dermatitis (Rhus dermatitis)
-
Griffiths CE, Nickoloff BJ. 1989. Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermalTlymphocytic infiltration in allergic contact dermatitis (Rhus dermatitis). Am. J. Pathol. 135(6):1045-53
-
(1989)
Am. J. Pathol.
, vol.135
, Issue.6
, pp. 1045-1053
-
-
Griffiths, C.E.1
Nickoloff, B.J.2
-
206
-
-
78649629136
-
TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis
-
Kel JM, Girard-Madoux MJH, Reizis B, Clausen BE. 2010. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185(6):3248-55
-
(2010)
J. Immunol.
, vol.185
, Issue.6
, pp. 3248-3255
-
-
Kel, J.M.1
Girard-Madoux, M.J.H.2
Reizis, B.3
Clausen, B.E.4
-
207
-
-
84862987203
-
Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration
-
Bobr A, Igyarto BZ, Haley KM, Li MO, Flavell RA, Kaplan DH. 2012. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. PNAS 109(26):10492-97
-
(2012)
PNAS
, vol.109
, Issue.26
, pp. 10492-10497
-
-
Bobr, A.1
Igyarto, B.Z.2
Haley, K.M.3
Li, M.O.4
Flavell, R.A.5
Kaplan, D.H.6
-
208
-
-
84855487102
-
Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma
-
Modi BG, Neustadter J, Binda E, Lewis J, Filler RB, et al. 2012. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science 335(6064):104-8
-
(2012)
Science
, vol.335
, Issue.6064
, pp. 104-108
-
-
Modi, B.G.1
Neustadter, J.2
Binda, E.3
Lewis, J.4
Filler, R.B.5
-
209
-
-
84928394792
-
Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells
-
Lewis JM, Burgler CD, Fraser JA, Liao H, Golubets K, et al. 2015. Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells. J. Investig. Dermatol. 135(5):1405-14
-
(2015)
J. Investig. Dermatol.
, vol.135
, Issue.5
, pp. 1405-1414
-
-
Lewis, J.M.1
Burgler, C.D.2
Fraser, J.A.3
Liao, H.4
Golubets, K.5
-
210
-
-
84947025057
-
Langerhans cells facilitate UVB-induced epidermal carcinogenesis
-
Lewis JM, Burgler CD, Freudzon M, Golubets K, Gibson JF, et al. 2015. Langerhans cells facilitate UVB-induced epidermal carcinogenesis. J. Investig. Dermatol. 135(11):2824-33
-
(2015)
J. Investig. Dermatol.
, vol.135
, Issue.11
, pp. 2824-2833
-
-
Lewis, J.M.1
Burgler, C.D.2
Freudzon, M.3
Golubets, K.4
Gibson, J.F.5
-
211
-
-
80355136945
-
Host type i IFN signals are required for antitumor CD8+ T cell responses through CD8a+ dendritic cells
-
Fuertes MB, Kacha AK, Kline J, Woo S-R, Kranz DM, et al. 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8a+ dendritic cells. J. Exp. Med. 208(10):2005-16
-
(2011)
J. Exp. Med.
, vol.208
, Issue.10
, pp. 2005-2016
-
-
Fuertes, M.B.1
Kacha, A.K.2
Kline, J.3
Woo, S.-R.4
Kranz, D.M.5
-
212
-
-
84911937777
-
Dissecting the tumormyeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity
-
Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, et al. 2014. Dissecting the tumormyeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26(5):638-52
-
(2014)
Cancer Cell
, vol.26
, Issue.5
, pp. 638-652
-
-
Broz, M.L.1
Binnewies, M.2
Boldajipour, B.3
Nelson, A.E.4
Pollack, J.L.5
-
213
-
-
84964344569
-
Expansion and activation ofCD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition
-
Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, et al. 2016. Expansion and activation ofCD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924-38
-
(2016)
Immunity
, vol.44
, Issue.4
, pp. 924-938
-
-
Salmon, H.1
Idoyaga, J.2
Rahman, A.3
Leboeuf, M.4
Remark, R.5
-
214
-
-
84900869746
-
Paradigm shift in dendritic cell-based immunotherapy: From in vitro generated monocyte-derived DCs to naturally circulating DC subsets
-
Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJM. 2014. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 5(Suppl. 8):165
-
(2014)
Front. Immunol.
, vol.5
, pp. 165
-
-
Wimmers, F.1
Schreibelt, G.2
Skold, A.E.3
Figdor, C.G.4
De Vries, I.J.M.5
-
215
-
-
84942236803
-
Somaticmutation in cancer and normal cells
-
Martincorena I, Campbell PJ. 2015. Somaticmutation in cancer and normal cells. Science 349(6255):1483-89
-
(2015)
Science
, vol.349
, Issue.6255
, pp. 1483-1489
-
-
Martincorena, I.1
Campbell, P.J.2
-
216
-
-
84929991442
-
Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin
-
Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880-86
-
(2015)
Science
, vol.348
, Issue.6237
, pp. 880-886
-
-
Martincorena, I.1
Roshan, A.2
Gerstung, M.3
Ellis, P.4
Van Loo, P.5
-
217
-
-
84907223092
-
Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
-
Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, et al. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559-63
-
(2014)
Nature
, vol.513
, Issue.7519
, pp. 559-563
-
-
Colegio, O.R.1
Chu, N.-Q.2
Szabo, A.L.3
Chu, T.4
Rhebergen, A.M.5
-
218
-
-
84936953099
-
Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
-
Spranger S, Bao R, Gajewski TF. 2015. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231-35
-
(2015)
Nature
, vol.523
, Issue.7559
, pp. 231-235
-
-
Spranger, S.1
Bao, R.2
Gajewski, T.F.3
|