-
1
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
27493190
-
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016; 353(6299):aad5147; PMID:27493190; https://doi.org/10.1126/science.aad5147
-
(2016)
Science
, vol.353
, Issue.6299
, pp. aad5147
-
-
Mohanraju, P.1
Makarova, K.S.2
Zetsche, B.3
Zhang, F.4
Koonin, E.V.5
van der Oost, J.6
-
2
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
21455174
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471(7340):602-7; PMID:21455174; https://doi.org/10.1038/nature09886
-
(2011)
Nature
, vol.471
, Issue.7340
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
3
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
23287718, 0.1126/science.1231143
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121):819-23; PMID:23287718; https://doi.org/0.1126/science.1231143
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
-
4
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
23287722
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121):823-6; PMID:23287722; https://doi.org/10.1126/science.1232033
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
5
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
22745249
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096):816-21; PMID:22745249; https://doi.org/10.1126/science.1225829
-
(2012)
Science
, vol.337
, Issue.6096
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
6
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
25430774
-
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213):1258096; PMID:25430774; https://doi.org/10.1126/science.1258096
-
(2014)
Science
, vol.346
, Issue.6213
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
7
-
-
84938945636
-
Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice
-
25924609
-
Aida T, Chiyo K, Usami T, Ishikubo H, Imahashi R, Wada Y, Tanaka KF, Sakuma T, Yamamoto T, Tanaka K. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol 2015; 16:87; PMID:25924609; https://doi.org/10.1186/s13059-015-0653-x
-
(2015)
Genome Biol
, vol.16
, pp. 87
-
-
Aida, T.1
Chiyo, K.2
Usami, T.3
Ishikubo, H.4
Imahashi, R.5
Wada, Y.6
Tanaka, K.F.7
Sakuma, T.8
Yamamoto, T.9
Tanaka, K.10
-
8
-
-
84903217296
-
Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system
-
24954249
-
Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 2014; 4:5400; PMID:24954249; https://doi.org/10.1038/srep05400
-
(2014)
Sci Rep
, vol.4
, pp. 5400
-
-
Sakuma, T.1
Nishikawa, A.2
Kume, S.3
Chayama, K.4
Yamamoto, T.5
-
9
-
-
84903191807
-
Multiple genome modifications by the CRISPR/Cas9 system in zebrafish
-
24848337
-
Ota S, Hisano Y, Ikawa Y, Kawahara A. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 2014; 19(7):555-64; PMID:24848337; https://doi.org/10.1111/gtc.12154
-
(2014)
Genes Cells
, vol.19
, Issue.7
, pp. 555-564
-
-
Ota, S.1
Hisano, Y.2
Ikawa, Y.3
Kawahara, A.4
-
10
-
-
84938932957
-
Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9
-
25757625
-
Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol 2015; 7(4):284-98; PMID:25757625; https://doi.org/10.1093/jmcb/mjv016
-
(2015)
J Mol Cell Biol
, vol.7
, Issue.4
, pp. 284-298
-
-
Li, J.1
Shou, J.2
Guo, Y.3
Tang, Y.4
Wu, Y.5
Jia, Z.6
Zhai, Y.7
Chen, Z.8
Xu, Q.9
Wu, Q.10
-
11
-
-
84899490344
-
Targeted genomic rearrangements using CRISPR/Cas technology
-
24759083
-
Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 2014; 5:3728; PMID:24759083; https://doi.org/10.1038/ncomms4728
-
(2014)
Nat Commun
, vol.5
, pp. 3728
-
-
Choi, P.S.1
Meyerson, M.2
-
12
-
-
84922735816
-
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
-
25337876
-
Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516(7531):423-7; PMID:25337876; https://doi.org/10.1038/nature13902
-
(2014)
Nature
, vol.516
, Issue.7531
, pp. 423-427
-
-
Maddalo, D.1
Manchado, E.2
Concepcion, C.P.3
Bonetti, C.4
Vidigal, J.A.5
Han, Y.C.6
Ogrodowski, P.7
Crippa, A.8
Rekhtman, N.9
de Stanchina, E.10
-
13
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
-
25184501
-
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 2014; 32(12):1262-7; PMID:25184501; https://doi.org/10.1038/nbt.3026
-
(2014)
Nat Biotechnol
, vol.32
, Issue.12
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
Tothova, Z.4
Hegde, M.5
Smith, I.6
Sullender, M.7
Ebert, B.L.8
Xavier, R.J.9
Root, D.E.10
-
14
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
22949671
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39):E2579-86; PMID:22949671; https://doi.org/10.1073/pnas.1208507109
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.39
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
15
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
25830891
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546):186-91; PMID:25830891; https://doi.org/10.1038/nature14299
-
(2015)
Nature
, vol.520
, Issue.7546
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
-
16
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
23792628
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9):822-6; PMID:23792628; https://doi.org/10.1038/nbt.2623
-
(2013)
Nat Biotechnol
, vol.31
, Issue.9
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
17
-
-
84923221641
-
Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
-
25599175
-
Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin RJ, Yee JK. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 2015; 33(2):175-8; PMID:25599175; https://doi.org/10.1038/nbt.3127
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 175-178
-
-
Wang, X.1
Wang, Y.2
Wu, X.3
Wang, J.4
Wang, Y.5
Qiu, Z.6
Chang, T.7
Huang, H.8
Lin, R.J.9
Yee, J.K.10
-
18
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
25513782
-
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015; 33(2):187-97; PMID:25513782; https://doi.org/10.1038/nbt.3117
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
Liebers, M.4
Topkar, V.V.5
Thapar, V.6
Wyvekens, N.7
Khayter, C.8
Iafrate, A.J.9
Le, L.P.10
-
19
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
25503383
-
Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 2015; 33(2):179-86; PMID:25503383; https://doi.org/10.1038/nbt.3101
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 179-186
-
-
Frock, R.L.1
Hu, J.2
Meyers, R.M.3
Ho, Y.J.4
Kii, E.5
Alt, F.W.6
-
20
-
-
84875754465
-
Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
-
23503052
-
Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, Ginalski K, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 2013; 10(4):361-5; PMID:23503052; https://doi.org/10.1038/nmeth.2408
-
(2013)
Nat Methods
, vol.10
, Issue.4
, pp. 361-365
-
-
Crosetto, N.1
Mitra, A.2
Silva, M.J.3
Bienko, M.4
Dojer, N.5
Wang, Q.6
Karaca, E.7
Chiarle, R.8
Skrzypczak, M.9
Ginalski, K.10
-
21
-
-
84923846574
-
Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
-
25664545
-
Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS. Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015; 12(3):237-43; PMID:25664545; https://doi.org/10.1038/nmeth.3284
-
(2015)
Nat Methods
, vol.12
, Issue.3
, pp. 237-243
-
-
Kim, D.1
Bae, S.2
Park, J.3
Kim, E.4
Kim, S.5
Yu, H.R.6
Hwang, J.7
Kim, J.I.8
Kim, J.S.9
-
22
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
26628643
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351(6268):84-8; PMID:26628643; https://doi.org/10.1126/science.aad5227
-
(2016)
Science
, vol.351
, Issue.6268
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
23
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
26735016
-
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529(7587):490-5; PMID:26735016; https://doi.org/10.1038/nature16526
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Tsai, S.Q.4
Nguyen, N.T.5
Zheng, Z.6
Joung, J.K.7
-
24
-
-
84897954502
-
Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
-
24531420
-
Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 2014; 11(4):429-35; PMID:24531420; https://doi.org/10.1038/nmeth.2845
-
(2014)
Nat Methods
, vol.11
, Issue.4
, pp. 429-435
-
-
Guilinger, J.P.1
Pattanayak, V.2
Reyon, D.3
Tsai, S.Q.4
Sander, J.D.5
Joung, J.K.6
Liu, D.R.7
-
25
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
26098369
-
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561):481-5; PMID:26098369; https://doi.org/10.1038/nature14592
-
(2015)
Nature
, vol.523
, Issue.7561
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.7
Li, Z.8
Peterson, R.T.9
Yeh, J.R.10
-
26
-
-
84983683558
-
Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9
-
27317783
-
Feng Y, Chen C, Han Y, Chen Z, Lu X, Liang F, Li S, Qin W, Lin S. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9. G3 (Bethesda) 2016; 6(8):2517-21; PMID:27317783; https://doi.org/10.1534/g3.116.031914
-
(2016)
G3 (Bethesda)
, vol.6
, Issue.8
, pp. 2517-2521
-
-
Feng, Y.1
Chen, C.2
Han, Y.3
Chen, Z.4
Lu, X.5
Liang, F.6
Li, S.7
Qin, W.8
Lin, S.9
-
27
-
-
84971299957
-
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
-
27120160
-
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601):125-9; PMID:27120160; https://doi.org/10.1038/nature17664
-
(2016)
Nature
, vol.533
, Issue.7601
, pp. 125-129
-
-
Paquet, D.1
Kwart, D.2
Chen, A.3
Sproul, A.4
Jacob, S.5
Teo, S.6
Olsen, K.M.7
Gregg, A.8
Noggle, S.9
Tessier-Lavigne, M.10
-
28
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
23849981
-
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2):442-51; PMID:23849981; https://doi.org/10.1016/j.cell.2013.06.044
-
(2013)
Cell
, vol.154
, Issue.2
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
Torres, S.E.6
Stern-Ginossar, N.7
Brandman, O.8
Whitehead, E.H.9
Doudna, J.A.10
-
29
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
23907171
-
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013; 31(9):833-8; PMID:23907171; https://doi.org/10.1038/nbt.2675
-
(2013)
Nat Biotechnol
, vol.31
, Issue.9
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
Esvelt, K.M.4
Moosburner, M.5
Kosuri, S.6
Yang, L.7
Church, G.M.8
-
30
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
23992846
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154(6):1380-9; PMID:23992846; https://doi.org/10.1016/j.cell.2013.08.021
-
(2013)
Cell
, vol.154
, Issue.6
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
-
31
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
24770325
-
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014; 32(6):569-76; PMID:24770325; https://doi.org/10.1038/nbt.2908
-
(2014)
Nat Biotechnol
, vol.32
, Issue.6
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
Thapar, V.5
Reyon, D.6
Goodwin, M.J.7
Aryee, M.J.8
Joung, J.K.9
-
32
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
24770324
-
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014; 32(6):577-82; PMID:24770324; https://doi.org/10.1038/nbt.2909
-
(2014)
Nat Biotechnol
, vol.32
, Issue.6
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
33
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
27606440
-
Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016; 34(9):933-941; PMID:27606440; https://doi.org/10.1038/nbt.3659
-
(2016)
Nat Biotechnol
, vol.34
, Issue.9
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
34
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
27096365
-
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603):420-4; PMID:27096365; https://doi.org/10.1038/nature17946
-
(2016)
Nature
, vol.533
, Issue.7603
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
35
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
27492474
-
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016; 353(6305); PMID:27492474; https://doi.org/10.1126/science.aaf8729
-
(2016)
Science
, vol.353
, Issue.6305
-
-
Nishida, K.1
Arazoe, T.2
Yachie, N.3
Banno, S.4
Kakimoto, M.5
Tabata, M.6
Mochizuki, M.7
Miyabe, A.8
Araki, M.9
Hara, K.Y.10
-
36
-
-
84990898361
-
Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells
-
27723754
-
Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 2016; 13(12):1029-1035; PMID:27723754; https://doi.org/10.1038/nmeth.4027
-
(2016)
Nat Methods
, vol.13
, Issue.12
, pp. 1029-1035
-
-
Ma, Y.1
Zhang, J.2
Yin, W.3
Zhang, Z.4
Song, Y.5
Chang, X.6
-
37
-
-
84992745786
-
Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells
-
27798611
-
Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, Montgomery SB, Bassik MC. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 2016; 13(12):1036-1042; PMID:27798611; https://doi.org/10.1038/nmeth.4038
-
(2016)
Nat Methods
, vol.13
, Issue.12
, pp. 1036-1042
-
-
Hess, G.T.1
Frésard, L.2
Han, K.3
Lee, C.H.4
Li, A.5
Cimprich, K.A.6
Montgomery, S.B.7
Bassik, M.C.8
-
38
-
-
84913568580
-
Programmable RNA recognition and cleavage by CRISPR/Cas9
-
25274302
-
O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014; 516(7530):263-6; PMID:25274302; https://doi.org/10.1038/nature13769
-
(2014)
Nature
, vol.516
, Issue.7530
, pp. 263-266
-
-
O'Connell, M.R.1
Oakes, B.L.2
Sternberg, S.H.3
East-Seletsky, A.4
Kaplan, M.5
Doudna, J.A.6
-
39
-
-
84961226910
-
Programmable RNA Tracking in Live Cells with CRISPR/Cas9
-
26997482
-
Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW. Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Cell 2016; 165(2):488-96; PMID:26997482; https://doi.org/10.1016/j.cell.2016.02.054
-
(2016)
Cell
, vol.165
, Issue.2
, pp. 488-496
-
-
Nelles, D.A.1
Fang, M.Y.2
O'Connell, M.R.3
Xu, J.L.4
Markmiller, S.J.5
Doudna, J.A.6
Yeo, G.W.7
-
40
-
-
84940368054
-
Crystal Structure of Staphylococcus aureus Cas9
-
26317473
-
Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O. Crystal Structure of Staphylococcus aureus Cas9. Cell 2015; 162(5):1113-26; PMID:26317473; https://doi.org/10.1016/j.cell.2015.08.007
-
(2015)
Cell
, vol.162
, Issue.5
, pp. 1113-1126
-
-
Nishimasu, H.1
Cong, L.2
Yan, W.X.3
Ran, F.A.4
Zetsche, B.5
Li, Y.6
Kurabayashi, A.7
Ishitani, R.8
Zhang, F.9
Nureki, O.10
-
41
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
26098369
-
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561):481-5; PMID:26098369; https://doi.org/10.1038/nature14592
-
(2015)
Nature
, vol.523
, Issue.7561
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.7
Li, Z.8
Peterson, R.T.9
Yeh, J.R.10
-
42
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
26585795
-
Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 2015; 16:253; PMID:26585795; https://doi.org/10.1186/s13059-015-0818-7
-
(2015)
Genome Biol
, vol.16
, pp. 253
-
-
Karvelis, T.1
Gasiunas, G.2
Young, J.3
Bigelyte, G.4
Silanskas, A.5
Cigan, M.6
Siksnys, V.7
-
43
-
-
84959440451
-
Structure and Engineering of Francisella novicida Cas9
-
26875867
-
Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, et al. Structure and Engineering of Francisella novicida Cas9. Cell 2016; 164(5):950-61; PMID:26875867; https://doi.org/10.1016/j.cell.2016.01.039
-
(2016)
Cell
, vol.164
, Issue.5
, pp. 950-961
-
-
Hirano, H.1
Gootenberg, J.S.2
Horii, T.3
Abudayyeh, O.O.4
Kimura, M.5
Hsu, P.D.6
Nakane, T.7
Ishitani, R.8
Hatada, I.9
Zhang, F.10
-
44
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
26422227
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3):759-71; PMID:26422227; https://doi.org/10.1016/j.cell.2015.09.038
-
(2015)
Cell
, vol.163
, Issue.3
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
van der Oost, J.9
Regev, A.10
-
45
-
-
85006513409
-
-
27992409
-
Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW, Kim H., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 2017; 14(2):153–159; PMID:27992409; https://doi.org/10.1038/nmeth.4104
-
(2017)
In vivo high-throughput profiling of CRISPR-Cpf1 activity
, vol.14
, Issue.2
, pp. 153-159
-
-
Kim, H.K.1
Song, M.2
Lee, J.3
Menon, A.V.4
Jung, S.5
Kang, Y.M.6
Choi, J.W.7
Woo, E.8
Koh, H.C.9
Nam, J.W.10
Kim, H.11
-
46
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
27096362
-
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016; 532(7600):517-21; PMID:27096362; https://doi.org/10.1038/nature17945
-
(2016)
Nature
, vol.532
, Issue.7600
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovič, M.3
Le Rhun, A.4
Charpentier, E.5
-
47
-
-
84981318543
-
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
-
27272384
-
Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016; 34(8):863-8; PMID:27272384; https://doi.org/10.1038/nbt.3609
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 863-868
-
-
Kim, D.1
Kim, J.2
Hur, J.K.3
Been, K.W.4
Yoon, S.H.5
Kim, J.S.6
-
48
-
-
84981347695
-
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
-
27347757
-
Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 2016; 34(8):869-74; PMID:27347757; https://doi.org/10.1038/nbt.3620
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 869-874
-
-
Kleinstiver, B.P.1
Tsai, S.Q.2
Prew, M.S.3
Nguyen, N.T.4
Welch, M.M.5
Lopez, J.M.6
McCaw, Z.R.7
Aryee, M.J.8
Joung, J.K.9
-
49
-
-
84981356862
-
Generation of knockout mice by Cpf1-mediated gene targeting
-
27272387
-
Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, Sung YH. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 2016; 34(8):808-10; PMID:27272387; https://doi.org/10.1038/nbt.3614
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 808-810
-
-
Kim, Y.1
Cheong, S.A.2
Lee, J.G.3
Lee, S.W.4
Lee, M.S.5
Baek, I.J.6
Sung, Y.H.7
-
50
-
-
84981342035
-
Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins
-
27272385
-
Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 2016; 34(8):807-8; PMID:27272385; https://doi.org/10.1038/nbt.3596
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 807-808
-
-
Hur, J.K.1
Kim, K.2
Been, K.W.3
Baek, G.4
Ye, S.5
Hur, J.W.6
Ryu, S.M.7
Lee, Y.S.8
Kim, J.S.9
-
51
-
-
84987707885
-
Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells
-
27630115
-
Tóth E, Weinhardt N, Bencsura P, Huszár K, Kulcsár PI, Tálas A, Fodor E, Welker E. Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 2016; 11:46; PMID:27630115; https://doi.org/10.1186/s13062-016-0147-0
-
(2016)
Biol Direct
, vol.11
, pp. 46
-
-
Tóth, E.1
Weinhardt, N.2
Bencsura, P.3
Huszár, K.4
Kulcsár, P.I.5
Tálas, A.6
Fodor, E.7
Welker, E.8
-
52
-
-
84947736727
-
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
-
26593719
-
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell 2015; 60(3):385-97; PMID:26593719; https://doi.org/10.1016/j.molcel.2015.10.008
-
(2015)
Mol Cell
, vol.60
, Issue.3
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
Semenova, E.6
Minakhin, L.7
Joung, J.8
Konermann, S.9
Severinov, K.10
-
53
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
27256883
-
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353(6299):aaf5573; PMID:27256883; https://doi.org/10.1126/science.aaf5573
-
(2016)
Science
, vol.353
, Issue.6299
, pp. aaf5573
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Konermann, S.3
Joung, J.4
Slaymaker, I.M.5
Cox, D.B.6
Shmakov, S.7
Makarova, K.S.8
Semenova, E.9
Minakhin, L.10
-
54
-
-
84991728709
-
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection
-
27669025
-
East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016; 538(7624):270-273; PMID:27669025; https://doi.org/10.1038/nature19802
-
(2016)
Nature
, vol.538
, Issue.7624
, pp. 270-273
-
-
East-Seletsky, A.1
O'Connell, M.R.2
Knight, S.C.3
Burstein, D.4
Cate, J.H.5
Tjian, R.6
Doudna, J.A.7
-
55
-
-
84978438340
-
DNA-guided genome editing using the Natronobacterium gregoryi Argonaute
-
27136078
-
Gao F, Shen XZ, Jiang F, Wu Y, Han C. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 2016; 34(7):768-73; PMID:27136078; https://doi.org/10.1038/nbt.3547
-
(2016)
Nat Biotechnol
, vol.34
, Issue.7
, pp. 768-773
-
-
Gao, F.1
Shen, X.Z.2
Jiang, F.3
Wu, Y.4
Han, C.5
-
56
-
-
84982151864
-
Replications, ridicule and a recluse: the controversy over NgAgo gene-editing intensifies
-
Cyranoski D. Replications, ridicule and a recluse:the controversy over NgAgo gene-editing intensifies. Nature 2016; 536(7615):136-7; PMID:27510204; https://doi.org/10.1038/536136a
-
(2016)
Nature
, vol.536
, Issue.7615
, pp. 136-137
-
-
Cyranoski, D.1
-
57
-
-
85011075609
-
Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute
-
27893702
-
Lee SH, Turchiano G, Ata H, Nowsheen S, Romito M, Lou Z, Ryu SM, Ekker SC, Cathomen T, Kim JS. Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol 2016; 35:17-18; PMID:27893702; https://doi.org/10.1038/nbt.3753
-
(2016)
Nat Biotechnol
, vol.35
, pp. 17-18
-
-
Lee, S.H.1
Turchiano, G.2
Ata, H.3
Nowsheen, S.4
Romito, M.5
Lou, Z.6
Ryu, S.M.7
Ekker, S.C.8
Cathomen, T.9
Kim, J.S.10
-
58
-
-
84992154293
-
DNA-guided genome editing using structure-guided endonucleases
-
27640875
-
Varshney GK, Burgess SM. DNA-guided genome editing using structure-guided endonucleases. Genome Biol 2016; 17(1):187; PMID:27640875; https://doi.org/10.1186/s13059-016-1055-4
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 187
-
-
Varshney, G.K.1
Burgess, S.M.2
-
59
-
-
84875085625
-
Cut-and-Paste of DNA Using an Artificial Restriction DNA Cutter
-
23385238
-
Komiyama M. Cut-and-Paste of DNA Using an Artificial Restriction DNA Cutter. Int J Mol Sci 2013; 14(2):3343-57; PMID:23385238; https://doi.org/10.3390/ijms14023343
-
(2013)
Int J Mol Sci
, vol.14
, Issue.2
, pp. 3343-3357
-
-
Komiyama, M.1
-
60
-
-
84992554872
-
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
-
27782131
-
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, et al. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat Commun 2016; 7:13304; PMID:27782131; https://doi.org/10.1038/ncomms13304
-
(2016)
Nat Commun
, vol.7
, pp. 13304
-
-
Bahal, R.1
Ali McNeer, N.2
Quijano, E.3
Liu, Y.4
Sulkowski, P.5
Turchick, A.6
Lu, Y.C.7
Bhunia, D.C.8
Manna, A.9
Greiner, D.L.10
-
61
-
-
84980021588
-
Cleavage of Target DNA Promotes Sequence Conversion with a Tailed Duplex
-
27476948
-
Suzuki T, Imada T, Nishigaki N, Kobayashi M, Matsuoka I, Kamiya H. Cleavage of Target DNA Promotes Sequence Conversion with a Tailed Duplex. Biol Pharm Bull 2016; 39(8):1392-5; PMID:27476948; https://doi.org/10.1248/bpb.b16-00325
-
(2016)
Biol Pharm Bull
, vol.39
, Issue.8
, pp. 1392-1395
-
-
Suzuki, T.1
Imada, T.2
Nishigaki, N.3
Kobayashi, M.4
Matsuoka, I.5
Kamiya, H.6
-
62
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
24336571
-
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166):84-7; PMID:24336571; https://doi.org/10.1126/science.1247005
-
(2014)
Science
, vol.343
, Issue.6166
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelsen, T.S.6
Heckl, D.7
Ebert, B.L.8
Root, D.E.9
Doench, J.G.10
-
63
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
24336569
-
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014; 343(6166):80-4; PMID:24336569; https://doi.org/10.1126/science.1246981
-
(2014)
Science
, vol.343
, Issue.6166
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
64
-
-
84908352138
-
Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation
-
25307932
-
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014; 159(3):647-61; PMID:25307932; https://doi.org/10.1016/j.cell.2014.09.029
-
(2014)
Cell
, vol.159
, Issue.3
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
Chen, Y.5
Whitehead, E.H.6
Guimaraes, C.7
Panning, B.8
Ploegh, H.L.9
Bassik, M.C.10
-
65
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
24360272
-
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013; 155(7):1479-91; PMID:24360272; https://doi.org/10.1016/j.cell.2013.12.001
-
(2013)
Cell
, vol.155
, Issue.7
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
Schnitzbauer, J.4
Zhang, W.5
Li, G.W.6
Park, J.7
Blackburn, E.H.8
Weissman, J.S.9
Qi, L.S.10
Huang, B.11
-
66
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
25849900
-
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5):510-7; PMID:25849900; https://doi.org/10.1038/nbt.3199
-
(2015)
Nat Biotechnol
, vol.33
, Issue.5
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
Reddy, T.E.6
Gersbach, C.A.7
-
67
-
-
84974576984
-
Whole-organism lineage tracing by combinatorial and cumulative genome editing
-
27229144
-
McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 2016; 353(6298):aaf7907; PMID:27229144; https://doi.org/10.1126/science.aaf7907
-
(2016)
Science
, vol.353
, Issue.6298
, pp. aaf7907
-
-
McKenna, A.1
Findlay, G.M.2
Gagnon, J.A.3
Horwitz, M.S.4
Schier, A.F.5
Shendure, J.6
-
68
-
-
85015591616
-
Continuous genetic recording with self-targeting CRISPR-Cas in human cells
-
27540006
-
Perli SD, Cui CH, Lu TK. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 2016; 353(6304):aag0511; PMID:27540006; https://doi.org/10.1126/science.aag0511
-
(2016)
Science
, vol.353
, Issue.6304
, pp. aag0511
-
-
Perli, S.D.1
Cui, C.H.2
Lu, T.K.3
-
69
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
23940360
-
Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 2013; 110(39):15644-9; PMID:23940360; https://doi.org/10.1073/pnas.1313587110
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.39
, pp. 15644-15649
-
-
Hou, Z.1
Zhang, Y.2
Propson, N.E.3
Howden, S.E.4
Chu, L.F.5
Sontheimer, E.J.6
Thomson, J.A.7
-
70
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
24076762
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 2013; 10(11):1116-21; PMID:24076762; https://doi.org/10.1038/nmeth.2681
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
|