메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Factors that shape eukaryotic tRNAomes: Processing, modification and anticodon-codon use

Author keywords

Adenosine 34; Anticodon sparing; Inosine 34; La protein RNA chaperone; TRNA adenosine deaminase; TRNA methyltransferase

Indexed keywords

3 METHYLCYTIDINE 32; ADENOSINE 34; ADENOSINE DERIVATIVE; CHAPERONE; CYTIDINE DERIVATIVE; DNA DIRECTED RNA POLYMERASE III; GUANINE 34; GUANINE DERIVATIVE; INOSINE; LA ANTIGEN; MESSENGER RNA; TRANSCRIPTION FACTOR; TRANSFER RNA; TRANSFER RNA METHYLTRANSFERASE; TRNAOME; UNCLASSIFIED DRUG; ANTICODON;

EID: 85014908762     PISSN: None     EISSN: 2218273X     Source Type: Journal    
DOI: 10.3390/biom7010026     Document Type: Review
Times cited : (31)

References (189)
  • 1
    • 84906852434 scopus 로고    scopus 로고
    • The pivotal regulatory landscape of RNA modifications
    • Li, S.; Mason, C.E. The pivotal regulatory landscape of RNA modifications. Annu. Rev. Genomics Hum. Genet. 2014, 15, 127-150.
    • (2014) Annu. Rev. Genomics Hum. Genet , vol.15 , pp. 127-150
    • Li, S.1    Mason, C.E.2
  • 2
    • 84894436024 scopus 로고    scopus 로고
    • Modifications: Playing Metabolic Games in a Cell’s Chemical Legoland
    • Helm, M.; Alfonzo, J.D. Posttranscriptional RNA Modifications: Playing Metabolic Games in a Cell’s Chemical Legoland. Chem. Biol. 2014, 21, 174-185.
    • (2014) Chem. Biol , vol.21 , pp. 174-185
    • Helm, M.1    Alfonzo, J.D.2    Posttranscriptional, R.3
  • 3
    • 71849108697 scopus 로고    scopus 로고
    • Deciphering synonymous codons in the three domains of life: Co‐evolution with specific tRNA modification enzymes
    • Grosjean, H.; de Crécy-Lagard, V.; Marck, C. Deciphering synonymous codons in the three domains of life: Co‐evolution with specific tRNA modification enzymes. FEBS Lett. 2010, 584, 252-264.
    • (2010) FEBS Lett. , vol.584 , pp. 252-264
    • Grosjean, H.1    De Crécy-Lagard, V.2    Marck, C.3
  • 4
    • 84859174156 scopus 로고    scopus 로고
    • A role for tRNA modifications in genome structure and codon usage
    • Novoa, E.M.; Pavon-Eternod, M.; Pan, T.; Ribas de Pouplana, L. A role for tRNA modifications in genome structure and codon usage. Cell 2012, 149, 202-213.
    • (2012) Cell , vol.149 , pp. 202-213
    • Novoa, E.M.1    Pavon-Eternod, M.2    Pan, T.3    Ribas De Pouplana, L.4
  • 5
    • 0036792830 scopus 로고    scopus 로고
    • TRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon‐sparing strategies and domain‐specific features
    • Marck, C.; Grosjean, H. tRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon‐sparing strategies and domain‐specific features. RNA, 2002, 8, 1189-1232.
    • (2002) RNA , vol.8 , pp. 1189-1232
    • Marck, C.1    Grosjean, H.2
  • 8
    • 46149104347 scopus 로고    scopus 로고
    • Different aa‐tRNAs are selected uniformly on the ribosome
    • Ledoux, S.; Uhlenbeck, O.C. Different aa‐tRNAs are selected uniformly on the ribosome. Mol. Cell 2008, 31, 114-123.
    • (2008) Mol. Cell , vol.31 , pp. 114-123
    • Ledoux, S.1    Uhlenbeck, O.C.2
  • 9
    • 44149110125 scopus 로고    scopus 로고
    • Analysis of genomic tRNA sets from Bacteria, Archaea, and Eukarya points to anticodon‐codon hydrogen bonds as a major determinant of tRNA compositional variations
    • Targanski, I.; Cherkasova, V. Analysis of genomic tRNA sets from Bacteria, Archaea, and Eukarya points to anticodon‐codon hydrogen bonds as a major determinant of tRNA compositional variations. RNA 2008, 14, 1095-1109.
    • (2008) RNA , vol.14 , pp. 1095-1109
    • Targanski, I.1    Cherkasova, V.2
  • 10
    • 84875423460 scopus 로고    scopus 로고
    • Uhlenbeck, O.C. TRNA residues evolved to promote translational accuracy
    • Shepotinovskaya, I.; Uhlenbeck, O.C. tRNA residues evolved to promote translational accuracy. RNA 2013, 19, 510-516.
    • (2013) RNA , vol.19 , pp. 510-516
    • Shepotinovskaya, I.1
  • 11
    • 84896692006 scopus 로고    scopus 로고
    • A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool
    • Bloom-Ackermann, Z.; Navon, S.; Gingold, H.; Towers, R.; Pilpel, Y.; Dahan, O. A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet. 2014, 10, e1004084.
    • (2014) Plos Genet , vol.10
    • Bloom-Ackermann, Z.1    Navon, S.2    Gingold, H.3    Towers, R.4    Pilpel, Y.5    Dahan, O.6
  • 15
    • 84879345901 scopus 로고    scopus 로고
    • Rate‐limiting steps in yeast protein translation
    • Shah, P.; Ding, Y.; Niemczyk, M.; Kudla, G.; Plotkin, J.B. Rate‐limiting steps in yeast protein translation. Cell 2013, 153, 1589-1601.
    • (2013) Cell , vol.153 , pp. 1589-1601
    • Shah, P.1    Ding, Y.2    Niemczyk, M.3    Kudla, G.4    Plotkin, J.B.5
  • 16
    • 78650304100 scopus 로고    scopus 로고
    • Synonymous but not the same: The causes and consequences of codon bias
    • Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32-42.
    • (2011) Nat. Rev. Genet , vol.12 , pp. 32-42
    • Plotkin, J.B.1    Kudla, G.2
  • 17
    • 84873423156 scopus 로고    scopus 로고
    • Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria
    • Subramaniam, A.R.; Pan, T.; Cluzel, P. Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria. Proc. Natl. Acad. Sci. USA 2013, 110, 2419-2424.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 2419-2424
    • Subramaniam, A.R.1    Pan, T.2    Cluzel, P.3
  • 18
    • 84902662079 scopus 로고    scopus 로고
    • Different types of secondary information in the genetic code
    • Maraia, R.J.; Iben, J.R. Different types of secondary information in the genetic code. RNA 2014, 20, 977-984.
    • (2014) RNA , vol.20 , pp. 977-984
    • Maraia, R.J.1    Iben, J.R.2
  • 19
    • 84937436324 scopus 로고    scopus 로고
    • Codon Bias as a Means to Fine‐Tune Gene Expression
    • Quax, T.E.; Claassens, N.J.; Soll, D.; van der Oost, J. Codon Bias as a Means to Fine‐Tune Gene Expression. Mol. Cell 2011, 59, 149-161.
    • (2011) Mol. Cell , vol.59 , pp. 149-161
    • Quax, T.E.1    Claassens, N.J.2    Soll, D.3    Van Der Oost, J.4
  • 20
    • 84976870479 scopus 로고    scopus 로고
    • GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes
    • Chan, P.P.; Lowe, T.M. GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016, 44, D184-D189.
    • (2016) Nucleic Acids Res , vol.44 , pp. D184-D189
    • Chan, P.P.1    Lowe, T.M.2
  • 23
    • 84862529706 scopus 로고    scopus 로고
    • Yeast tRNAomics: TRNA gene copy number variation and codon use provide bioinformatics evidence of a new wobble pair in a eukaryote
    • Iben, J.R.; Maraia, R.J. Yeast tRNAomics: tRNA gene copy number variation and codon use provide bioinformatics evidence of a new wobble pair in a eukaryote. RNA 2012, 18, 1358-1372.
    • (2012) RNA , vol.18 , pp. 1358-1372
    • Iben, J.R.1    Maraia, R.J.2
  • 24
    • 84892436616 scopus 로고    scopus 로고
    • TRNA gene copy number variation in humans
    • Iben, J.R.; Maraia, R.J. tRNA gene copy number variation in humans. Gene 2014, 536, 376-384.
    • (2014) Gene , vol.536 , pp. 376-384
    • Iben, J.R.1    Maraia, R.J.2
  • 25
    • 84893086665 scopus 로고    scopus 로고
    • Diversity of human tRNA genes from the 1000‐genomes project
    • Parisien, M.; Wang, X.; Pan, T. Diversity of human tRNA genes from the 1000‐genomes project. RNA Biol. 2013, 10, 1853-1867.
    • (2013) RNA Biol , vol.10 , pp. 1853-1867
    • Parisien, M.1    Wang, X.2    Pan, T.3
  • 27
    • 33845635732 scopus 로고    scopus 로고
    • Diversity of tRNA genes in eukaryotes
    • Goodenbour, J.M.; Pan, T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 2006, 34, 6137-6146.
    • (2006) Nucleic Acids Res , vol.34 , pp. 6137-6146
    • Goodenbour, J.M.1    Pan, T.2
  • 28
    • 0002723586 scopus 로고
    • Structure and Expression of Prokaryotic tRNA Genes
    • Söll, D., RajBhandary, U.L., Eds.; ASM Press: Washington, DC, USA
    • Inokuchi, H.; Yamao, F. Structure and Expression of Prokaryotic tRNA Genes. In tRNA: structure, biosynthesis, and function; Söll, D., RajBhandary, U.L., Eds.; ASM Press: Washington, DC, USA, 1995.
    • (1995) Trna: Structure, Biosynthesis, and Function
    • Inokuchi, H.1    Yamao, F.2
  • 29
    • 85014880176 scopus 로고    scopus 로고
    • Genes for Stable RNAs and Their Expression in Archaea
    • Sebald, M. Ed.; Brock Springer Series in Contemporary Bioscience; Springer: New York, NY, USA
    • Thomm, M.; Hausner, W. Genes for Stable RNAs and Their Expression in Archaea. In Genetics and Molecular Biology of Anaerobic Bacteria; Sebald, M. Ed.; Brock Springer Series in Contemporary Bioscience; Springer: New York, NY, USA, 2012.
    • (2012) Genetics and Molecular Biology of Anaerobic Bacteria
    • Thomm, M.1    Hausner, W.2
  • 30
    • 78651504121 scopus 로고    scopus 로고
    • Evolution of multisubunit RNA polymerases in the three domains of life
    • Werner, F.; Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 2011, 9, 85-98.
    • (2011) Nat. Rev. Microbiol , vol.9 , pp. 85-98
    • Werner, F.1    Grohmann, D.2
  • 31
    • 79960716754 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases IV and V: Purveyors of non‐coding RNA for plant gene silencing
    • Haag, J.R.; Pikaard, C.S. Multisubunit RNA polymerases IV and V: Purveyors of non‐coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011, 12, 483-492.
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , pp. 483-492
    • Haag, J.R.1    Pikaard, C.S.2
  • 32
    • 77951608945 scopus 로고    scopus 로고
    • The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors
    • Carter, R.; Drouin, G. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. Mol. Biol. Evol. 2009, 27, 1035-1043.
    • (2009) Mol. Biol. Evol , vol.27 , pp. 1035-1043
    • Carter, R.1    Drouin, G.2
  • 33
    • 84879127650 scopus 로고    scopus 로고
    • Evolution of Eukaryotic RNA Polymerases
    • Drouin, G.; Carter, R. Evolution of Eukaryotic RNA Polymerases. eLS, 2010, doi:10.1002/9780470015902.a0022872.
    • (2010) Els
    • Drouin, G.1    Carter, R.2
  • 35
    • 0037439213 scopus 로고    scopus 로고
    • Phizicky, E.M. TRNA transfers to the limelight
    • Hopper, A.K.; Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 2003, 17, 162-180.
    • (2003) Genes Dev , vol.17 , pp. 162-180
    • Hopper, A.K.1
  • 36
    • 77956276464 scopus 로고    scopus 로고
    • TRNA biology charges to the front
    • Phizicky, E.M.; Hopper, A.K. tRNA biology charges to the front. Genes Dev. 2010, 24, 1832-1860.
    • (2010) Genes Dev , vol.24 , pp. 1832-1860
    • Phizicky, E.M.1    Hopper, A.K.2
  • 37
    • 84875249090 scopus 로고    scopus 로고
    • Transcription termination by the eukaryotic RNA polymerase III
    • Arimbasseri, A.G.; Rijal, K.; Maraia, R.J. Transcription termination by the eukaryotic RNA polymerase III. Biochim. Biophys. Acta 2013, 1829, 318-330.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 318-330
    • Arimbasseri, A.G.1    Rijal, K.2    Maraia, R.J.3
  • 38
    • 84900405636 scopus 로고    scopus 로고
    • Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation
    • Arimbasseri, A.G.; Rijal, K.; Maraia, R.J. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2014, 5, e27639.
    • (2014) Transcription , vol.5
    • Arimbasseri, A.G.1    Rijal, K.2    Maraia, R.J.3
  • 39
    • 0016730809 scopus 로고
    • Lacroute, F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast
    • Waldron, C.; Lacroute, F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 1975, 122, 855-865.
    • (1975) J. Bacteriol , vol.122 , pp. 855-865
    • Waldron, C.1
  • 40
    • 0032535546 scopus 로고    scopus 로고
    • The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS‐like subunit and is important for transcription termination
    • Chedin, S.; Riva, M.; Schultz, P.; Sentenac, A.; Carles, C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS‐like subunit and is important for transcription termination. Genes Dev. 1998, 12, 3857-3871.
    • (1998) Genes Dev , vol.12 , pp. 3857-3871
    • Chedin, S.1    Riva, M.2    Schultz, P.3    Sentenac, A.4    Carles, C.5
  • 41
    • 84876320052 scopus 로고    scopus 로고
    • Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III
    • Arimbasseri, A.G.; Maraia, R.J. Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol. Cell. Biol, 2013, 33, 1571-1581.
    • (2013) Mol. Cell. Biol , vol.33 , pp. 1571-1581
    • Arimbasseri, A.G.1    Maraia, R.J.2
  • 43
    • 79952262287 scopus 로고    scopus 로고
    • Genome stability control by checkpoint regulation of tRNA gene transcription
    • Clelland, B.W.; Schultz, M.C. Genome stability control by checkpoint regulation of tRNA gene transcription. Transcription 2010, 1, 115-125.
    • (2010) Transcription , vol.1 , pp. 115-125
    • Clelland, B.W.1    Schultz, M.C.2
  • 45
    • 65249170959 scopus 로고    scopus 로고
    • A comprehensive analysis of the La‐motif protein superfamily
    • Bousque-Antonelli, C.; Deragon, J.M. A comprehensive analysis of the La‐motif protein superfamily. RNA 2009, 15, 750-764.
    • (2009) RNA , vol.15 , pp. 750-764
    • Bousque-Antonelli, C.1    Deragon, J.M.2
  • 47
    • 84949792789 scopus 로고    scopus 로고
    • Structural biology: A transcriptional specialist resolved
    • Maraia, R.J.; Rijal, K. Structural biology: A transcriptional specialist resolved. Nature 2015, 528, 204-205.
    • (2015) Nature , vol.528 , pp. 204-205
    • Maraia, R.J.1    Rijal, K.2
  • 48
    • 0020841082 scopus 로고
    • Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes
    • Cozzarelli, N.R.; Gerrard, S.P.; Schlissel, M.; Brown, D.D.; Bogenhagen, D.F. Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell 1983, 34, 829-835.
    • (1983) Cell , vol.34 , pp. 829-835
    • Cozzarelli, N.R.1    Gerrard, S.P.2    Schlissel, M.3    Brown, D.D.4    Bogenhagen, D.F.5
  • 49
    • 84937596472 scopus 로고    scopus 로고
    • Mechanism of Transcription Termination by RNA Polymerase III Utilizes a Non‐template Strand Sequence‐Specific Signal Element. Mol
    • Arimbasseri, A.G.; Maraia, R.J. Mechanism of Transcription Termination by RNA Polymerase III Utilizes a Non‐template Strand Sequence‐Specific Signal Element. Mol. Cell 2015, 58, 1124-1132.
    • (2015) Cell , vol.58 , pp. 1124-1132
    • Arimbasseri, A.G.1    Maraia, R.J.2
  • 50
    • 84961257819 scopus 로고    scopus 로고
    • A high density of cis‐information terminates RNA Polymerase III on a 2‐rail track
    • Arimbasseri, A.G.; Maraia, R.J. A high density of cis‐information terminates RNA Polymerase III on a 2‐rail track. RNA Biol. 2016, 13, 166-171.
    • (2016) RNA Biol , vol.13 , pp. 166-171
    • Arimbasseri, A.G.1    Maraia, R.J.2
  • 51
    • 0019468489 scopus 로고
    • Nucleotide sequences in Xenopus 5S DNA required for transcription termination
    • Bogenhagen, D.F.; Brown, D.D. Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell, 1981, 24, 261-270.
    • (1981) Cell , vol.24 , pp. 261-270
    • Bogenhagen, D.F.1    Brown, D.D.2
  • 52
    • 84922680530 scopus 로고    scopus 로고
    • A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis
    • Rijal, K.; Maraia, R.J.; Arimbasseri, A.G. A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis. Gene 2015, 556, 35-50.
    • (2015) Gene , vol.556 , pp. 35-50
    • Rijal, K.1    Maraia, R.J.2    Arimbasseri, A.G.3
  • 54
    • 0030931573 scopus 로고    scopus 로고
    • Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition
    • Wang, Z.; Luo, T.; Roeder, R.G. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev. 1997, 11, 2371-2382.
    • (1997) Genes Dev , vol.11 , pp. 2371-2382
    • Wang, Z.1    Luo, T.2    Roeder, R.G.3
  • 55
    • 11844249959 scopus 로고    scopus 로고
    • Mutations in the RNA Polymerase III Subunit Rpc11p That Decrease RNA 3 ′ Cleavage Activity Increase 3 ′ ‐Terminal Oligo(U) Length and La‐Dependent tRNA Processing
    • Huang, Y.; Intine, R.V.; Mozlin, A.; Hasson, S.; Maraia, R.J. Mutations in the RNA Polymerase III Subunit Rpc11p That Decrease RNA 3 ′ Cleavage Activity Increase 3 ′ ‐Terminal Oligo(U) Length and La‐Dependent tRNA Processing. Mol. Cell Biol. 2005, 25, 621-636.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 621-636
    • Huang, Y.1    Intine, R.V.2    Mozlin, A.3    Hasson, S.4    Maraia, R.J.5
  • 56
    • 0021305722 scopus 로고
    • Purified lupus antigen La recognizes an oligouridylate stretch common to the 3′ termini of RNA polymerase III transcripts
    • Stefano, J.E. Purified lupus antigen La recognizes an oligouridylate stretch common to the 3′ termini of RNA polymerase III transcripts. Cell 1984, 36, 145-154.
    • (1984) Cell , vol.36 , pp. 145-154
    • Stefano, J.E.1
  • 57
    • 64049093886 scopus 로고    scopus 로고
    • Precursor‐product discrimination by La protein during tRNA metabolism
    • Bayfield, M.A.; Maraia, R.J. Precursor‐product discrimination by La protein during tRNA metabolism. Nat. Struct. Mol. Biol. 2009, 16, 430-437.
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 430-437
    • Bayfield, M.A.1    Maraia, R.J.2
  • 58
    • 0032428969 scopus 로고    scopus 로고
    • The essential Gcd10p‐Gcd14p nuclear complex is required for 1‐methyladenosine modification and maturation of initiator methionyl‐tRNA
    • Anderson, J.; Phan, L.; Cuesta, R.; Carlson, B.A.; Pak, M.; Asano, K.; Björk, G.R.; Tamame, M.; Hinnebusch, A.G. The essential Gcd10p‐Gcd14p nuclear complex is required for 1‐methyladenosine modification and maturation of initiator methionyl‐tRNA. Genes Dev. 1998, 12, 3650-3662.
    • (1998) Genes Dev , vol.12 , pp. 3650-3662
    • Anderson, J.1    Phan, L.2    Cuesta, R.3    Carlson, B.A.4    Pak, M.5    Asano, K.6    Björk, G.R.7    Tamame, M.8    Hinnebusch, A.G.9
  • 59
    • 33645473067 scopus 로고    scopus 로고
    • The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability
    • Copela, L.A.; Chakshusmathi, G.; Sherrer, R.L.; Wolin, S.L. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA 2006, 12, 644-654.
    • (2006) RNA , vol.12 , pp. 644-654
    • Copela, L.A.1    Chakshusmathi, G.2    Sherrer, R.L.3    Wolin, S.L.4
  • 60
    • 80052272097 scopus 로고    scopus 로고
    • 3′ processing of eukaryotic precursor tRNAs
    • Maraia, R.J.; Lamichhane, T.N. 3′ processing of eukaryotic precursor tRNAs. WIRES RNA 2011, 2, 362-375.
    • (2011) WIRES RNA , vol.2 , pp. 362-375
    • Maraia, R.J.1    Lamichhane, T.N.2
  • 61
    • 77953656943 scopus 로고    scopus 로고
    • Helm, M. TRNA stabilization by modified nucleotides
    • Motorin, Y.; Helm, M. tRNA stabilization by modified nucleotides. Biochemistry 2010, 49, 4934-4944.
    • (2010) Biochemistry , vol.49 , pp. 4934-4944
    • Motorin, Y.1
  • 62
    • 77953694873 scopus 로고    scopus 로고
    • Conserved and divergent features of the structure and function of La and La‐related proteins (LARPs)
    • Bayfield, M.A.; Yang, R.; Maraia, R.J. Conserved and divergent features of the structure and function of La and La‐related proteins (LARPs). Biochim. Biophys. Acta 2010, 1799, 365-378.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 365-378
    • Bayfield, M.A.1    Yang, R.2    Maraia, R.J.3
  • 63
    • 33745815336 scopus 로고    scopus 로고
    • Separate RNA‐binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation
    • Huang, Y.; Bayfield, M.A.; Intine, R.V.; Maraia, R.J. Separate RNA‐binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat. Struct. Mol. Biol. 2006, 13, 611-618.
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 611-618
    • Huang, Y.1    Bayfield, M.A.2    Intine, R.V.3    Maraia, R.J.4
  • 64
    • 0347747969 scopus 로고    scopus 로고
    • A La protein requirement for efficient pre‐tRNA folding
    • Chakshusmathi, G.; Kim, S.D.; Rubinson, D.A.; Wolin, S.L. A La protein requirement for efficient pre‐tRNA folding. EMBO J. 2003, 22, 6562-6572.
    • (2003) EMBO J , vol.22 , pp. 6562-6572
    • Chakshusmathi, G.1    Kim, S.D.2    Rubinson, D.A.3    Wolin, S.L.4
  • 65
    • 79952182929 scopus 로고    scopus 로고
    • An intrinsically disordered C terminus allows the La protein to assist the biogenesis of diverse noncoding RNA precursors
    • Kucera, N.J.; Hodsdon, M.E.; Wolin, S.L. An intrinsically disordered C terminus allows the La protein to assist the biogenesis of diverse noncoding RNA precursors. Proc. Natl. Acad. Sci. USA 2011, 108, 1308-1313.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 1308-1313
    • Kucera, N.J.1    Hodsdon, M.E.2    Wolin, S.L.3
  • 66
    • 84857314596 scopus 로고    scopus 로고
    • RNA chaperone activity of the human La protein is mediated by a variant RNA recognition motif
    • Naeeni, A.R.; Conte, M.R.; Bayfield, M.A. RNA chaperone activity of the human La protein is mediated by a variant RNA recognition motif. J. Biol. Chem. 2012, 287, 5472-5482.
    • (2012) J. Biol. Chem , vol.287 , pp. 5472-5482
    • Naeeni, A.R.1    Conte, M.R.2    Bayfield, M.A.3
  • 68
    • 34250628082 scopus 로고    scopus 로고
    • Molecular chaperones and quality control in noncoding RNA biogenesis
    • Wolin, S.L.; Wurtmann, E.J.; Molecular chaperones and quality control in noncoding RNA biogenesis. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 505-511.
    • (2006) Cold Spring Harb. Symp. Quant. Biol , vol.71 , pp. 505-511
    • Wolin, S.L.1    Wurtmann, E.J.2
  • 69
    • 0030904723 scopus 로고    scopus 로고
    • The yeast La protein is required for the 3′endonucleolytic cleavage that matures tRNA precursors
    • Yoo, C.J.; Wolin, S.L. The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell 1997, 89, 393-402.
    • (1997) Cell , vol.89 , pp. 393-402
    • Yoo, C.J.1    Wolin, S.L.2
  • 70
    • 0032535451 scopus 로고    scopus 로고
    • A role for the yeast La protein in U6 snRNP assembly: Evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts
    • Pannone, B.; Xue, D.; Wolin, S.L. A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J. 1998, 17, 7442-7453.
    • (1998) EMBO J , vol.17 , pp. 7442-7453
    • Pannone, B.1    Xue, D.2    Wolin, S.L.3
  • 71
  • 72
    • 44149101017 scopus 로고    scopus 로고
    • Competition between the Rex1 exonuclease and the La protein affects both Trf4p‐mediated RNA quality control and pre‐tRNA maturation
    • Copela, L.A.; Fernandez, C.F.; Sherrer, R.L.; Wolin, S.L. Competition between the Rex1 exonuclease and the La protein affects both Trf4p‐mediated RNA quality control and pre‐tRNA maturation. RNA 2008, 14, 1214-1227.
    • (2008) RNA , vol.14 , pp. 1214-1227
    • Copela, L.A.1    Fernandez, C.F.2    Sherrer, R.L.3    Wolin, S.L.4
  • 77
    • 84929410801 scopus 로고    scopus 로고
    • Quality Control Pathways for Nucleus‐Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking
    • Hopper, A.K.; Huang, H.Y. Quality Control Pathways for Nucleus‐Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking. Mol. Cell. Biol. 2015, 35, 2052-2058.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 2052-2058
    • Hopper, A.K.1    Huang, H.Y.2
  • 78
    • 0036226647 scopus 로고    scopus 로고
    • Dual function of the tRNA(M5U54)methyltransferase in tRNA maturation
    • Johansson, M.J.; Bystrom, A.S. Dual function of the tRNA(m5U54)methyltransferase in tRNA maturation. RNA 2002, 8, 324-335.
    • (2002) RNA , vol.8 , pp. 324-335
    • Johansson, M.J.1    Bystrom, A.S.2
  • 79
    • 2642574393 scopus 로고    scopus 로고
    • Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. Cerevisiae
    • Kadaba, S.; Krueger, A.; Trice, T.; Krecic, A.M.; Hinnebusch, A.G.; Anderson, J. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 2004, 18, 1227-40.
    • (2004) Genes Dev , vol.18 , pp. 1227-1240
    • Kadaba, S.1    Krueger, A.2    Trice, T.3    Krecic, A.M.4    Hinnebusch, A.G.5    Anderson, J.6
  • 80
    • 33344476794 scopus 로고    scopus 로고
    • Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p‐dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA
    • Kadaba, S.; Wang, X.; Anderson, J.T. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p‐dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 2006, 12, 508-521.
    • (2006) RNA , vol.12 , pp. 508-521
    • Kadaba, S.1    Wang, X.2    Anderson, J.T.3
  • 81
    • 0034073380 scopus 로고    scopus 로고
    • Defects in tRNA Processing and Nuclear Export Induce GCN4 Translation Independently of Phosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2
    • Qiu, H.; Hu, C.; Anderson, J.; Björk, G.; Sarkar, S.; Hopper, A.; Hinnebusch, A.G. Defects in tRNA Processing and Nuclear Export Induce GCN4 Translation Independently of Phosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2. Mol. Cell. Biol. 2000, 20, 2505-2516.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2505-2516
    • Qiu, H.1    Hu, C.2    Anderson, J.3    Björk, G.4    Sarkar, S.5    Hopper, A.6    Hinnebusch, A.G.7
  • 82
    • 0032509304 scopus 로고    scopus 로고
    • Proofreading and aminoacylation of tRNAs before export from the nucleus
    • Lund, E.; Dahlberg, J.E. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 1998, 282, 2082-2085.
    • (1998) Science , vol.282 , pp. 2082-2085
    • Lund, E.1    Dahlberg, J.E.2
  • 83
    • 78149452881 scopus 로고    scopus 로고
    • Protein homeostasis and the phenotypic manifestation of genetic diversity: Principles and mechanisms
    • Jarosz, D.F.; Taipale, M.; Lindquist, S. Protein homeostasis and the phenotypic manifestation of genetic diversity: Principles and mechanisms. Annu. Rev. Genet. 2010, 44, 189-216.
    • (2010) Annu. Rev. Genet , vol.44 , pp. 189-216
    • Jarosz, D.F.1    Taipale, M.2    Lindquist, S.3
  • 84
    • 0032569851 scopus 로고    scopus 로고
    • Hsp90 as a capacitor for morphological evolution
    • Rutherford, S.L.; Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 1998, 396, 336-342.
    • (1998) Nature , vol.396 , pp. 336-342
    • Rutherford, S.L.1    Lindquist, S.2
  • 85
    • 84969704056 scopus 로고    scopus 로고
    • RNA Polymerase III Advances: Structural and tRNA Functional Views
    • Arimbasseri, A.G.; Maraia, R.J. RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends Biochem. Sci. 2016, 41, 546-559.
    • (2016) Trends Biochem. Sci , vol.41 , pp. 546-559
    • Arimbasseri, A.G.1    Maraia, R.J.2
  • 86
    • 33645895581 scopus 로고    scopus 로고
    • The RNA polymerase III‐dependent family of genes in hemiascomycetes: Comparative RNomics, decoding strategies, transcription and evolutionary implications
    • Marck, C.; Kachouri-Lafond, R.; Lafontaine, I.; Westhof, E.; Dujon, B.; Grosjean, H. The RNA polymerase III‐dependent family of genes in hemiascomycetes: Comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res. 2006, 34, 1816-1835.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 1816-1835
    • Marck, C.1    Kachouri-Lafond, R.2    Lafontaine, I.3    Westhof, E.4    Dujon, B.5    Grosjean, H.6
  • 88
    • 0021771129 scopus 로고
    • Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: The dependence on the anticodon sequence
    • Haumont, E.; Fournier, M.; de Henau, S.; Grosjean, H. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence. Nucleic Acids Res. 1984, 12, 2705-2715.
    • (1984) Nucleic Acids Res , vol.12 , pp. 2705-2715
    • Haumont, E.1    Fournier, M.2    De Henau, S.3    Grosjean, H.4
  • 89
    • 0011895723 scopus 로고    scopus 로고
    • Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA
    • Auxilien, S.; Crain, P.F.; Trewyn, R.W.; Grosjean, H. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J. Mol. Biol. 1996, 262, 437-458.
    • (1996) J. Mol. Biol , vol.262 , pp. 437-458
    • Auxilien, S.1    Crain, P.F.2    Trewyn, R.W.3    Grosjean, H.4
  • 90
    • 79960582843 scopus 로고    scopus 로고
    • Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast
    • Ohira, T.; Suzuki, T. Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 10502-10507.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 10502-10507
    • Ohira, T.1    Suzuki, T.2
  • 91
    • 0023286030 scopus 로고
    • Enzymatic conversion of guanosine 3′ adjacent to the anticodon of yeast tRNAPhe to N1‐methylguanosine and the wye nucleoside: Dependence on the anticodon sequence
    • Droogmans, L.; Grosjean, H. Enzymatic conversion of guanosine 3′ adjacent to the anticodon of yeast tRNAPhe to N1‐methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J. 1987, 6, 477-483.
    • (1987) EMBO J , vol.6 , pp. 477-483
    • Droogmans, L.1    Grosjean, H.2
  • 92
    • 33846269602 scopus 로고    scopus 로고
    • TRNA’s wobble decoding of the genome: 40 years of modification
    • Agris, P.F.; Vendeix, F.A.; Graham, W.D. tRNA’s wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 2007, 366, 1-13.
    • (2007) J. Mol. Biol. , vol.366 , pp. 1-13
    • Agris, P.F.1    Vendeix, F.A.2    Graham, W.D.3
  • 95
    • 0027435358 scopus 로고
    • Neural BC1 RNA as an evolutionary marker: Guinea pig remains a rodent
    • Martignetti, J.A.; Brosius, J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc. Natl. Acad. Sci. USA, 1993, 90, 9698-9702.
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 9698-9702
    • Martignetti, J.A.1    Brosius, J.2
  • 96
    • 0035046796 scopus 로고    scopus 로고
    • Neuronal BC1 RNA structure: Evolutionary conversion of a tRNAAla domain into an extended stem‐loop structure
    • Rozhdestvensky, T.S.; Kopylov, A.M.; Brosius, J.; Huttenhofer, A. Neuronal BC1 RNA structure: evolutionary conversion of a tRNAAla domain into an extended stem‐loop structure. RNA 2001, 7, 722-730.
    • (2001) RNA , vol.7 , pp. 722-730
    • Rozhdestvensky, T.S.1    Kopylov, A.M.2    Brosius, J.3    Huttenhofer, A.4
  • 98
    • 84930381032 scopus 로고    scopus 로고
    • The importance of codon‐anticodon interactions in translation elongation
    • Saint-Léger, A.; Ribas de Pouplana, L. The importance of codon‐anticodon interactions in translation elongation. Biochimie 2015, 114, 72-79.
    • (2015) Biochimie , vol.114 , pp. 72-79
    • Saint-Léger, A.1    Ribas De Pouplana, L.2
  • 100
    • 0033527628 scopus 로고    scopus 로고
    • An adenosine deaminase that generates inosine at the wobble position of tRNAs
    • Gerber, A.P.; Keller, W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 1999, 286, 1146-1149.
    • (1999) Science , vol.286 , pp. 1146-1149
    • Gerber, A.P.1    Keller, W.2
  • 101
    • 84924995660 scopus 로고    scopus 로고
    • Distribution and frequencies of post‐transcriptional modifications in tRNAs
    • Machnicka, M.A.; Olchowik, A.; Grosjean, H.; Bujnicki, J.M. Distribution and frequencies of post‐transcriptional modifications in tRNAs. RNA Biol. 2014, 11, 1619-1629.
    • (2014) RNA Biol , vol.11 , pp. 1619-1629
    • Machnicka, M.A.1    Olchowik, A.2    Grosjean, H.3    Bujnicki, J.M.4
  • 102
    • 84962556425 scopus 로고    scopus 로고
    • Lack of tRNA‐i6A modification causes mitochondrial‐like metabolic deficiency in S. Pombe by limiting activity of cytosolic tRNATyr, not mito‐tRNA
    • Lamichhane, T.N.; Arimbasseri, A.G.; Rijal, K.; Iben, J.R.; Wei, F.Y.; Tomizawa, K.; Maraia, R.J. Lack of tRNA‐i6A modification causes mitochondrial‐like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito‐tRNA. RNA 2016, 22, 583-596.
    • (2016) RNA , vol.22 , pp. 583-596
    • Lamichhane, T.N.1    Arimbasseri, A.G.2    Rijal, K.3    Iben, J.R.4    Wei, F.Y.5    Tomizawa, K.6    Maraia, R.J.7
  • 103
    • 84873570699 scopus 로고    scopus 로고
    • Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding
    • Pechmann, S.; Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 2013, 20, 237-243.
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 237-243
    • Pechmann, S.1    Frydman, J.2
  • 104
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • Marguerat, S.; Schmidt, A.; Codlin, S.; Chen, W.; Aebersold, R.; Bahler, J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2012, 151, 671-683.
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1    Schmidt, A.2    Codlin, S.3    Chen, W.4    Aebersold, R.5    Bahler, J.6
  • 105
    • 0038179369 scopus 로고    scopus 로고
    • Selective charging of tRNA isoacceptors explains patterns of codon usage
    • Elf, J.; Nilsson, D.; Tenson, T.; Ehrenberg, M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 2003, 300, 1718-1722.
    • (2003) Science , vol.300 , pp. 1718-1722
    • Elf, J.1    Nilsson, D.2    Tenson, T.3    Ehrenberg, M.4
  • 106
    • 38549161878 scopus 로고    scopus 로고
    • What makes ribosome‐mediated transcriptional attenuation sensitive to amino acid limitation?
    • Elf, J.; Ehrenberg, M. What makes ribosome‐mediated transcriptional attenuation sensitive to amino acid limitation? PLoS Comput. Biol. 2005, 1, e2.
    • (2005) Plos Comput. Biol , vol.1
    • Elf, J.1    Ehrenberg, M.2
  • 108
    • 0001968230 scopus 로고
    • Primary, Secondary and Tertiary Structures of tRNAs
    • Söll, D., RajBhandary, U.L., Eds.; ASM Press: Washington, DC, USA
    • Dirheimer G.; Keith, G.; Dumas, P.; Westhof, E. Primary, Secondary and Tertiary Structures of tRNAs. In tRNA: structure, biosynthesis, and function; Söll, D., RajBhandary, U.L., Eds.; ASM Press: Washington, DC, USA, 1995.
    • (1995) Trna: Structure, Biosynthesis, and Function
    • Dirheimer, G.1    Keith, G.2    Dumas, P.3    Westhof, E.4
  • 109
    • 0002365884 scopus 로고
    • Modified Nucleosides and Codon Recognition
    • Söll, D., RajBhandary, U.L., Eds.; ASM Press: Washington, DC, USA
    • Yokoyama, S.; Nishimura, S. Modified Nucleosides and Codon Recognition. In tRNA: structure, biosynthesis, and function; Söll, D., RajBhandary, U.L., Eds.; ASM Press: Washington, DC, USA, 1995, pp 207-223.
    • (1995) Trna: Structure, Biosynthesis, and Function , pp. 207-223
    • Yokoyama, S.1    Nishimura, S.2
  • 110
    • 1242309517 scopus 로고    scopus 로고
    • Decoding the genome: A modified view
    • Agris, P.F. Decoding the genome: a modified view. Nucleic Acids Res. 2004, 32, 223-238.
    • (2004) Nucleic Acids Res , vol.32 , pp. 223-238
    • Agris, P.F.1
  • 111
    • 43249104840 scopus 로고    scopus 로고
    • Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol
    • Johansson, M.J.; Esberg, A.; Huang, B.; Bjork, G.R.; Bystrom, A.S. Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol. Cell Biol. 2008, 28, 3301-3312.
    • (2008) Cell Biol , vol.28 , pp. 3301-3312
    • Johansson, M.J.1    Esberg, A.2    Huang, B.3    Bjork, G.R.4    Bystrom, A.S.5
  • 112
    • 0345060040 scopus 로고    scopus 로고
    • Novel methyltransferase for modified uridine residues at the wobble position of tRNA
    • Kalhor, H.R.; Clarke, S. Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol. Cell Biol. 2003, 23, 9283-9292.
    • (2003) Mol. Cell Biol , vol.23 , pp. 9283-9292
    • Kalhor, H.R.1    Clarke, S.2
  • 113
    • 0017825833 scopus 로고
    • Pairing properties of the methylester of 5‐carboxymethyl uridine in the wobble position of yeast tRNA3Arg
    • Weissenbach, J.; Dirheimer, G. Pairing properties of the methylester of 5‐carboxymethyl uridine in the wobble position of yeast tRNA3Arg. Biochim. Biophys. Acta 1978, 518, 530-534.
    • (1978) Biochim. Biophys. Acta , vol.518 , pp. 530-534
    • Weissenbach, J.1    Dirheimer, G.2
  • 115
    • 78650683942 scopus 로고    scopus 로고
    • A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress
    • Chan, C.T.Y.; Dyavaiah, M.; DeMott, M.S.; Taghizadeh, K.; Dedon, P.C.; Begley, T.J. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 2010, 6, e1001247.
    • (2010) Plos Genet , vol.6
    • Chan, C.T.Y.1    Dyavaiah, M.2    Demott, M.S.3    Taghizadeh, K.4    Dedon, P.C.5    Begley, T.J.6
  • 116
    • 84864828979 scopus 로고    scopus 로고
    • Reprogramming of tRNA modifications controls the oxidative stress response by codon‐biased translation of proteins. Nat
    • Chan, C.T.Y.; Pang, Y.L.J.; Deng, W.; Babu, I.R.; Dyavaiah, M.; Begley, T.J.; Dedon, P.C. Reprogramming of tRNA modifications controls the oxidative stress response by codon‐biased translation of proteins. Nat. Commun. 2012, 3, 937.
    • (2012) Commun , vol.3 , pp. 937
    • Chan, C.T.Y.1    Pang, Y.L.J.2    Deng, W.3    Babu, I.R.4    Dyavaiah, M.5    Begley, T.J.6    Dedon, P.C.7
  • 118
    • 84944680246 scopus 로고    scopus 로고
    • Codon‐biased translation can be regulated by wobble‐base tRNA modification systems during cellular stress responses
    • Endres, L.; Dedon, P.C.; Begley, T.J. Codon‐biased translation can be regulated by wobble‐base tRNA modification systems during cellular stress responses. RNA Biol. 2015, 12, 603-614.
    • (2015) RNA Biol , vol.12 , pp. 603-614
    • Endres, L.1    Dedon, P.C.2    Begley, T.J.3
  • 119
    • 84896342480 scopus 로고    scopus 로고
    • A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation
    • Dedon, P.C.; Begley, T.J. A System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation. Chem Res Toxicol. 2014, 27, 330-337.
    • (2014) Chem Res Toxicol , vol.27 , pp. 330-337
    • Dedon, P.C.1    Begley, T.J.2
  • 120
    • 84910675377 scopus 로고    scopus 로고
    • TRNA modifications regulate translation during cellular stress
    • Gu, C.; Begley, T.J.; Dedon, P.C. tRNA modifications regulate translation during cellular stress. FEBS Lett. 2014, 588, 4287-4296.
    • (2014) FEBS Lett , vol.588 , pp. 4287-4296
    • Gu, C.1    Begley, T.J.2    Dedon, P.C.3
  • 121
    • 0019913580 scopus 로고
    • Translational efficiency of transfer RNA’s: Uses of an extended anticodon
    • Yarus, M. Translational efficiency of transfer RNA’s: Uses of an extended anticodon. Science 1982, 218, 646-652.
    • (1982) Science , vol.218 , pp. 646-652
    • Yarus, M.1
  • 122
    • 84937712122 scopus 로고    scopus 로고
    • Transfer RNA Modification: Presence, Synthesis, and Function
    • Bjork, G.R.; Hagervall, T.G. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus, 2014, 6, doi:10.1128/ecosalplus.ESP‐0007‐2013.
    • (2014) Ecosal Plus , vol.6
    • Bjork, G.R.1    Hagervall, T.G.2
  • 123
    • 84872686832 scopus 로고    scopus 로고
    • Cyclic form of N6‐threonylcarbamoyladenosine as a widely distributed tRNA hypermodification
    • Miyauchi, K.; Kimura, S.; Suzuki, T. A cyclic form of N6‐threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat. Chem. Biol. 2013, 9, 105-111.
    • (2013) Nat. Chem. Biol , vol.9 , pp. 105-111
    • Miyauchi, K.1    Kimura, S.2    Suzuki, T.A.3
  • 124
    • 84924974486 scopus 로고    scopus 로고
    • Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (T6A), a universal modification of tRNA
    • Thiaville, P.C.; Iwata Reuyl, D.; de Crécy-Lagard, V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t6A), a universal modification of tRNA. RNA Biol. 2014, 11, 1529-1539.
    • (2014) RNA Biol. , vol.11 , pp. 1529-1539
    • Thiaville, P.C.1    Iwata Reuyl, D.2    De Crécy-Lagard, V.3
  • 127
    • 80053194776 scopus 로고    scopus 로고
    • Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases
    • Lamichhane, T.N.; Blewett, N.H.; Maraia, R.J. Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. RNA 2011, 17, 1846-1857.
    • (2011) RNA , vol.17 , pp. 1846-1857
    • Lamichhane, T.N.1    Blewett, N.H.2    Maraia, R.J.3
  • 129
    • 85014906702 scopus 로고    scopus 로고
    • Dup
    • Dup
  • 131
    • 84893137842 scopus 로고    scopus 로고
    • Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor
    • Lamichhane, T.N.; Mattijssen, S.; Maraia, R.J. Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol. Cell Biol. 2013, 33, 4900-4908.
    • (2013) Mol. Cell Biol , vol.33 , pp. 4900-4908
    • Lamichhane, T.N.1    Mattijssen, S.2    Maraia, R.J.3
  • 132
    • 84903151976 scopus 로고    scopus 로고
    • A complete landscape of post‐transcriptional modifications in mammalian mitochondrial tRNAs
    • Suzuki, T.; Suzuki, T. A complete landscape of post‐transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 2014, 42, 7346-7357.
    • (2014) Nucleic Acids Res , vol.42 , pp. 7346-7357
    • Suzuki, T.1    Suzuki, T.2
  • 134
    • 84983371918 scopus 로고    scopus 로고
    • Evolving specificity of tRNA 3‐methyl‐cytidine‐32 (M3C32) modification: A subset of tRNAsSer requires N6‐isopentenylation of A37
    • Arimbasseri, A.G.; Iben, J.; Wei, F.Y.; Rijal, K.; Tomizawa, K.; Hafner, M.; Maraia, R.J. Evolving specificity of tRNA 3‐methyl‐cytidine‐32 (m3C32) modification: a subset of tRNAsSer requires N6‐isopentenylation of A37. RNA 2016, 22, 1400-1410.
    • (2016) RNA , vol.22 , pp. 1400-1410
    • Arimbasseri, A.G.1    Iben, J.2    Wei, F.Y.3    Rijal, K.4    Tomizawa, K.5    Hafner, M.6    Maraia, R.J.7
  • 135
    • 84920506759 scopus 로고    scopus 로고
    • Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes
    • Guy, M.P.; Phizicky, E.M. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. RNA 2015, 21, 61-74.
    • (2015) RNA , vol.21 , pp. 61-74
    • Guy, M.P.1    Phizicky, E.M.2
  • 136
    • 84947031580 scopus 로고    scopus 로고
    • Defects in tRNA Anticodon Loop 2′‐O‐Methylation Are Implicated in Nonsyndromic X‐Linked Intellectual Disability due to Mutations in FTSJ1
    • Guy, M.P.; Shaw, M.; Weiner, C.L.; Hobson, L.; Stark, Z.; Rose, K.; Kalscheuer, V.M.; Gecz, J.; Phizicky, E.M. Defects in tRNA Anticodon Loop 2′‐O‐Methylation Are Implicated in Nonsyndromic X‐Linked Intellectual Disability due to Mutations in FTSJ1. Hum. Mutat. 2015, 36, 1176-1187.
    • (2015) Hum. Mutat , vol.36 , pp. 1176-1187
    • Guy, M.P.1    Shaw, M.2    Weiner, C.L.3    Hobson, L.4    Stark, Z.5    Rose, K.6    Kalscheuer, V.M.7    Gecz, J.8    Phizicky, E.M.9
  • 137
    • 84964411811 scopus 로고    scopus 로고
    • The i6A37 tRNA modification is essential for proper decoding of UUX‐Leucine codons during rpoS and iraP translation
    • Aubee, J.I.; Olu, M.; Thompson, K.M. The i6A37 tRNA modification is essential for proper decoding of UUX‐Leucine codons during rpoS and iraP translation. RNA 2016, 22, 729-742.
    • (2016) RNA , vol.22 , pp. 729-742
    • Aubee, J.I.1    Olu, M.2    Thompson, K.M.3
  • 138
    • 84893021704 scopus 로고    scopus 로고
    • The MiaA tRNA Modification Enzyme Is Necessary for Robust RpoS Expression in Escherichia coli
    • Thompson, K.M.; Gottesman, S. The MiaA tRNA Modification Enzyme Is Necessary for Robust RpoS Expression in Escherichia coli. J. Bacteriol. 2014, 196, 754-761.
    • (2014) J. Bacteriol , vol.196 , pp. 754-761
    • Thompson, K.M.1    Gottesman, S.2
  • 139
    • 84924857942 scopus 로고    scopus 로고
    • Two‐subunit enzymes involved in eukaryotic post‐transcriptional tRNA modification
    • Guy, M.P.; Phizicky, E.M. Two‐subunit enzymes involved in eukaryotic post‐transcriptional tRNA modification. RNA Biol. 2014, 11, 1608-1618.
    • (2014) RNA Biol , vol.11 , pp. 1608-1618
    • Guy, M.P.1    Phizicky, E.M.2
  • 140
    • 33646778150 scopus 로고    scopus 로고
    • Biosynthesis of wybutosine, a hyper‐modified nucleoside in eukaryotic phenylalanine tRNA
    • Noma, A.; Kirino, Y.; Ikeuchi, Y.; Suzuki, T. Biosynthesis of wybutosine, a hyper‐modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 2006, 25, 2142-2154.
    • (2006) EMBO J , vol.25 , pp. 2142-2154
    • Noma, A.1    Kirino, Y.2    Ikeuchi, Y.3    Suzuki, T.4
  • 141
    • 0029050832 scopus 로고
    • C to U editing and modifications during the maturation of the mitochondrial tRNAAsp in marsupials
    • Morl, M.; Dorner, M.; Paabo, S. C to U editing and modifications during the maturation of the mitochondrial tRNAAsp in marsupials. Nucleic Acids Res. 1995, 23, 3380-3384.
    • (1995) Nucleic Acids Res , vol.23 , pp. 3380-3384
    • Morl, M.1    Dorner, M.2    Paabo, S.3
  • 142
    • 77950345305 scopus 로고    scopus 로고
    • N7‐Methylguanine at position 46 (M7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network
    • Tomikawa, C.; Yokogawa, T.; Kanai, T.; Hori, H. N7‐Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network. Nucleic Acids Res. 2010, 38, 942-957.
    • (2010) Nucleic Acids Res , vol.38 , pp. 942-957
    • Tomikawa, C.1    Yokogawa, T.2    Kanai, T.3    Hori, H.4
  • 143
    • 79953686522 scopus 로고    scopus 로고
    • Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low‐temperature adaptation in the extreme‐thermophilic eubacterium Thermus thermophilus
    • Ishida, K.; Kunibayashi, T.; Tomikawa, C.; Ochi, A.; Kanai, T.; Hirata, A.; Iwashita, C.; Hori, H. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low‐temperature adaptation in the extreme‐thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 2011, 39, 2304-2318.
    • (2011) Nucleic Acids Res , vol.39 , pp. 2304-2318
    • Ishida, K.1    Kunibayashi, T.2    Tomikawa, C.3    Ochi, A.4    Kanai, T.5    Hirata, A.6    Iwashita, C.7    Hori, H.8
  • 144
    • 33644856584 scopus 로고    scopus 로고
    • C to U Editing Stimulates A to I Editing in the Anticodon Loop of a Cytoplasmic Threonyl tRNA in Trypanosoma brucei
    • Rubio, M.A.; Ragone, F.L.; Gaston, K.W.; Ibba, M.; Alfonzo, J.D. C to U Editing Stimulates A to I Editing in the Anticodon Loop of a Cytoplasmic Threonyl tRNA in Trypanosoma brucei. J. Biol. Chem. 2006, 281, 115-120.
    • (2006) J. Biol. Chem , vol.281 , pp. 115-120
    • Rubio, M.A.1    Ragone, F.L.2    Gaston, K.W.3    Ibba, M.4    Alfonzo, J.D.5
  • 146
    • 85018193381 scopus 로고    scopus 로고
    • Matchmaking facilitates the diagnosis of an autosomal‐recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene
    • Kernohan, K.D.; Dyment, D.A.; Pupavac, M.; Cramer, Z.; McBride, A.; Bernard, G.; Straub, I.; Tetreault, M.; Hartley, T.; Huang, L. et al. Matchmaking facilitates the diagnosis of an autosomal‐recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene. Hum Mutat. 2017, doi:10.1002/humu.23196.
    • (2017) Hum Mutat
    • Kernohan, K.D.1    Dyment, D.A.2    Pupavac, M.3    Cramer, Z.4    McBride, A.5    Bernard, G.6    Straub, I.7    Tetreault, M.8    Hartley, T.9    Huang, L.10
  • 148
    • 79956189938 scopus 로고    scopus 로고
    • A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3‐methylcytidine modification in the tRNA anti‐codon loop
    • D’Silva, S.; Haider, S.J.; Phizicky, E.M. A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3‐methylcytidine modification in the tRNA anti‐codon loop. RNA, 2011, 17, 1100-1110.
    • (2011) RNA , vol.17 , pp. 1100-1110
    • D’Silva, S.1    Haider, S.J.2    Phizicky, E.M.3
  • 149
    • 85015162458 scopus 로고    scopus 로고
    • Scerevisiae Trm140 has two recognition modes for 3‐methylcytidine modification of the anticodon loop of tRNA substrates
    • Han, L.; Marcus, E.; D’Silva, S.; Phizicky, E.M. Scerevisiae Trm140 has two recognition modes for 3‐methylcytidine modification of the anticodon loop of tRNA substrates. RNA 2016, 406-419.
    • (2016) RNA , pp. 406-419
    • Han, L.1    Marcus, E.2    D’Silva, S.3    Phizicky, E.M.4
  • 150
    • 84928256564 scopus 로고    scopus 로고
    • Diversity in mechanism and function of tRNA methyltransferases
    • Swinehart, W.E.; Jackman, J.E. Diversity in mechanism and function of tRNA methyltransferases. RNA Biol. 2015, 12, 398-411.
    • (2015) RNA Biol , vol.12 , pp. 398-411
    • Swinehart, W.E.1    Jackman, J.E.2
  • 151
    • 84859741930 scopus 로고    scopus 로고
    • Methytransferases and their corresponding modifications in budding yeast and humans: Activities, predications, and potential roles in human health
    • Towns, W.L.; Begley, T.J. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: Activities, predications, and potential roles in human health. DNA Cell Biol. 2012, 31, 434-454.
    • (2012) DNA Cell Biol , vol.31 , pp. 434-454
    • Towns, W.L.1    Begley, T.J.2    Transfer, R.3
  • 153
    • 79956191573 scopus 로고    scopus 로고
    • Actin‐binding protein ABP140 is a methyltransferase for 3‐methylcytidine at position 32 of tRNAs in Saccharomyces cerevisiae
    • Noma, A.; Yi, S.; Katoh, T.; Takai, Y.; Suzuki, T.T.; Suzuki, T.T. Actin‐binding protein ABP140 is a methyltransferase for 3‐methylcytidine at position 32 of tRNAs in Saccharomyces cerevisiae. RNA 2011, 17, 1111-1119.
    • (2011) RNA , vol.17 , pp. 1111-1119
    • Noma, A.1    Yi, S.2    Katoh, T.3    Takai, Y.4    Suzuki, T.T.5    Suzuki, T.T.6
  • 154
    • 33750268692 scopus 로고    scopus 로고
    • Evolution of +1 Programmed Frameshifting Signals and Frameshift‐Regulating tRNAs in the Order Saccharomycetales
    • Farabaugh, P.J.; Kramer, E.; Vallabhaneni, H.; Raman, A. Evolution of +1 Programmed Frameshifting Signals and Frameshift‐Regulating tRNAs in the Order Saccharomycetales. J. Mol. Evol. 2006, 63, 545-561.
    • (2006) J. Mol. Evol. , vol.63 , pp. 545-561
    • Farabaugh, P.J.1    Kramer, E.2    Vallabhaneni, H.3    Raman, A.4
  • 155
    • 0032821744 scopus 로고    scopus 로고
    • Multisite‐specific tRNA:M5C‐methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: Identification of the gene and substrate specificity of the enzyme
    • Motorin, Y.; Grosjean, H. Multisite‐specific tRNA:m5C‐methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: Identification of the gene and substrate specificity of the enzyme. RNA 1999, 5, 1105-1118.
    • (1999) RNA , vol.5 , pp. 1105-1118
    • Motorin, Y.1    Grosjean, H.2
  • 157
    • 84939839793 scopus 로고    scopus 로고
    • NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs
    • Haag, S.; Warda, A.S.; Kretschmer, J.; Gunnigmann, M.A.; Hobartner, C.; Bohnsack, M.T. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA 2015, 21, 1532-43.
    • (2015) RNA , vol.21 , pp. 1532-1543
    • Haag, S.1    Warda, A.S.2    Kretschmer, J.3    Gunnigmann, M.A.4    Hobartner, C.5    Bohnsack, M.T.6
  • 158
    • 0037007220 scopus 로고    scopus 로고
    • Trm7p catalyses the formation of two 2′‐O‐methylriboses in yeast tRNA anticodon loop
    • Pintard, L.; Lecointe, F.; Bujnicki, J.M.; Bonnerot, C.; Grosjean, H.; Lapeyre, B. Trm7p catalyses the formation of two 2′‐O‐methylriboses in yeast tRNA anticodon loop. EMBO J. 2002, 21, 1811-1820.
    • (2002) EMBO J , vol.21 , pp. 1811-1820
    • Pintard, L.1    Lecointe, F.2    Bujnicki, J.M.3    Bonnerot, C.4    Grosjean, H.5    Lapeyre, B.6
  • 160
    • 84897076168 scopus 로고    scopus 로고
    • FTSJ2, a heat shock‐inducible mitochondrial protein, suppresses cell invasion and migration
    • Lai, C.W.; Chen, H.L.; Lin, K.Y.; Liu, F.C.; Chong, K.Y.; Cheng, W.T.; Chen, C.M. FTSJ2, a heat shock‐inducible mitochondrial protein, suppresses cell invasion and migration. PLoS One 2014, 9, e90818.
    • (2014) Plos One , vol.9
    • Lai, C.W.1    Chen, H.L.2    Lin, K.Y.3    Liu, F.C.4    Chong, K.Y.5    Cheng, W.T.6    Chen, C.M.7
  • 161
    • 84886684284 scopus 로고    scopus 로고
    • Mitochondrial ribosomal RNA (RRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid
    • Lee, K.W.; Okot-Kotber, C.; LaComb, J.F.; Bogenhagen, D.F. Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid. J. Biol. Chem. 2013, 288, 31386-31399.
    • (2013) J. Biol. Chem. , vol.288 , pp. 31386-31399
    • Lee, K.W.1    Okot-Kotber, C.2    Lacomb, J.F.3    Bogenhagen, D.F.4
  • 162
    • 84884553893 scopus 로고    scopus 로고
    • Partitioning of the nuclear and mitochondrial tRNA 3′‐end processing activities between two different proteins in Schizosaccharomyces pombe
    • Zhang, X.; Zhao, Q.; Huang, Y. Partitioning of the nuclear and mitochondrial tRNA 3′‐end processing activities between two different proteins in Schizosaccharomyces pombe. J. Biol. Chem. 2013, 288, 27415-27422.
    • (2013) J. Biol. Chem. , vol.288 , pp. 27415-27422
    • Zhang, X.1    Zhao, Q.2    Huang, Y.3
  • 163
    • 33846021292 scopus 로고    scopus 로고
    • Tissue‐Specific Differences in Human Transfer RNA Expression
    • Dittmar, K.A.; Goodenbour, J.M.; Pan, T. Tissue‐Specific Differences in Human Transfer RNA Expression. PLoS Genet. 2006, 2, e221.
    • (2006) Plos Genet , vol.2
    • Dittmar, K.A.1    Goodenbour, J.M.2    Pan, T.3
  • 164
    • 84979583000 scopus 로고    scopus 로고
    • Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation
    • Ishimura, R.; Nagy, G.; Dotu, I.; Chuang, J.H.; Ackerman, S.L. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. eLife 2016, 5, e14295.
    • (2016) Elife , vol.5
    • Ishimura, R.1    Nagy, G.2    Dotu, I.3    Chuang, J.H.4    Ackerman, S.L.5
  • 165
    • 0037407933 scopus 로고    scopus 로고
    • Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9
    • Jackman, J.E.; Montange, R.K.; Malik, H.S.; Phizicky, E.M. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 2003, 9, 574-585.
    • (2003) RNA , vol.9 , pp. 574-585
    • Jackman, J.E.1    Montange, R.K.2    Malik, H.S.3    Phizicky, E.M.4
  • 166
    • 84871194226 scopus 로고    scopus 로고
    • A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis
    • Vilardo, E.; Nachbagauer, C.; Buzet, A.; Taschner, A.; Holzmann, J.; Rossmanith, W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 2012, 40, 11583-11593.
    • (2012) Nucleic Acids Res , vol.40 , pp. 11583-11593
    • Vilardo, E.1    Nachbagauer, C.2    Buzet, A.3    Taschner, A.4    Holzmann, J.5    Rossmanith, W.6
  • 169
    • 84907054437 scopus 로고    scopus 로고
    • TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly
    • Gillis, D.; Krishnamohan, A.; Yaacov, B.; Shaag, A.; Jackman, J.E.; Elpeleg, O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J. Med. Genet. 2014, 51, 581-586.
    • (2014) J. Med. Genet , vol.51 , pp. 581-586
    • Gillis, D.1    Krishnamohan, A.2    Yaacov, B.3    Shaag, A.4    Jackman, J.E.5    Elpeleg, O.6
  • 170
    • 85014929595 scopus 로고    scopus 로고
    • Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities
    • Narayanan, M.; Ramsey, K.; Grebe, T.; Schrauwen, I.; Szelinger, S.; Huentelman, M.; Craig, D.; Narayanan, V. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities. F1000Research, 2015, 4, 912.
    • (2015) F1000research , vol.4 , pp. 912
    • Narayanan, M.1    Ramsey, K.2    Grebe, T.3    Schrauwen, I.4    Szelinger, S.5    Huentelman, M.6    Craig, D.7    Narayanan, V.8
  • 171
    • 84982279570 scopus 로고    scopus 로고
    • TRNA methyltransferase homologue gene TRMT10A mutation in young adult‐onset diabetes with intellectual disability, microcephaly and epilepsy
    • Yew, T.W.; McCreight, L.; Colclough, K.; Ellard, S.; Pearson, E.R. tRNA methyltransferase homologue gene TRMT10A mutation in young adult‐onset diabetes with intellectual disability, microcephaly and epilepsy. Diabet. Med. 2016, 33, e21-e25.
    • (2016) Diabet. Med , vol.33 , pp. e21-e25
    • Yew, T.W.1    McCreight, L.2    Colclough, K.3    Ellard, S.4    Pearson, E.R.5
  • 172
    • 84959328758 scopus 로고    scopus 로고
    • Homozygous deletion of TRMT10A as part of a contiguous gene deletion in a syndrome of failure to thrive, delayed puberty, intellectual disability and diabetes mellitus
    • Zung, A.; Kori, M.; Burundukov, E.; Ben-Yosef, T.; Tatoor, Y.; Granot, E. Homozygous deletion of TRMT10A as part of a contiguous gene deletion in a syndrome of failure to thrive, delayed puberty, intellectual disability and diabetes mellitus. Am. J. Med. Genet. Part A 2015, 167A, 3167-3173.
    • (2015) Am. J. Med. Genet. Part A , vol.167A , pp. 3167-3173
    • Zung, A.1    Kori, M.2    Burundukov, E.3    Ben-Yosef, T.4    Tatoor, Y.5    Granot, E.6
  • 174
    • 15744401773 scopus 로고    scopus 로고
    • Eukaryotic cytosine methyltransferases
    • Goll, M.G.; Bestor, T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 2005, 74, 481-514.
    • (2005) Annu. Rev. Biochem , vol.74 , pp. 481-514
    • Goll, M.G.1    Bestor, T.H.2
  • 175
  • 176
    • 77955884641 scopus 로고    scopus 로고
    • RNA methylation by Dnmt2 protects transfer RNAs against stress‐induced cleavage
    • Schaefer, M.; Pollex, T.; Hanna, K.; Tuorto, F.; Meusburger, M.; Helm, M.; Lyko, F. RNA methylation by Dnmt2 protects transfer RNAs against stress‐induced cleavage. Genes Dev. 2010, 24, 1590-1595.
    • (2010) Genes Dev , vol.24 , pp. 1590-1595
    • Schaefer, M.1    Pollex, T.2    Hanna, K.3    Tuorto, F.4    Meusburger, M.5    Helm, M.6    Lyko, F.7
  • 177
    • 84884167428 scopus 로고    scopus 로고
    • The RNA methyltransferase Dnmt2 is required for efficient Dicer‐2‐dependent siRNA pathway activity in Drosophila
    • Durdevic, Z.; Mobin, M.B.; Hanna, K.; Lyko, F.; Schaefer, M. The RNA methyltransferase Dnmt2 is required for efficient Dicer‐2‐dependent siRNA pathway activity in Drosophila. Cell Rep. 2013, 4, 931-937.
    • (2013) Cell Rep , vol.4 , pp. 931-937
    • Durdevic, Z.1    Mobin, M.B.2    Hanna, K.3    Lyko, F.4    Schaefer, M.5
  • 178
    • 84925010543 scopus 로고    scopus 로고
    • Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties
    • Elhardt, W.; Shanmugam, R.; Jurkowski, T.P.; Jeltsch, A. Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties. Biochimie 2015, 112, 66-72.
    • (2015) Biochimie , vol.112 , pp. 66-72
    • Elhardt, W.1    Shanmugam, R.2    Jurkowski, T.P.3    Jeltsch, A.4
  • 179
    • 80755169463 scopus 로고    scopus 로고
    • Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases. Annu
    • Suzuki, T.; Nagao, A.; Suzuki, T. Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 2011, 45, 299-329.
    • (2011) Rev. Genet , vol.45 , pp. 299-329
    • Suzuki, T.1    Nagao, A.2    Suzuki, T.3
  • 181
    • 84906242596 scopus 로고    scopus 로고
    • Robey‐Bond, S.M. Transfer RNA and human disease
    • Abbott, J.A.; Francklyn, C.S.; Robey‐Bond, S.M. Transfer RNA and human disease. Front. Genet. 2014, 5, 158.
    • (2014) Front. Genet , vol.5 , pp. 158
    • Abbott, J.A.1    Francklyn, C.S.2
  • 182
    • 84924192559 scopus 로고    scopus 로고
    • Emerging roles of tRNA in adaptive translation, signalling dynamics and disease
    • Kirchner, S.; Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 2015, 16, 98-112.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 98-112
    • Kirchner, S.1    Ignatova, Z.2
  • 183
    • 84874721917 scopus 로고    scopus 로고
    • Aminoacyl‐tRNA synthetases in medicine and disease
    • Yao, P.; Fox, P.L. Aminoacyl‐tRNA synthetases in medicine and disease. EMBO Mol. Med. 2013, 5, 332-343.
    • (2013) EMBO Mol. Med , vol.5 , pp. 332-343
    • Yao, P.1    Fox, P.L.2
  • 187
    • 80055085362 scopus 로고    scopus 로고
    • Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes
    • Wei, F.Y.; Tomizawa, K. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes. Endocr. J. 2010, 58, 819-825.
    • (2010) Endocr. J , vol.58 , pp. 819-825
    • Wei, F.Y.1    Tomizawa, K.2
  • 189
    • 4344647504 scopus 로고    scopus 로고
    • Tissue‐specific codon usage and the expression of human genes
    • Plotkin, J.B.; Robins, H.; Levine, A.J. Tissue‐specific codon usage and the expression of human genes. Proc. Natl. Acad. Sci. USA 2004, 101, 12588-12591.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 12588-12591
    • Plotkin, J.B.1    Robins, H.2    Levine, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.