-
1
-
-
28544446111
-
Monocyte and macrophage heterogeneity
-
Gordon, S., and Taylor, P. R. (2005) Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953-964.
-
(2005)
Nat. Rev. Immunol
, vol.5
, pp. 953-964
-
-
Gordon, S.1
Taylor, P.R.2
-
2
-
-
84904394690
-
Macrophage activation and polarization: Nomenclature and experimental guidelines
-
Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., Gordon, S., Hamilton, J. A., Ivashkiv, L. B., Lawrence, T., Locati, M., Mantovani, A., Martinez, F. O., Mege, J. L., Mosser, D. M., et al. (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14.
-
(2014)
Immunity
, vol.41
, pp. 14
-
-
Murray, P.J.1
Allen, J.E.2
Biswas, S.K.3
Fisher, E.A.4
Gilroy, D.W.5
Goerdt, S.6
Gordon, S.7
Hamilton, J.A.8
Ivashkiv, L.B.9
Lawrence, T.10
Locati, M.11
Mantovani, A.12
Martinez, F.O.13
Mege, J.L.14
Mosser, D.M.15
-
3
-
-
84942982260
-
Metabolic reprogramming in macrophages and dendritic cells in innate immunity
-
Kelly, B., and O'Neill, L. A. (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771-784.
-
(2015)
Cell Res
, vol.25
, pp. 771-784
-
-
Kelly, B.1
O'Neill, L.A.2
-
4
-
-
33646080373
-
Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages
-
Basler, T., Jeckstadt, S., Valentin-Weigand, P., and Goethe, R. (2006) Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J. Leukocyte Biol. 79, 628-638.
-
(2006)
J. Leukocyte Biol
, vol.79
, pp. 628-638
-
-
Basler, T.1
Jeckstadt, S.2
Valentin-Weigand, P.3
Goethe, R.4
-
5
-
-
58149345795
-
The proinflammatory cytokine-induced IRG1 protein associates with mitochondria
-
Degrandi, D., Hoffmann, R., Beuter-Gunia, C., and Pfeffer, K. (2009) The proinflammatory cytokine-induced IRG1 protein associates with mitochondria. J. Interferon Cytokine Res. 29, 55-67.
-
(2009)
J. Interferon Cytokine Res
, vol.29
, pp. 55-67
-
-
Degrandi, D.1
Hoffmann, R.2
Beuter-Gunia, C.3
Pfeffer, K.4
-
6
-
-
84877343356
-
Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
-
Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A., Tallam, A., Rausell, A., Buttini, M., Linster, C. L., Medina, E., Balling, R., and Hiller, K. (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci. U.S.A. 110, 7820-7825.
-
(2013)
Proc Natl Acad Sci. U.S.A
, vol.110
, pp. 7820-7825
-
-
Michelucci, A.1
Cordes, T.2
Ghelfi, J.3
Pailot, A.4
Reiling, N.5
Goldmann, O.6
Binz, T.7
Wegner, A.8
Tallam, A.9
Rausell, A.10
Buttini, M.11
Linster, C.L.12
Medina, E.13
Balling, R.14
Hiller, K.15
-
7
-
-
32144457645
-
Über den stoffwechsel der carcinomzelle
-
Warburg, O. (1924) Über den stoffwechsel der carcinomzelle. Naturwissenschaften 12, 1131-1137.
-
(1924)
Naturwissenschaften
, vol.12
, pp. 1131-1137
-
-
Warburg, O.1
-
8
-
-
12444279265
-
On the origin of cancer cells
-
Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
9
-
-
77951803596
-
Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited
-
Vazquez, A., Liu, J., Zhou, Y., Oltvai, Z. N. (2010) Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited. BMC Syst. Biol. 4, 58.
-
(2010)
BMC Syst. Biol
, vol.4
, pp. 58
-
-
Vazquez, A.1
Liu, J.2
Zhou, Y.3
Oltvai, Z.N.4
-
10
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1β through HIF-1
-
Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., Frezza, C., Bernard, N. J., Kelly, B., Foley, N. H., Zheng, L., Gardet, A., Tong, Z., Jany, S. S., Corr, S. C., et al. (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238-242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
Palsson-McDermott, E.M.4
McGettrick, A.F.5
Goel, G.6
Frezza, C.7
Bernard, N.J.8
Kelly, B.9
Foley, N.H.10
Zheng, L.11
Gardet, A.12
Tong, Z.13
Jany, S.S.14
Corr, S.C.15
-
11
-
-
50149097983
-
Hypoxia, HIF1 and glucose metabolism in the solid tumour
-
Denko, N. C. (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705-713.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 705-713
-
-
Denko, N.C.1
-
12
-
-
84865313576
-
Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells
-
Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L., and Smith, J. W. (2012) Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res. 25, 375-383.
-
(2012)
Pigment Cell Melanoma Res
, vol.25
, pp. 375-383
-
-
Filipp, F.V.1
Scott, D.A.2
Ronai, Z.A.3
Osterman, A.L.4
Smith, J.W.5
-
13
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P.-H., Sullivan, L. B., Cheng, T., Yang, Y., Linehan, W. M., Chandel, N. S., and DeBerardinis, R. J. (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385-388.
-
(2012)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.-H.4
Sullivan, L.B.5
Cheng, T.6
Yang, Y.7
Linehan, W.M.8
Chandel, N.S.9
DeBerardinis, R.J.10
-
14
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of -ketoglutarate to citrate to support cell growth and viability
-
Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva, U. M., Platt, J. M., DeMatteo, R. G., Simon, M. C., and Thompson, C. B. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of -ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 108, 19611-19616.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
Ward, P.S.2
Shay, J.E.3
Cross, J.R.4
Gruber, J.J.5
Sachdeva, U.M.6
Platt, J.M.7
DeMatteo, R.G.8
Simon, M.C.9
Thompson, C.B.10
-
15
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., and Stephanopoulos, G. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
Jewell, C.M.7
Johnson, Z.R.8
Irvine, D.J.9
Guarente, L.10
Kelleher, J.K.11
Vander Heiden, M.G.12
Iliopoulos, O.13
Stephanopoulos, G.14
-
16
-
-
84881329062
-
Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells
-
Fendt, S.-M., Bell, E. L., Keibler, M. A., Olenchock, B. A., Mayers, J. R., Wasylenko, T. M., Vokes, N. I., Guarente, L., Vander Heiden, M. G., and Stephanopoulos, G. (2013) Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat. Commun. 4, 2236.
-
(2013)
Nat. Commun
, vol.4
, pp. 2236
-
-
Fendt, S.-M.1
Bell, E.L.2
Keibler, M.A.3
Olenchock, B.A.4
Mayers, J.R.5
Wasylenko, T.M.6
Vokes, N.I.7
Guarente, L.8
Vander Heiden, M.G.9
Stephanopoulos, G.10
-
17
-
-
84902343371
-
Oxidation of α-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
-
Mullen, A. R., Hu, Z., Shi, X., Jiang, L., Boroughs, L. K., Kovacs, Z., Boriack, R., Rakheja, D., Sullivan, L. B., Linehan, W. M., Chandel, N. S., and DeBerardinis, R. J. (2014) Oxidation of α-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7, 1679-1690.
-
(2014)
Cell Rep.
, vol.7
, pp. 1679-1690
-
-
Mullen, A.R.1
Hu, Z.2
Shi, X.3
Jiang, L.4
Boroughs, L.K.5
Kovacs, Z.6
Boriack, R.7
Rakheja, D.8
Sullivan, L.B.9
Linehan, W.M.10
Chandel, N.S.11
DeBerardinis, R.J.12
-
18
-
-
0033181324
-
Interleukin-1αand tumor necrosis factor-β stimulate DNA binding of hypoxia-inducible factor-1
-
Hellwig-Bürgel, T., Rutkowski, K., Metzen, E., Fandrey, J., and Jelkmann, W. (1999) Interleukin-1αand tumor necrosis factor-β stimulate DNA binding of hypoxia-inducible factor-1. Blood 94, 1561-1567.
-
(1999)
Blood
, vol.94
, pp. 1561-1567
-
-
Hellwig-Bürgel, T.1
Rutkowski, K.2
Metzen, E.3
Fandrey, J.4
Jelkmann, W.5
-
19
-
-
0037444823
-
Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor κB activation
-
Jung, Y., Isaacs, J. S., Lee, S., Trepel, J., Liu, Z. G., and Neckers, L. (2003) Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor κB activation. Biochem. J. 370, 1011-1017.
-
(2003)
Biochem. J.
, vol.370
, pp. 1011-1017
-
-
Jung, Y.1
Isaacs, J.S.2
Lee, S.3
Trepel, J.4
Liu, Z.G.5
Neckers, L.6
-
21
-
-
39749196227
-
LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner
-
Nishi, K., Oda, T., Takabuchi, S., Oda, S., Fukuda, K., Adachi, T., Semenza, G. L., Shingu, K., and Hirota, K. (2008) LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid. Redox Signal. 10, 983-995.
-
(2008)
Antioxid. Redox Signal
, vol.10
, pp. 983-995
-
-
Nishi, K.1
Oda, T.2
Takabuchi, S.3
Oda, S.4
Fukuda, K.5
Adachi, T.6
Semenza, G.L.7
Shingu, K.8
Hirota, K.9
-
22
-
-
84862777903
-
Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells
-
Walther, J. L., Metallo, C. M., Zhang, J., and Stephanopoulos, G. (2012) Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Metab. Eng. 14, 162-171.
-
(2012)
Metab. Eng.
, vol.14
, pp. 162-171
-
-
Walther, J.L.1
Metallo, C.M.2
Zhang, J.3
Stephanopoulos, G.4
-
23
-
-
70449519259
-
Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells
-
Metallo, C. M., Walther, J. L., Stephanopoulos, G. (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J. Biotechnol. 144, 167-174.
-
(2009)
J. Biotechnol
, vol.144
, pp. 167-174
-
-
Metallo, C.M.1
Walther, J.L.2
Stephanopoulos, G.3
-
24
-
-
84905492671
-
Simultaneous extraction of proteins and metabolites from cells in culture
-
Sapcariu, S. C., Kanashova, T., Weindl, D., Ghelfi, J., Dittmar, G., and Hiller, K. (2014) Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX 1, 74-80.
-
(2014)
MethodsX
, vol.1
, pp. 74-80
-
-
Sapcariu, S.C.1
Kanashova, T.2
Weindl, D.3
Ghelfi, J.4
Dittmar, G.5
Hiller, K.6
-
25
-
-
66149088821
-
Metabolite Detector: Comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis
-
Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., and Schomburg, D. (2009) Metabolite Detector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem. 81, 3429-3439.
-
(2009)
Anal Chem.
, vol.81
, pp. 3429-3439
-
-
Hiller, K.1
Hangebrauk, J.2
Jäger, C.3
Spura, J.4
Schreiber, K.5
Schomburg, D.6
-
27
-
-
0033405817
-
Macrophage responses to hypoxia: Relevance to disease mechanisms
-
Lewis, J. S., Lee, J. A., Underwood, J. C., Harris, A. L., and Lewis, C. E. (1999) Macrophage responses to hypoxia: Relevance to disease mechanisms. J. Leukocyte Biol. 66, 889-900.
-
(1999)
J. Leukocyte Biol
, vol.66
, pp. 889-900
-
-
Lewis, J.S.1
Lee, J.A.2
Underwood, J.C.3
Harris, A.L.4
Lewis, C.E.5
-
28
-
-
4944244259
-
Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues
-
Murdoch, C. (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224-2234.
-
(2004)
Blood
, vol.104
, pp. 2224-2234
-
-
Murdoch, C.1
-
29
-
-
84920591180
-
Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages
-
Palsson-McDermott, E. M., Curtis, A. M., Goel, G., Lauterbach, M. A., Sheedy, F. J., Gleeson, L. E., van den Bosch, M. W., Quinn, S. R., Domingo- Fernandez, R., Johnston, D. G., Jiang, J. K., Jiang, J. K., Israelsen, W. J., Keane, J., Thomas, C., et al. (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65-80.
-
(2015)
Cell Metab
, vol.21
, pp. 65-80
-
-
Palsson-McDermott, E.M.1
Curtis, A.M.2
Goel, G.3
Lauterbach, M.A.4
Sheedy, F.J.5
Gleeson, L.E.6
Van Den Bosch, M.W.7
Quinn, S.R.8
Domingo-Fernandez, R.9
Johnston, D.G.10
Jiang, J.K.11
Jiang, J.K.12
Israelsen, W.J.13
Keane, J.14
Thomas, C.15
-
30
-
-
80054737427
-
Itaconic acid is a mammalian metabolite induced during macrophage activation
-
Strelko, C. L., Lu, W., Dufort, F. J., Seyfried, T. N., Chiles, T. C., Rabinowitz, J. D., and Roberts, M. F. (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386-16389.
-
(2011)
J. Am. Chem., Soc
, vol.133
, pp. 16386-16389
-
-
Strelko, C.L.1
Lu, W.2
Dufort, F.J.3
Seyfried, T.N.4
Chiles, T.C.5
Rabinowitz, J.D.6
Roberts, M.F.7
-
31
-
-
1642581653
-
Hypoxic gene activation by lipopolysaccharide in macrophages: Implication of hypoxia- inducible factor 1
-
Blouin, C. C., Pagé, E. L., Soucy, G. M., and Richard, D. E. (2004) Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia- inducible factor 1. Blood 103, 1124-1130.
-
(2004)
Blood
, vol.103
, pp. 1124-1130
-
-
Blouin, C.C.1
Pagé, E.L.2
Soucy, G.M.3
Richard, D.E.4
-
32
-
-
33644614520
-
HIF-1- mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
-
Kim, J. W., Tchernyshyov, I., Semenza, G. L., Dang, C. V. (2006) HIF-1- mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
33
-
-
33645958257
-
Regulation of the pyruvate dehydrogenase complex
-
Patel, M. S., and Korotchkina, L. G. (2006) Regulation of the pyruvate dehydrogenase complex. Biochem. Soc. Trans. 34, 217-222.
-
(2006)
Biochem. Soc. Trans
, vol.34
, pp. 217-222
-
-
Patel, M.S.1
Korotchkina, L.G.2
-
34
-
-
33746930794
-
Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer
-
King, A., Selak, M. A., and Gottlieb, E. (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675-4682.
-
(2006)
Oncogene
, vol.25
, pp. 4675-4682
-
-
King, A.1
Selak, M.A.2
Gottlieb, E.3
-
35
-
-
79952666779
-
A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction
-
Demaria, M., Giorgi, C., Lebiedzinska, M., Esposito, G., D'Angeli, L., Bartoli, A., Gough, D. J., Turkson, J., Levy, D. E., Watson, C. J., Wieckowski, M. R., Provero, P., Pinton, P., and Poli, V. (2010) A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging 2, 823-842.
-
(2010)
Aging
, vol.2
, pp. 823-842
-
-
Demaria, M.1
Giorgi, C.2
Lebiedzinska, M.3
Esposito, G.4
D'Angeli, L.5
Bartoli, A.6
Gough, D.J.7
Turkson, J.8
Levy, D.E.9
Watson, C.J.10
Wieckowski, M.R.11
Provero, P.12
Pinton, P.13
Poli, V.14
-
36
-
-
84899846632
-
Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs
-
Garzetti, L., Menon, R., Finardi, A., Bergami, A., Sica, A., Martino, G., et al. (2014) Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. J. Leukocyte Biol. 95, 817-825.
-
(2014)
J. Leukocyte Biol.
, vol.95
, pp. 817-825
-
-
Garzetti, L.1
Menon, R.2
Finardi, A.3
Bergami, A.4
Sica, A.5
Martino, G.6
-
37
-
-
84872576236
-
Metabolism of inflammation limited by AMPK and pseudo-starvation
-
O'Neill, L. A., and Hardie, D. G. (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346-355.
-
(2013)
Nature
, vol.493
, pp. 346-355
-
-
O'Neill, L.A.1
Hardie, D.G.2
-
38
-
-
84922468705
-
Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport
-
Yang, C., Ko, B., Hensley, C. T., Jiang, L., Wasti, A. T., Kim, J., Sudderth, J., Calvaruso, M. A., Lumata, L., Mitsche, M., Rutter, J., Merritt, M. E., and DeBerardinis, R. J. (2014) Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414-424.
-
(2014)
Mol. Cell
, vol.56
, pp. 414-424
-
-
Yang, C.1
Ko, B.2
Hensley, C.T.3
Jiang, L.4
Wasti, A.T.5
Kim, J.6
Sudderth, J.7
Calvaruso, M.A.8
Lumata, L.9
Mitsche, M.10
Rutter, J.11
Merritt, M.E.12
DeBerardinis, R.J.13
-
39
-
-
33745428666
-
Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
-
Vats, D., Mukundan, L., Odegaard, J. I., Zhang, L., Smith, K. L., Morel, C. R., Wagner, R. A., Greaves, D. R., Murray, P. J., and Chawla, A. (2006) Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13-24.
-
(2006)
Cell Metab
, vol.4
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
Zhang, L.4
Smith, K.L.5
Morel, C.R.6
Wagner, R.A.7
Greaves, D.R.8
Murray, P.J.9
Chawla, A.10
-
40
-
-
84931386872
-
Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism
-
Tan, Z., Xie, N., Cui, H., Moellering, D. R., Abraham, E., Thannickal, V. J., and Liu, G. (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082-6089.
-
(2015)
J. Immunol
, vol.194
, pp. 6082-6089
-
-
Tan, Z.1
Xie, N.2
Cui, H.3
Moellering, D.R.4
Abraham, E.5
Thannickal, V.J.6
Liu, G.7
-
41
-
-
84896654124
-
TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKϵ supports the anabolic demands of dendritic cell activation
-
Everts, B., Amiel, E., Huang, S. C., Smith, A. M., Chang, C.-H., Lam, W. Y., Redmann, V., Freitas, T. C., Blagih, J., van der Windt, G. J., Artyomov, M. N., Jones, R. G., Pearce, E. L., and Pearce, E. J. (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKϵsupports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323-332.
-
(2014)
Nat. Immunol
, vol.15
, pp. 323-332
-
-
Everts, B.1
Amiel, E.2
Huang, S.C.3
Smith, A.M.4
Chang, C.-H.5
Lam, W.Y.6
Redmann, V.7
Freitas, T.C.8
Blagih, J.9
Van Der Windt, G.J.10
Artyomov, M.N.11
Jones, R.G.12
Pearce, E.L.13
Pearce, E.J.14
-
42
-
-
80052170775
-
The Mitochondrial citrate carrier: A new player in inflammation
-
The
-
Infantino, V., Convertini, P., Cucci, L., Panaro, M. A., Di Noia, M. A., Calvello, R., Palmieri, F., and Iacobazzi, V. (2011) The mitochondrial citrate carrier: A new player in inflammation. Biochem. J. 438, 433-436.
-
(2011)
Biochem. J.
, vol.438
, pp. 433-436
-
-
Infantino, V.1
Convertini, P.2
Cucci, L.3
Panaro, M.A.4
Di Noia, M.A.5
Calvello, R.6
Palmieri, F.7
Iacobazzi, V.8
-
43
-
-
77955281020
-
Glutamine addiction: A new therapeutic target in cancer
-
Wise, D. R., and Thompson, C. B. (2010) Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 35, 427-433.
-
(2010)
Trends Biochem. Sci
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
44
-
-
0032988358
-
Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease
-
Newsholme, P., Curi, R., Pithon Curi, T.C., Murphy, C. J., Garcia, C., and Pires de Melo, M. (1999) Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J. Nutr. Biochem. 10, 316-324.
-
(1999)
J. Nutr. Biochem
, vol.10
, pp. 316-324
-
-
Newsholme, P.1
Curi, R.2
Pithon Curi, T.C.3
Murphy, C.J.4
Garcia, C.5
Pires De Melo, M.6
-
45
-
-
84924935721
-
Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
-
Jha, A. K., Huang, S. C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., Chmielewski, K., Stewart, K. M., Ashall, J., Everts, B., Pearce, E. J., Driggers, E. M., and Artyomov, M. N. (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430.
-
(2015)
Immunity
, vol.42
, pp. 419-430
-
-
Jha, A.K.1
Huang, S.C.2
Sergushichev, A.3
Lampropoulou, V.4
Ivanova, Y.5
Loginicheva, E.6
Chmielewski, K.7
Stewart, K.M.8
Ashall, J.9
Everts, B.10
Pearce, E.J.11
Driggers, E.M.12
Artyomov, M.N.13
-
46
-
-
77954735369
-
Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation
-
Krawczyk, C. M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R. J., Cross, J. R., Jung, E., Thompson, C. B., Jones, R. G., and Pearce, E. J. (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742-4749.
-
(2010)
Blood
, vol.115
, pp. 4742-4749
-
-
Krawczyk, C.M.1
Holowka, T.2
Sun, J.3
Blagih, J.4
Amiel, E.5
DeBerardinis, R.J.6
Cross, J.R.7
Jung, E.8
Thompson, C.B.9
Jones, R.G.10
Pearce, E.J.11
-
47
-
-
84877109282
-
Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle
-
Gameiro, P. A., Laviolette, L. A., Kelleher, J. K., Iliopoulos, O., and Stephanopoulos, G. (2013) Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J. Biol. Chem. 288, 12967-12977.
-
(2013)
J. Biol. Chem
, vol.288
, pp. 12967-12977
-
-
Gameiro, P.A.1
Laviolette, L.A.2
Kelleher, J.K.3
Iliopoulos, O.4
Stephanopoulos, G.5
-
48
-
-
79955532516
-
TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
-
West, A. P., Brodsky, I. E., Rahner, C., Woo, D. K., Erdjument-Bromage, H., Tempst, P., Walsh, M. C., Choi, Y., Shadel, G. S., and Ghosh, S. (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476-480.
-
(2011)
Nature
, vol.472
, pp. 476-480
-
-
West, A.P.1
Brodsky, I.E.2
Rahner, C.3
Woo, D.K.4
Erdjument-Bromage, H.5
Tempst, P.6
Walsh, M.C.7
Choi, Y.8
Shadel, G.S.9
Ghosh, S.10
-
49
-
-
77953631698
-
The secret life ofNAD+: An old metabolite controlling new metabolic signaling pathways
-
Houtkooper, R. H., Cantó, C., Wanders, R. J., and Auwerx, J. (2010) The secret life ofNAD+: An old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194-223.
-
(2010)
Endocr. Rev
, vol.31
, pp. 194-223
-
-
Houtkooper, R.H.1
Cantó, C.2
Wanders, R.J.3
Auwerx, J.4
-
50
-
-
0032560572
-
Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione
-
Clementi, E., Brown, G. C., Feelisch, M., and Moncada, S. (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. U.S.A. 95, 7631-7636.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A
, vol.95
, pp. 7631-7636
-
-
Clementi, E.1
Brown, G.C.2
Feelisch, M.3
Moncada, S.4
-
51
-
-
0023940538
-
Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells
-
Drapier, J. C., and Hibbs, J. B. (1988) Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J. Immunol. 140, 2829-2838.
-
(1988)
J. Immunol
, vol.140
, pp. 2829-2838
-
-
Drapier, J.C.1
Hibbs, J.B.2
|