메뉴 건너뛰기




Volumn 1, Issue 3, 2010, Pages 115-125

Genome stability control by checkpoint regulation of tRNA gene transcription

Author keywords

Checkpoint signaling; Genome stability; Replication fork; Replication interference; tRNA genes

Indexed keywords

CHECKPOINT KINASE 2; DNA DIRECTED RNA POLYMERASE III; MYC PROTEIN; PROTEIN MAF1; PROTEIN RAD9; REPLISOME; REPRESSOR PROTEIN; TRANSCRIPTION FACTOR IIIB; TRANSFER RNA; UNCLASSIFIED DRUG;

EID: 79952262287     PISSN: 21541264     EISSN: 21541272     Source Type: Journal    
DOI: 10.4161/trns.1.3.13735     Document Type: Review
Times cited : (13)

References (80)
  • 1
    • 70349921337 scopus 로고    scopus 로고
    • tRNA genes in eukaryotic genome organization and reorganization
    • McFarlane RJ, Whitehall SK. tRNA genes in eukaryotic genome organization and reorganization. Cell Cycle 2009; 8:3102-6.
    • (2009) Cell Cycle , vol.8 , pp. 3102-3106
    • McFarlane, R.J.1    Whitehall, S.K.2
  • 2
    • 54549127139 scopus 로고    scopus 로고
    • Comparative genomics and molecular dynamics of DNA repeats in eukaryotes
    • Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 686-727
    • Richard, G.F.1    Kerrest, A.2    Dujon, B.3
  • 3
    • 33645895581 scopus 로고    scopus 로고
    • The RNA polymerase III-dependent family of genes in hemiascomycetes: Comparative RNomics, decoding strategies, transcription and evolutionary implications
    • Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006; 34:1816-35.
    • (2006) Nucleic Acids Res , vol.34 , pp. 1816-1835
    • Marck, C.1    Kachouri-Lafond, R.2    Lafontaine, I.3    Westhof, E.4    Dujon, B.5    Grosjean, H.6
  • 4
    • 0036841289 scopus 로고    scopus 로고
    • Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits
    • Hu P, Wu S, Sun Y, Yuan CC, Kobayashi R, Myers MP, et al. Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits. Mol Cell Biol 2002; 22: 8044-55.
    • (2002) Mol Cell Biol , vol.22 , pp. 8044-8055
    • Hu, P.1    Wu, S.2    Sun, Y.3    Yuan, C.C.4    Kobayashi, R.5    Myers, M.P.6
  • 5
    • 51349090524 scopus 로고    scopus 로고
    • Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates
    • Mertens C, Roeder RG. Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764-76.
    • (2008) Mol Cell Biol , vol.28 , pp. 5764-5776
    • Mertens, C.1    Roeder, R.G.2
  • 6
    • 0037108150 scopus 로고    scopus 로고
    • Recruitment of RNA polymerase III to its target promoters
    • Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev 2002; 16:2593-620.
    • (2002) Genes Dev , vol.16 , pp. 2593-2620
    • Schramm, L.1    Hernandez, N.2
  • 7
    • 0023413626 scopus 로고
    • Comparison of tRNA gene transcription complexes formed in vitro and in nuclei
    • Huibregtse JM, Evans CF, Engelke DR. Comparison of tRNA gene transcription complexes formed in vitro and in nuclei. Mol Cell Biol 1987; 7:3212-20.
    • (1987) Mol Cell Biol , vol.7 , pp. 3212-3220
    • Huibregtse, J.M.1    Evans, C.F.2    Engelke, D.R.3
  • 8
    • 46749128583 scopus 로고    scopus 로고
    • Regulation of RNA polymerase III transcription by Maf1 protein
    • Ciesla M, Boguta M. Regulation of RNA polymerase III transcription by Maf1 protein. Acta Biochim Pol 2008; 55:215-25.
    • (2008) Acta Biochim Pol , vol.55 , pp. 215-225
    • Ciesla, M.1    Boguta, M.2
  • 9
    • 0036923835 scopus 로고    scopus 로고
    • Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription
    • Upadhya R, Lee J, Willis IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell 2002; 10:1489-94.
    • (2002) Mol Cell , vol.10 , pp. 1489-1494
    • Upadhya, R.1    Lee, J.2    Willis, I.M.3
  • 10
    • 74549129655 scopus 로고    scopus 로고
    • New connections identify Sch9 as a central node in ribosome biosynthesis
    • Johnson D. New connections identify Sch9 as a central node in ribosome biosynthesis. Cell Cycle 9:26-7.
    • Cell Cycle , vol.9 , pp. 26-27
    • Johnson, D.1
  • 11
    • 4143077932 scopus 로고    scopus 로고
    • Signaling repression of transcription by RNA polymerase III in yeast
    • Willis IM, Desai N, Upadhya R. Signaling repression of transcription by RNA polymerase III in yeast. Prog Nucleic Acid Res Mol Biol 2004; 77:323-53.
    • (2004) Prog Nucleic Acid Res Mol Biol , vol.77 , pp. 323-353
    • Willis, I.M.1    Desai, N.2    Upadhya, R.3
  • 12
    • 42549130434 scopus 로고    scopus 로고
    • Cell biology: RNA metabolism and oncogenesis
    • Johnson DL, Johnson SA. Cell biology: RNA metabolism and oncogenesis. Science 2008; 320:461-2.
    • (2008) Science , vol.320 , pp. 461-462
    • Johnson, D.L.1    Johnson, S.A.2
  • 13
    • 11244281646 scopus 로고    scopus 로고
    • RNA polymerases I and III, growth control and cancer
    • White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 2005; 6:69-78.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 69-78
    • White, R.J.1
  • 14
    • 0028353515 scopus 로고
    • Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component
    • Gottesfeld JM, Wolf VJ, Dang T, Forbes DJ, Hartl P. Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science 1994; 263:81-4.
    • (1994) Science , vol.263 , pp. 81-84
    • Gottesfeld, J.M.1    Wolf, V.J.2    Dang, T.3    Forbes, D.J.4    Hartl, P.5
  • 16
    • 0035254535 scopus 로고    scopus 로고
    • RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae
    • Donze D, Kamakaka RT. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 2001; 20:520-31.
    • (2001) EMBO J , vol.20 , pp. 520-531
    • Donze, D.1    Kamakaka, R.T.2
  • 17
    • 57349129792 scopus 로고    scopus 로고
    • TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae
    • Simms TA, Dugas SL, Gremillion JC, Ibos ME, Dandurand MN, Toliver TT, et al. TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. Eukaryot Cell 2008; 7:2078-86.
    • (2008) Eukaryot Cell , vol.7 , pp. 2078-2086
    • Simms, T.A.1    Dugas, S.L.2    Gremillion, J.C.3    Ibos, M.E.4    Dandurand, M.N.5    Toliver, T.T.6
  • 19
    • 0029740114 scopus 로고    scopus 로고
    • DNA replication fork pause sites dependent on transcription
    • Deshpande AM, Newlon CS. DNA replication fork pause sites dependent on transcription. Science 1996; 272:1030-3.
    • (1996) Science , vol.272 , pp. 1030-1033
    • Deshpande, A.M.1    Newlon, C.S.2
  • 20
    • 34249710254 scopus 로고    scopus 로고
    • A key role for the GINS complex at DNA replication forks
    • Labib K, Gambus A. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 2007; 17:271-8.
    • (2007) Trends Cell Biol , vol.17 , pp. 271-278
    • Labib, K.1    Gambus, A.2
  • 21
    • 0035967858 scopus 로고    scopus 로고
    • The RNA polymerase III transcription apparatus
    • Geiduschek EP, Kassavetis GA. The RNA polymerase III transcription apparatus. J Mol Biol 2001; 310: 1-26.
    • (2001) J Mol Biol , vol.310 , pp. 1-26
    • Geiduschek, E.P.1    Kassavetis, G.A.2
  • 23
    • 0028270310 scopus 로고
    • Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation
    • Bardeleben C, Kassavetis GA, Geiduschek EP. Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J Mol Biol 1994; 235:1193-205.
    • (1994) J Mol Biol , vol.235 , pp. 1193-1205
    • Bardeleben, C.1    Kassavetis, G.A.2    Geiduschek, E.P.3
  • 24
    • 67449113551 scopus 로고    scopus 로고
    • Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
    • Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 2009; 34:722-34.
    • (2009) Mol Cell , vol.34 , pp. 722-734
    • Azvolinsky, A.1    Giresi, P.G.2    Lieb, J.D.3    Zakian, V.A.4
  • 26
    • 63849101707 scopus 로고    scopus 로고
    • Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1
    • Pryce DW, Ramayah S, Jaendling A, McFarlane RJ. Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1. Proc Natl Acad Sci USA 2009; 106:4770-5.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 4770-4775
    • Pryce, D.W.1    Ramayah, S.2    Jaendling, A.3    McFarlane, R.J.4
  • 27
    • 0024291357 scopus 로고
    • A replication fork barrier at the 3' end of yeast ribosomal RNA genes
    • Brewer BJ, Fangman WL. A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell 1988; 55:637-43.
    • (1988) Cell , vol.55 , pp. 637-643
    • Brewer, B.J.1    Fangman, W.L.2
  • 28
    • 0023806623 scopus 로고
    • Organization of replication of ribosomal DNA in Saccharomyces cerevisiae
    • Linskens MH, Huberman JA. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:4927-35.
    • (1988) Mol Cell Biol , vol.8 , pp. 4927-4935
    • Linskens, M.H.1    Huberman, J.A.2
  • 29
    • 0033954246 scopus 로고    scopus 로고
    • Replication fork pausing and recombination or "gimme a break"
    • Rothstein R, Michel B, Gangloff S. Replication fork pausing and recombination or "gimme a break". Genes Dev 2000; 14:1-10.
    • (2000) Genes Dev , vol.14 , pp. 1-10
    • Rothstein, R.1    Michel, B.2    Gangloff, S.3
  • 30
    • 63549139991 scopus 로고    scopus 로고
    • Stimulation of direct-repeat recombination by RNA polymerase III transcription
    • de la Loza MC, Wellinger RE, Aguilera A. Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair (Amst) 2009; 8:620-6.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 620-626
    • de la Loza, M.C.1    Wellinger, R.E.2    Aguilera, A.3
  • 32
    • 0030727053 scopus 로고    scopus 로고
    • Functional differences among the six Saccharomyces cerevisiae tRNATrp genes
    • Ong WC, Ibrahim M, Town M, Johnson JD. Functional differences among the six Saccharomyces cerevisiae tRNATrp genes. Yeast 1997; 13:1357-62.
    • (1997) Yeast , vol.13 , pp. 1357-1362
    • Ong, W.C.1    Ibrahim, M.2    Town, M.3    Johnson, J.D.4
  • 33
    • 30944462801 scopus 로고    scopus 로고
    • Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast
    • Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 2006; 20:159-73.
    • (2006) Genes Dev , vol.20 , pp. 159-173
    • Admire, A.1    Shanks, L.2    Danzl, N.3    Wang, M.4    Weier, U.5    Stevens, W.6
  • 34
    • 52949143512 scopus 로고    scopus 로고
    • Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms
    • Payen C, Koszul R, Dujon B, Fischer G. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 2008; 4:1000175.
    • (2008) PLoS Genet , vol.4 , pp. 1000175
    • Payen, C.1    Koszul, R.2    Dujon, B.3    Fischer, G.4
  • 35
    • 10844222498 scopus 로고    scopus 로고
    • The amino terminus of the Saccharomyces cerevisiae DNA helicase Rrm3p modulates protein function altering replication and checkpoint activity
    • Bessler JB, Zakian VA. The amino terminus of the Saccharomyces cerevisiae DNA helicase Rrm3p modulates protein function altering replication and checkpoint activity. Genetics 2004; 168:1205-18.
    • (2004) Genetics , vol.168 , pp. 1205-1218
    • Bessler, J.B.1    Zakian, V.A.2
  • 36
    • 33751237066 scopus 로고    scopus 로고
    • The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes
    • Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 2006; 20: 3104-16.
    • (2006) Genes Dev , vol.20 , pp. 3104-3116
    • Azvolinsky, A.1    Dunaway, S.2    Torres, J.Z.3    Bessler, J.B.4    Zakian, V.A.5
  • 37
    • 33749136403 scopus 로고    scopus 로고
    • Roles of Pif1-like helicases in the maintenance of genomic stability
    • Boule JB, Zakian VA. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res 2006; 34:4147-53.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4147-4153
    • Boule, J.B.1    Zakian, V.A.2
  • 38
    • 32244447176 scopus 로고    scopus 로고
    • The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae
    • Mohanty BK, Bairwa NK, Bastia D. The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2006; 103:897-902.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 897-902
    • Mohanty, B.K.1    Bairwa, N.K.2    Bastia, D.3
  • 39
    • 34948812991 scopus 로고    scopus 로고
    • Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase
    • Hodgson B, Calzada A, Labib K. Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 2007; 18:3894-902.
    • (2007) Mol Biol Cell , vol.18 , pp. 3894-3902
    • Hodgson, B.1    Calzada, A.2    Labib, K.3
  • 40
    • 0035823010 scopus 로고    scopus 로고
    • TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery
    • Ghavidel A, Schultz MC. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 2001; 106:575-84.
    • (2001) Cell , vol.106 , pp. 575-584
    • Ghavidel, A.1    Schultz, M.C.2
  • 41
    • 0036093940 scopus 로고    scopus 로고
    • CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells
    • Johnston IM, Allison SJ, Morton JP, Schramm L, Scott PH, White RJ. CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells. Mol Cell Biol 2002; 22:3757-68.
    • (2002) Mol Cell Biol , vol.22 , pp. 3757-3768
    • Johnston, I.M.1    Allison, S.J.2    Morton, J.P.3    Schramm, L.4    Scott, P.H.5    White, R.J.6
  • 42
    • 0038521256 scopus 로고    scopus 로고
    • p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB
    • Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ, et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J 2003; 22:2810-20.
    • (2003) EMBO J , vol.22 , pp. 2810-2820
    • Crighton, D.1    Woiwode, A.2    Zhang, C.3    Mandavia, N.4    Morton, J.P.5    Warnock, L.J.6
  • 43
    • 54949143524 scopus 로고    scopus 로고
    • Maf1, a new player in the regulation of human RNA polymerase III transcription
    • Reina JH, Azzouz TN, Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One 2006; 1:e134.
    • (2006) PLoS One , vol.1
    • Reina, J.H.1    Azzouz, T.N.2    Hernandez, N.3
  • 44
    • 21244448288 scopus 로고    scopus 로고
    • Checkpoint responses to replication fork barriers
    • Lambert S, Carr AM. Checkpoint responses to replication fork barriers. Biochimie 2005; 87:591-602.
    • (2005) Biochimie , vol.87 , pp. 591-602
    • Lambert, S.1    Carr, A.M.2
  • 45
    • 58549092765 scopus 로고    scopus 로고
    • Mechanisms of dealing with DNA damage-induced replication problems
    • Budzowska M, Kanaar R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 2009; 53:17-31.
    • (2009) Cell Biochem Biophys , vol.53 , pp. 17-31
    • Budzowska, M.1    Kanaar, R.2
  • 47
    • 0030885666 scopus 로고    scopus 로고
    • CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
    • Toczyski DP, Galgoczy DJ, Hartwell LH. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 1997; 90:1097-106.
    • (1997) Cell , vol.90 , pp. 1097-1106
    • Toczyski, D.P.1    Galgoczy, D.J.2    Hartwell, L.H.3
  • 48
    • 0037477418 scopus 로고    scopus 로고
    • DNA damage regulation of the RNA components of the translational apparatus: New biology and mechanisms
    • Schultz MC. DNA damage regulation of the RNA components of the translational apparatus: new biology and mechanisms. IUBMB Life 2003; 55:243-7.
    • (2003) IUBMB Life , vol.55 , pp. 243-247
    • Schultz, M.C.1
  • 49
    • 0035162698 scopus 로고    scopus 로고
    • Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p
    • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 2001; 12:2987- 3003.
    • (2001) Mol Biol Cell , vol.12 , pp. 2987-3003
    • Gasch, A.P.1    Huang, M.2    Metzner, S.3    Botstein, D.4    Elledge, S.J.5    Brown, P.O.6
  • 52
    • 0032527776 scopus 로고    scopus 로고
    • Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p
    • Paciotti V, Lucchini G, Plevani P, Longhese MP. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. EMBO J 1998; 17:4199-209.
    • (1998) EMBO J , vol.17 , pp. 4199-4209
    • Paciotti, V.1    Lucchini, G.2    Plevani, P.3    Longhese, M.P.4
  • 53
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha RS, Kleckner N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 2002; 297:602-6.
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 54
    • 33644863310 scopus 로고    scopus 로고
    • Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants
    • Kats ES, Albuquerque CP, Zhou H, Kolodner RD. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc Natl Acad Sci USA 2006; 103:3710-5.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 3710-3715
    • Kats, E.S.1    Albuquerque, C.P.2    Zhou, H.3    Kolodner, R.D.4
  • 55
    • 61349155582 scopus 로고    scopus 로고
    • Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro
    • Cabart P, Lee J, Willis IM. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J Biol Chem 2008; 283:36108-17.
    • (2008) J Biol Chem , vol.283 , pp. 36108-36117
    • Cabart, P.1    Lee, J.2    Willis, I.M.3
  • 56
    • 0030813561 scopus 로고    scopus 로고
    • Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae
    • Huang M, Elledge SJ. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:6105-13.
    • (1997) Mol Cell Biol , vol.17 , pp. 6105-6113
    • Huang, M.1    Elledge, S.J.2
  • 57
    • 42049094866 scopus 로고    scopus 로고
    • Ino80 chromatin remodeling complex promotes recovery of stalled replication forks
    • Shimada K, Oma Y, Schleker T, Kugou K, Ohta K, Harata M, et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr Biol 2008; 18:566-75.
    • (2008) Curr Biol , vol.18 , pp. 566-575
    • Shimada, K.1    Oma, Y.2    Schleker, T.3    Kugou, K.4    Ohta, K.5    Harata, M.6
  • 58
    • 34547571752 scopus 로고    scopus 로고
    • Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses
    • Morrison AJ, Kim JA, Person MD, Highland J, Xiao J, Wehr TS, et al. Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell 2007; 130:499-511.
    • (2007) Cell , vol.130 , pp. 499-511
    • Morrison, A.J.1    Kim, J.A.2    Person, M.D.3    Highland, J.4    Xiao, J.5    Wehr, T.S.6
  • 59
    • 0038730929 scopus 로고    scopus 로고
    • A central role for DNA replication forks in checkpoint activation and response
    • Tercero JA, Longhese MP, Diffley JF. A central role for DNA replication forks in checkpoint activation and response. Mol Cell 2003; 11:1323-36.
    • (2003) Mol Cell , vol.11 , pp. 1323-1336
    • Tercero, J.A.1    Longhese, M.P.2    Diffley, J.F.3
  • 60
    • 34249935010 scopus 로고    scopus 로고
    • Maintenance of fork integrity at damaged DNA and natural pause sites
    • Tourriere H, Pasero P. Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst) 2007; 6:900-13.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 900-913
    • Tourriere, H.1    Pasero, P.2
  • 63
    • 33746753342 scopus 로고    scopus 로고
    • Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast
    • Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 2006; 126:611-25.
    • (2006) Cell , vol.126 , pp. 611-625
    • Parsons, A.B.1    Lopez, A.2    Givoni, I.E.3    Williams, D.E.4    Gray, C.A.5    Porter, J.6
  • 64
    • 0347627361 scopus 로고    scopus 로고
    • RNA polymerase III transcription-a battleground for tumour suppressors and oncogenes
    • White RJ. RNA polymerase III transcription-a battleground for tumour suppressors and oncogenes. Eur J Cancer 2004; 40:21-7.
    • (2004) Eur J Cancer , vol.40 , pp. 21-27
    • White, R.J.1
  • 65
    • 50349091830 scopus 로고    scopus 로고
    • Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation
    • Johnson SA, Dubeau L, Johnson DL. Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J Biol Chem 2008; 283:19184-91.
    • (2008) J Biol Chem , vol.283 , pp. 19184-19191
    • Johnson, S.A.1    Dubeau, L.2    Johnson, D.L.3
  • 66
    • 41349089950 scopus 로고    scopus 로고
    • Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation
    • Marshall L, Kenneth NS, White RJ. Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 2008; 133:78-89.
    • (2008) Cell , vol.133 , pp. 78-89
    • Marshall, L.1    Kenneth, N.S.2    White, R.J.3
  • 69
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008; 319:1352-5.
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 70
    • 0032100624 scopus 로고    scopus 로고
    • p53 is a general repressor of RNA polymerase III transcription
    • Cairns CA, White RJ. p53 is a general repressor of RNA polymerase III transcription. EMBO J 1998; 17:3112-23.
    • (1998) EMBO J , vol.17 , pp. 3112-3123
    • Cairns, C.A.1    White, R.J.2
  • 71
    • 0029910713 scopus 로고    scopus 로고
    • p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner
    • Chesnokov I, Chu WM, Botchan MR, Schmid CW. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 1996; 16:7084-8.
    • (1996) Mol Cell Biol , vol.16 , pp. 7084-7088
    • Chesnokov, I.1    Chu, W.M.2    Botchan, M.R.3    Schmid, C.W.4
  • 72
    • 0035394633 scopus 로고    scopus 로고
    • Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human
    • Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90.
    • (2001) Nucleic Acids Res , vol.29 , pp. 2675-2690
    • Huang, Y.1    Maraia, R.J.2
  • 74
    • 34247553679 scopus 로고    scopus 로고
    • Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases
    • Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol Cell 2007; 26:367-79.
    • (2007) Mol Cell , vol.26 , pp. 367-379
    • Johnson, S.S.1    Zhang, C.2    Fromm, J.3    Willis, I.M.4    Johnson, D.L.5
  • 75
    • 63249088044 scopus 로고    scopus 로고
    • Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control
    • Demidova AR, Aau MY, Zhuang L, Yu Q. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control. J Biol Chem 2009; 284:4132-9.
    • (2009) J Biol Chem , vol.284 , pp. 4132-4139
    • Demidova, A.R.1    Aau, M.Y.2    Zhuang, L.3    Yu, Q.4
  • 76
    • 0036778597 scopus 로고    scopus 로고
    • The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors
    • Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 2002; 35:97-112.
    • (2002) Genes Chromosomes Cancer , vol.35 , pp. 97-112
    • Kolomietz, E.1    Meyn, M.S.2    Pandita, A.3    Squire, J.A.4
  • 77
    • 77951943463 scopus 로고    scopus 로고
    • Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors
    • Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ, et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 2010; 17:620-8.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 620-628
    • Oler, A.J.1    Alla, R.K.2    Roberts, D.N.3    Wong, A.4    Hollenhorst, P.C.5    Chandler, K.J.6
  • 78
    • 0029041279 scopus 로고
    • Activation of expression of multiple subfamilies of human Alu elements by adenovirus type 5 and herpes simplex virus type 1
    • Panning B, Smiley JR. Activation of expression of multiple subfamilies of human Alu elements by adenovirus type 5 and herpes simplex virus type 1. J Mol Biol 1995; 248:513-24.
    • (1995) J Mol Biol , vol.248 , pp. 513-524
    • Panning, B.1    Smiley, J.R.2
  • 79
    • 12544259098 scopus 로고    scopus 로고
    • Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue
    • Tang RB, Wang HY, Lu HY, Xiong J, Li HH, Qiu XH, et al. Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue. Mol Carcinog 2005; 42:93-6.
    • (2005) Mol Carcinog , vol.42 , pp. 93-96
    • Tang, R.B.1    Wang, H.Y.2    Lu, H.Y.3    Xiong, J.4    Li, H.H.5    Qiu, X.H.6
  • 80
    • 44349119351 scopus 로고    scopus 로고
    • Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study
    • Tsantoulis PK, Kotsinas A, Sfikakis PP, Evangelou K, Sideridou M, Levy B, et al. Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 2008; 27:3256-64.
    • (2008) Oncogene , vol.27 , pp. 3256-3264
    • Tsantoulis, P.K.1    Kotsinas, A.2    Sfikakis, P.P.3    Evangelou, K.4    Sideridou, M.5    Levy, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.