-
1
-
-
58149191272
-
Putz J. TRNAdb 2009: Compilation of tRNA sequences and tRNA genes
-
PMID:18957446
-
Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009; 37:D159-62; PMID:18957446; http://dx.doi.org/10.1093/nar/gkn772
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Juhling, F.1
Morl, M.2
Hartmann, R.K.3
Sprinzl, M.4
Stadler, P.F.5
-
2
-
-
84875692043
-
MODOMICS: A database of RNA modification pathways– 2013 update
-
PMID:23118484
-
Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways– 2013 update. Nucleic Acids Res 2013; 41: D262-7; PMID:23118484; http://dx.doi.org/10.1093/nar/gks1007
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D262-D267
-
-
Machnicka, M.A.1
Milanowska, K.2
Osman Oglou, O.3
Purta, E.4
Kurkowska, M.5
Olchowik, A.6
Januszewski, W.7
Kalinowski, S.8
Dunin-Horkawicz, S.9
Rother, K.M.10
-
3
-
-
84871436566
-
Transfer RNA modifications: Nature’s combinatorial chemistry playground
-
PMID:23139145
-
Jackman JE, Alfonzo JD. Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Reviews RNA 2013; 4:35-48; PMID:23139145; http://dx.doi.org/10.1002/wrna.1144
-
(2013)
Wiley Interdiscip Reviews RNA
, vol.4
, pp. 35-48
-
-
Jackman, J.E.1
Alfonzo, J.D.2
-
4
-
-
0036792830
-
TRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domainspecific features
-
PMID:12403461
-
Marck C, Grosjean H. tRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domainspecific features. RNA 2002; 8:1189-232; PMID:12403461; http://dx.doi.org/10.1017/S1355838202022021
-
(2002)
RNA
, vol.8
, pp. 1189-1232
-
-
Marck, C.1
Grosjean, H.2
-
6
-
-
84905653451
-
Methylated nucleosides in tRNA and tRNA methyltransferases
-
PMID:24904644
-
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144; PMID:24904644; http://dx.doi.org/10.3389/fgene. 2014.00144
-
(2014)
Front Genet
, vol.5
-
-
Hori, H.1
-
7
-
-
77956276464
-
TRNA biology charges to the front
-
PMID:20810645
-
Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev 2010; 24:1832-60; PMID:20810645; http://dx.doi.org/10.1101/gad. 1956510
-
(2010)
Genes Dev
, vol.24
, pp. 1832-1860
-
-
Phizicky, E.M.1
Hopper, A.K.2
-
8
-
-
41649102484
-
Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast
-
PMID:18314501
-
Gustavsson M, Ronne H. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast. RNA 2008; 14:666-74; PMID:18314501; http://dx.doi.org/10.1261/rna. 966208
-
(2008)
RNA
, vol.14
, pp. 666-674
-
-
Gustavsson, M.1
Ronne, H.2
-
9
-
-
0035863196
-
A primordial tRNA modification required for the evolution of life?
-
PMID:11226173
-
Bjork GR, Jacobsson K, Nilsson K, Johansson MJ, Bystrom AS, Persson OP. A primordial tRNA modification required for the evolution of life? Embo J 2001; 20:231-9; PMID:11226173; http://dx.doi.org/10.1093/emboj/20.1.231
-
(2001)
Embo J
, vol.20
, pp. 231-239
-
-
Bjork, G.R.1
Jacobsson, K.2
Nilsson, K.3
Johansson, M.J.4
Bystrom, A.S.5
Persson, O.P.6
-
10
-
-
0020443367
-
The structural gene (TrmD) for the tRNA(m1G)methyltransferase is part of a four polypeptide operon in Escherichia coli K-12
-
PMID:6298574
-
Bystrom AS, Bjork GR. The structural gene (trmD) for the tRNA(m1G)methyltransferase is part of a four polypeptide operon in Escherichia coli K-12. Mol Gen Genet 1982; 188:447-54; PMID:6298574; http://dx.doi.org/10.1007/BF00330047
-
(1982)
Mol Gen Genet
, vol.188
, pp. 447-454
-
-
Bystrom, A.S.1
Bjork, G.R.2
-
11
-
-
33751239437
-
The substrate specificity of tRNA (M1G37) methyltransferase (TrmD) from Aquifex aeolicus
-
PMID:17121543
-
Takeda H, Toyooka T, Ikeuchi Y, Yokobori S, Okadome K, Takano F, Oshima T, Suzuki T, Endo Y, Hori H. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus. Genes Cells 2006; 11:1353-65; PMID:17121543; http://dx.doi.org/10.1111/j.1365-2443.2006.01022.x
-
(2006)
Genes Cells
, vol.11
, pp. 1353-1365
-
-
Takeda, H.1
Toyooka, T.2
Ikeuchi, Y.3
Yokobori, S.4
Okadome, K.5
Takano, F.6
Oshima, T.7
Suzuki, T.8
Endo, Y.9
Hori, H.10
-
12
-
-
34748874591
-
Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases
-
PMID:17868690
-
Christian T, Hou YM. Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases. J Mol Biol 2007; 373:623-32; PMID:17868690; http://dx.doi.org/10.1016/j.jmb. 2007.08.010
-
(2007)
J Mol Biol
, vol.373
, pp. 623-632
-
-
Christian, T.1
Hou, Y.M.2
-
13
-
-
51349095086
-
Crystal structure of archaeal tRNA(M(1) G37)methyltransferase aTrm5
-
PMID:18384044
-
Goto-Ito S, Ito T, Ishii R, Muto Y, Bessho Y, Yokoyama S. Crystal structure of archaeal tRNA(m(1) G37)methyltransferase aTrm5. Proteins 2008; 72:1274-89; PMID:18384044; http://dx.doi.org/10.1002/prot.22019
-
(2008)
Proteins
, vol.72
, pp. 1274-1289
-
-
Goto-Ito, S.1
Ito, T.2
Ishii, R.3
Muto, Y.4
Bessho, Y.5
Yokoyama, S.6
-
14
-
-
0037526102
-
Crystal structure of tRNA(M1G37)methyltransferase: Insights into tRNA recognition
-
PMID:12773376
-
Ahn HJ, Kim HW, Yoon HJ, Lee BI, Suh SW, Yang JK. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. EMBO J 2003; 22:2593-603; PMID:12773376; http://dx.doi.org/10.1093/emboj/cdg269
-
(2003)
EMBO J
, vol.22
, pp. 2593-2603
-
-
Ahn, H.J.1
Kim, H.W.2
Yoon, H.J.3
Lee, B.I.4
Suh, S.W.5
Yang, J.K.6
-
15
-
-
0142216637
-
Insights into catalysis by a knotted TrmD tRNA methyltransferase
-
PMID:14583191
-
Elkins PA, Watts JM, Zalacain M, van Thiel A, Vitazka PR, Redlak M, Andraos-Selim C, Rastinejad F, Holmes WM. Insights into catalysis by a knotted TrmD tRNA methyltransferase. J Mol Biol 2003; 333:931-49; PMID:14583191; http://dx.doi.org/10.1016/j.jmb.2003.09.011
-
(2003)
J Mol Biol
, vol.333
, pp. 931-949
-
-
Elkins, P.A.1
Watts, J.M.2
Zalacain, M.3
Van Thiel, A.4
Vitazka, P.R.5
Redlak, M.6
Raos-Selim, C.7
Rastinejad, F.8
Holmes, W.M.9
-
16
-
-
0141592367
-
Crystal structure of tRNA (M1G37) methyltransferase from Aquifex aeolicus at 2.6 A resolution: A novel methyltransferase fold
-
PMID:14517984
-
Liu J, Wang W, Shin DH, Yokota H, Kim R, Kim SH. Crystal structure of tRNA (m1G37) methyltransferase from Aquifex aeolicus at 2.6 A resolution: a novel methyltransferase fold. Proteins 2003; 53:326-8; PMID:14517984; http://dx.doi.org/10.1002/prot.10479
-
(2003)
Proteins
, vol.53
, pp. 326-328
-
-
Liu, J.1
Wang, W.2
Shin, D.H.3
Yokota, H.4
Kim, R.5
Kim, S.H.6
-
17
-
-
79958053947
-
The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA
-
PMID:21632824
-
Whipple JM, Lane EA, Chernyakov I, D’Silva S, Phizicky EM. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev 2011; 25:1173-84; PMID:21632824; http://dx.doi.org/10.1101/gad.2050711
-
(2011)
Genes Dev
, vol.25
, pp. 1173-1184
-
-
Whipple, J.M.1
Lane, E.A.2
Chernyakov, I.3
D’Silva, S.4
Phizicky, E.M.5
-
18
-
-
84866622511
-
The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications
-
PMID:22895820
-
Dewe JM, Whipple JM, Chernyakov I, Jaramillo LN, Phizicky EM. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA 2012; 18:1886-96; PMID:22895820; http://dx.doi.org/10.1261/rna. 033654.112
-
(2012)
RNA
, vol.18
, pp. 1886-1896
-
-
Dewe, J.M.1
Whipple, J.M.2
Chernyakov, I.3
Jaramillo, L.N.4
Phizicky, E.M.5
-
19
-
-
44149119097
-
Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5’-3’ exonucleases Rat1 and Xrn1
-
PMID:18443146
-
Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5’-3’ exonucleases Rat1 and Xrn1. Genes Dev 2008; 22:1369-80; PMID:18443146; http://dx.doi.org/10.1101/gad. 1654308
-
(2008)
Genes Dev
, vol.22
, pp. 1369-1380
-
-
Chernyakov, I.1
Whipple, J.M.2
Kotelawala, L.3
Grayhack, E.J.4
Phizicky, E.M.5
-
20
-
-
29544450711
-
Rapid tRNA decay can result from lack of nonessential modifications
-
PMID:16387656
-
Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 2006; 21:87-96; PMID:16387656; http://dx.doi.org/10.1016/j.molcel.2005.10.036
-
(2006)
Mol Cell
, vol.21
, pp. 87-96
-
-
Alexandrov, A.1
Chernyakov, I.2
Gu, W.3
Hiley, S.L.4
Hughes, T.R.5
Grayhack, E.J.6
Phizicky, E.M.7
-
21
-
-
0035801515
-
Improvement of reading frame maintenance is a common function for several tRNA modifications
-
PMID:11532950
-
Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR. Improvement of reading frame maintenance is a common function for several tRNA modifications. Embo J 2001; 20:4863-73; PMID:11532950; http://dx.doi.org/10.1093/emboj/20.17.4863
-
(2001)
Embo J
, vol.20
, pp. 4863-4873
-
-
Urbonavicius, J.1
Qian, Q.2
Durand, J.M.3
Hagervall, T.G.4
Bjork, G.R.5
-
22
-
-
77953656943
-
TRNA stabilization by modified nucleotides
-
PMID:20459084
-
Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry 2010; 49:4934-44; PMID:20459084; http://dx.doi.org/10.1021/bi100408z
-
(2010)
Biochemistry
, vol.49
, pp. 4934-4944
-
-
Motorin, Y.1
Helm, M.2
-
23
-
-
35948955064
-
A methyl group controls conformational equilibrium in human mitochondrial tRNA(Lys)
-
PMID:17941640
-
Voigts-Hoffmann F, Hengesbach M, Kobitski AY, van Aerschot A, Herdewijn P, Nienhaus GU, et al. A methyl group controls conformational equilibrium in human mitochondrial tRNA(Lys). J Am Chem Soc 2007; 129:13382-3; PMID:17941640; http://dx.doi.org/10.1021/ja075520C
-
(2007)
J am Chem Soc
, vol.129
, pp. 13382-13383
-
-
Voigts-Hoffmann, F.1
Hengesbach, M.2
Kobitski, A.Y.3
Van Aerschot, A.4
Herdewijn, P.5
Nienhaus, G.U.6
-
24
-
-
0038374971
-
Many paths to methyltransfer: A chronicle of convergence
-
PMID:12826405
-
Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: A chronicle of convergence. Trends Bioch Sci 2003; 28:329-35; PMID:12826405; http://dx.doi.org/10.1016/S0968-0004(03)00090-2
-
(2003)
Trends Bioch Sci
, vol.28
, pp. 329-335
-
-
Schubert, H.L.1
Blumenthal, R.M.2
Cheng, X.3
-
25
-
-
0036132209
-
SPOUT: A class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases
-
PMID:11763972
-
Anantharaman V, Koonin EV, Aravind L. SPOUT: A class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol 2002; 4:71-5; PMID:11763972
-
(2002)
J Mol Microbiol Biotechnol
, vol.4
, pp. 71-75
-
-
Anantharaman, V.1
Koonin, E.V.2
Aravind, L.3
-
26
-
-
34648820435
-
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases
-
PMID:17338813
-
Tkaczuk KL, Dunin-Horkawicz S, Purta E, Bujnicki JM. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 2007; 8:73; PMID:17338813; http://dx. doi.org/10.1186/1471-2105-8-73
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Tkaczuk, K.L.1
Dunin-Horkawicz, S.2
Purta, E.3
Bujnicki, J.M.4
-
27
-
-
84906242492
-
Discovery of the beta-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs
-
PMID:25063302
-
Kimura S, Miyauchi K, Ikeuchi Y, Thiaville PC, Crecy-Lagard V, Suzuki T. Discovery of the beta-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs. Nucleic Acids Res 2014; 42:9350-65; PMID:25063302; http://dx.doi.org/10.1093/nar/gku618
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 9350-9365
-
-
Kimura, S.1
Miyauchi, K.2
Ikeuchi, Y.3
Thiaville, P.C.4
Crecy-Lagard, V.5
Suzuki, T.6
-
28
-
-
84891757846
-
Crystal structure of tRNA m1G9 methyltransferase Trm10: Insight into the catalytic mechanism and recognition of tRNA substrate
-
PMID:24081582
-
Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, et al. Crystal structure of tRNA m1G9 methyltransferase Trm10: Insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res 2014; 42:509-25; PMID:24081582; http://dx.doi.org/10.1093/nar/gkt869
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 509-525
-
-
Shao, Z.1
Yan, W.2
Peng, J.3
Zuo, X.4
Zou, Y.5
Li, F.6
Gong, D.7
Ma, R.8
Wu, J.9
Shi, Y.10
-
29
-
-
0642371097
-
Characterization of the cofactor-binding site in the SPOUT-fold methyltransferases by computational docking of S-adenosylmethionine to three crystal structures
-
PMID:12689347
-
Kurowski MA, Sasin JM, Feder M, Debski J, Bujnicki JM. Characterization of the cofactor-binding site in the SPOUT-fold methyltransferases by computational docking of S-adenosylmethionine to three crystal structures. BMC Bioinformatics 2003; 4:9; PMID:12689347; http://dx.doi.org/10.1186/1471-2105-4-9
-
(2003)
BMC Bioinformatics
, vol.4
-
-
Kurowski, M.A.1
Sasin, J.M.2
Feder, M.3
Debski, J.4
Bujnicki, J.M.5
-
30
-
-
71549158173
-
Stereochemical mechanisms of tRNA methyltransferases
-
PMID:19944101
-
Hou YM, Perona JJ. Stereochemical mechanisms of tRNA methyltransferases. FEBS Lett 2010; 584:278-86; PMID:19944101; http://dx.doi.org/10.1016/j. febslet.2009.11.075
-
(2010)
FEBS Lett
, vol.584
, pp. 278-286
-
-
Hou, Y.M.1
Perona, J.J.2
-
31
-
-
44349185734
-
Structure of a TrmA-RNA complex: A consensus RNA fold contributes to substrate selectivity and catalysis in m5U methyltransferases
-
PMID:18451029
-
Alian A, Lee TT, Griner SL, Stroud RM, Finer-Moore J. Structure of a TrmA-RNA complex: A consensus RNA fold contributes to substrate selectivity and catalysis in m5U methyltransferases. Proc Natl Acad Sci U S A 2008; 105:6876-81; PMID:18451029; http://dx.doi.org/10.1073/pnas.0802247105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 6876-6881
-
-
Alian, A.1
Lee, T.T.2
Griner, S.L.3
Stroud, R.M.4
Finer-Moore, J.5
-
32
-
-
70349813956
-
Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation
-
PMID:19749755
-
Goto-Ito S, Ito T, Kuratani M, Bessho Y, Yokoyama S. Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Nat Struct Mol Biol 2009; 16:1109-15; PMID:19749755; http://dx.doi.org/10.1038/nsmb.1653
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 1109-1115
-
-
Goto-Ito, S.1
Ito, T.2
Kuratani, M.3
Bessho, Y.4
Yokoyama, S.5
-
33
-
-
80054714992
-
Insights into folate/FAD-dependent tRNA methyltransferase mechanism: Role of two highly conserved cysteines in catalysis
-
PMID:21846722
-
Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. J Biol Chem 2011; 286:36268-80; PMID:21846722; http://dx.doi.org/10.1074/jbc. M111.256966
-
(2011)
J Biol Chem
, vol.286
, pp. 36268-36280
-
-
Hamdane, D.1
Argentini, M.2
Cornu, D.3
Myllykallio, H.4
Skouloubris, S.5
Hui-Bon-Hoa, G.6
Golinelli-Pimpaneau, B.7
-
34
-
-
79958787896
-
A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis
-
PMID:21561081
-
Hamdane D, Guerineau V, Un S, Golinelli-Pimpaneau B. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis. Biochemistry 2011; 50:5208-19; PMID:21561081; http://dx.doi.org/10.1021/bi1019463
-
(2011)
Biochemistry
, vol.50
, pp. 5208-5219
-
-
Hamdane, D.1
Guerineau, V.2
Un, S.3
Golinelli-Pimpaneau, B.4
-
35
-
-
22844445708
-
Identification of a novel gene encoding a flavin-dependent tRNA:M5U methyltransferase in bacteria–evolutionary implications
-
PMID:16027442
-
Urbonavicius J, Skouloubris S, Myllykallio H, Grosjean H. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria–evolutionary implications. Nucleic Acids Res 2005; 33:3955-64; PMID:16027442; http://dx.doi.org/10.1093/nar/gki703
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 3955-3964
-
-
Urbonavicius, J.1
Skouloubris, S.2
Myllykallio, H.3
Grosjean, H.4
-
36
-
-
0023667711
-
Catalytic mechanism and inhibition of tRNA (Uracil-5-)methyltransferase: Evidence for covalent catalysis
-
PMID:3327525
-
Santi DV, Hardy LW. Catalytic mechanism and inhibition of tRNA (uracil-5-)methyltransferase: Evidence for covalent catalysis. Biochemistry 1987; 26:8599-606; PMID:3327525; http://dx.doi.org/10.1021/bi00400a016
-
(1987)
Biochemistry
, vol.26
, pp. 8599-8606
-
-
Santi, D.V.1
Hardy, L.W.2
-
37
-
-
0025942238
-
Identification of the catalytic nucleophile of tRNA (M5U54)methyltransferase
-
PMID:1911760
-
Kealey JT, Santi DV. Identification of the catalytic nucleophile of tRNA (m5U54)methyltransferase. Biochemistry 1991; 30:9724-8; PMID:1911760; http://dx.doi.org/10.1021/bi00104a022
-
(1991)
Biochemistry
, vol.30
, pp. 9724-9728
-
-
Kealey, J.T.1
Santi, D.V.2
-
38
-
-
0028650333
-
Enzymatic mechanism of tRNA (M5U54)methyltransferase
-
PMID:7748948
-
Kealey JT, Gu X, Santi DV. Enzymatic mechanism of tRNA (m5U54)methyltransferase. Biochimie 1994; 76:1133-42; PMID:7748948; http://dx.doi.org/10.1016/0300-9084(94)90042-6
-
(1994)
Biochimie
, vol.76
, pp. 1133-1142
-
-
Kealey, J.T.1
Gu, X.2
Santi, D.V.3
-
39
-
-
2342643512
-
Sequence-structure-function studies of tRNA:M5C methyltransferase Trm4p and its relationship to DNA:M5C and RNA:M5U methyltransferases
-
PMID:15121902
-
Bujnicki JM, Feder M, Ayres CL, Redman KL. Sequence-structure-function studies of tRNA:M5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:M5U methyltransferases. Nucleic Acids Res 2004; 32:2453-63; PMID:15121902; http://dx.doi.org/10.1093/nar/gkh564
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 2453-2463
-
-
Bujnicki, J.M.1
Feder, M.2
Ayres, C.L.3
Redman, K.L.4
-
40
-
-
0037125961
-
RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine
-
PMID:12220187
-
King MY, Redman KL. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. Biochemistry 2002; 41:11218-25; PMID:12220187; http://dx.doi.org/10.1021/bi026055q
-
(2002)
Biochemistry
, vol.41
, pp. 11218-11225
-
-
King, M.Y.1
Redman, K.L.2
-
41
-
-
84883203343
-
Conservation of structure and mechanism by Trm5 enzymes
-
PMID:23887145
-
Christian T, Gamper H, Hou YM. Conservation of structure and mechanism by Trm5 enzymes. RNA 2013; 19:1192-9; PMID:23887145; http://dx.doi.org/10.1261/rna.039503.113
-
(2013)
RNA
, vol.19
, pp. 1192-1199
-
-
Christian, T.1
Gamper, H.2
Hou, Y.M.3
-
42
-
-
78649649697
-
Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5
-
PMID:20980671
-
Christian T, Lahoud G, Liu C, Hoffmann K, Perona JJ, Hou YM. Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5. RNA 2010; 16:2484-92; PMID:20980671; http://dx.doi.org/10.1261/rna.2376210
-
(2010)
RNA
, vol.16
, pp. 2484-2492
-
-
Christian, T.1
Lahoud, G.2
Liu, C.3
Hoffmann, K.4
Perona, J.J.5
Hou, Y.M.6
-
43
-
-
1342307286
-
A primordial RNA modification enzyme: The case of tRNA (m1A) methyltransferase
-
PMID:14739239
-
Roovers M, Wouters J, Bujnicki JM, Tricot C, Stalon V, Grosjean H, Droogmans L. A primordial RNA modification enzyme: The case of tRNA (m1A) methyltransferase. Nucleic Acids Res 2004; 32:465-76; PMID:14739239; http://dx.doi.org/10.1093/nar/gkh191
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 465-476
-
-
Roovers, M.1
Wouters, J.2
Bujnicki, J.M.3
Tricot, C.4
Stalon, V.5
Grosjean, H.6
Droogmans, L.7
-
44
-
-
83355164488
-
Structural comparison of tRNA m(1)A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions
-
PMID:22168821
-
Guelorget A, Barraud P, Tisne C, Golinelli-Pimpaneau B. Structural comparison of tRNA m(1)A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions. BMC Struct Biol 2011; 11:48; PMID:22168821; http://dx.doi.org/10.1186/1472-6807-11-48
-
(2011)
BMC Struct Biol
, vol.11
-
-
Guelorget, A.1
Barraud, P.2
Tisne, C.3
Golinelli-Pimpaneau, B.4
-
45
-
-
40049103631
-
Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA
-
PMID:18262540
-
Barraud P, Golinelli-Pimpaneau B, Atmanene C, Sanglier S, Van Dorsselaer A, Droogmans L, Dardel F, Tisne C. Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA. J Mol Biol 2008; 377:535-50; PMID:18262540; http://dx.doi.org/10.1016/j.jmb.2008.01.041
-
(2008)
J Mol Biol
, vol.377
, pp. 535-550
-
-
Barraud, P.1
Golinelli-Pimpaneau, B.2
Atmanene, C.3
Sanglier, S.4
Van Dorsselaer, A.5
Droogmans, L.6
Dardel, F.7
Tisne, C.8
-
46
-
-
85027918785
-
Crystal structure of tRNA m(1)A58 methyltransferase TrmI from Aquifex aeolicus in complex with S-adenosyl-L-methionine
-
PMID:24894648
-
Kuratani M, Yanagisawa T, Ishii R, Matsuno M, Si SY, Katsura K, Ushikoshi-Nakayama R, Shibata R, Shirouzu M, Bessho Y, et al. Crystal structure of tRNA m(1)A58 methyltransferase TrmI from Aquifex aeolicus in complex with S-adenosyl-L-methionine. J Struct Funct Genomics 2014; 15:173-80; PMID:24894648; http://dx.doi.org/10.1007/s10969-014-9183-0
-
(2014)
J Struct Funct Genomics
, vol.15
, pp. 173-180
-
-
Kuratani, M.1
Yanagisawa, T.2
Ishii, R.3
Matsuno, M.4
Si, S.Y.5
Katsura, K.6
Ushikoshi-Nakayama, R.7
Shibata, R.8
Shirouzu, M.9
Bessho, Y.10
-
47
-
-
84857387516
-
The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA
-
PMID:22274953
-
Chatterjee K, Blaby IK, Thiaville PC, Majumder M, Grosjean H, Yuan YA, Gupta R, deCrecy-Lagard V. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. RNA 2012; 18:421-33; PMID:22274953; http://dx.doi.org/10.1261/rna.030841.111
-
(2012)
RNA
, vol.18
, pp. 421-433
-
-
Chatterjee, K.1
Blaby, I.K.2
Thiaville, P.C.3
Majumder, M.4
Grosjean, H.5
Yuan, Y.A.6
Gupta, R.7
Decrecy-Lagard, V.8
-
48
-
-
84857381126
-
Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs
-
PMID:22274954
-
Wurm JP, Griese M, Bahr U, Held M, Heckel A, Karas M, Soppa J, Wöhnert J. Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. RNA 2012; 18:412-20; PMID:22274954; http://dx.doi.org/10.1261/rna. 028498.111
-
(2012)
RNA
, vol.18
, pp. 412-420
-
-
Wurm, J.P.1
Griese, M.2
Bahr, U.3
Held, M.4
Heckel, A.5
Karas, M.6
Soppa, J.7
Wöhnert, J.8
-
49
-
-
33645862584
-
Crystal structure of Bacillus subtilis TrmB, the tRNA (M7G46) methyltransferase
-
PMID:16600901
-
Zegers I, Gigot D, van Vliet F, Tricot C, Aymerich S, Bujnicki JM, Kosinski J, Droogmans L. Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Nucleic Acids Res 2006; 34:1925-34; PMID:16600901; http://dx.doi.org/10.1093/nar/gkl116
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 1925-1934
-
-
Zegers, I.1
Gigot, D.2
Van Vliet, F.3
Tricot, C.4
Aymerich, S.5
Bujnicki, J.M.6
Kosinski, J.7
Droogmans, L.8
-
50
-
-
37549067728
-
Structure of the yeast tRNA m7G methylation complex
-
PMID:18184583
-
Leulliot N, Chaillet M, Durand D, Ulryck N, Blondeau K, van Tilbeurgh H. Structure of the yeast tRNA m7G methylation complex. Structure 2008; 16:52-61; PMID:18184583; http://dx.doi.org/10.1016/j.str.2007.10.025
-
(2008)
Structure
, vol.16
, pp. 52-61
-
-
Leulliot, N.1
Chaillet, M.2
Durand, D.3
Ulryck, N.4
Blondeau, K.5
Van Tilbeurgh, H.6
-
51
-
-
17944373789
-
Sequencestructure-function relationships of a tRNA (M7G46) methyltransferase studied by homology modeling and site-directed mutagenesis
-
PMID:15789416
-
Purta E, van Vliet F, Tricot C, De Bie LG, Feder M, Skowronek K, Droogmans L, Bujnicki JM. Sequencestructure-function relationships of a tRNA (m7G46) methyltransferase studied by homology modeling and site-directed mutagenesis. Proteins 2005; 59:482-8; PMID:15789416; http://dx.doi.org/10.1002/prot.20454
-
(2005)
Proteins
, vol.59
, pp. 482-488
-
-
Purta, E.1
Van Vliet, F.2
Tricot, C.3
De Bie, L.G.4
Feder, M.5
Skowronek, K.6
Droogmans, L.7
Bujnicki, J.M.8
-
52
-
-
79956189938
-
A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop
-
PMID:21518804
-
D’Silva S, Haider SJ, Phizicky EM. A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop. RNA 2011; 17:1100-10; PMID:21518804; http://dx.doi.org/10.1261/rna.2652611
-
(2011)
RNA
, vol.17
, pp. 1100-1110
-
-
D’Silva, S.1
Haider, S.J.2
Phizicky, E.M.3
-
53
-
-
79956191573
-
Actinbinding protein ABP140 is a methyltransferase for 3-methylcytidine at position 32 of tRNAs in Saccharomyces cerevisiae
-
PMID:21518805
-
Noma A, Yi S, Katoh T, Takai Y, Suzuki T. Actinbinding protein ABP140 is a methyltransferase for 3-methylcytidine at position 32 of tRNAs in Saccharomyces cerevisiae. RNA 2011; 17:1111-9; PMID:21518805; http://dx.doi.org/10.1261/rna.2653411
-
(2011)
RNA
, vol.17
, pp. 1111-1119
-
-
Noma, A.1
Yi, S.2
Katoh, T.3
Takai, Y.4
Suzuki, T.5
-
54
-
-
18944364447
-
Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA
-
PMID:15899842
-
Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B. Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA. Mol Cell Biol 2005; 25:4359-70; PMID:15899842; http://dx.doi.org/10.1128/MCB.25.11.4359-4370.2005
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4359-4370
-
-
Purushothaman, S.K.1
Bujnicki, J.M.2
Grosjean, H.3
Lapeyre, B.4
-
55
-
-
0032814863
-
Characterisation and enzymatic properties of tRNA(Guanine 26, N (2), N (2))-dimethyltransferase (Trm1p) from Pyrococcus furiosus
-
PMID:10438627
-
Constantinesco F, Motorin Y, Grosjean H. Characterisation and enzymatic properties of tRNA(guanine 26, N (2), N (2))-dimethyltransferase (Trm1p) from Pyrococcus furiosus. J Mol Biol 1999; 291:375-92; PMID:10438627; http://dx.doi.org/10.1006/jmbi.1999.2976
-
(1999)
J Mol Biol
, vol.291
, pp. 375-392
-
-
Constantinesco, F.1
Motorin, Y.2
Grosjean, H.3
-
56
-
-
0028988341
-
Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: Importance of the tRNA architecture
-
PMID:7599276
-
Edqvist J, Straby KB, Grosjean H. Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: Importance of the tRNA architecture. Biochimie 1995; 77:54-61; PMID:7599276; http://dx.doi.org/10.1016/0300-9084(96)88104-1
-
(1995)
Biochimie
, vol.77
, pp. 54-61
-
-
Edqvist, J.1
Straby, K.B.2
Grosjean, H.3
-
57
-
-
0022996130
-
Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae
-
PMID:2426253
-
Ellis SR, Morales MJ, Li JM, Hopper AK, Martin NC. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. J Biol Chem 1986; 261:9703-9; PMID:2426253
-
(1986)
J Biol Chem
, vol.261
, pp. 9703-9709
-
-
Ellis, S.R.1
Morales, M.J.2
Li, J.M.3
Hopper, A.K.4
Martin, N.C.5
-
58
-
-
4344606710
-
N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethioninedependent methyltransferase, conserved in Archaea and Eukaryota
-
PMID:15210688
-
Armengaud J, Urbonavicius J, Fernandez B, Chaussinand G, Bujnicki JM, Grosjean H. N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethioninedependent methyltransferase, conserved in Archaea and Eukaryota. J Biol Chem 2004; 279:37142-52; PMID:15210688; http://dx.doi.org/10.1074/jbc. M403845200
-
(2004)
J Biol Chem
, vol.279
, pp. 37142-37152
-
-
Armengaud, J.1
Urbonavicius, J.2
Fernandez, B.3
Chaussinand, G.4
Bujnicki, J.M.5
Grosjean, H.6
-
59
-
-
68949083484
-
Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA
-
PMID:19491098
-
Awai T, Kimura S, Tomikawa C, Ochi A, Ihsanawati, Bessho Y, Yokoyama S, Ohno S, Nishikawa K, Yokogawa T, et al. Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA. J Biol Chem 2009; 284:20467-78; PMID:19491098; http://dx.doi.org/10.1074/jbc. M109.020024
-
(2009)
J Biol Chem
, vol.284
, pp. 20467-20478
-
-
Awai, T.1
Kimura, S.2
Tomikawa, C.3
Ochi, A.4
Ihsanawatibessho, Y.5
Yokoyama, S.6
Ohno, S.7
Nishikawa, K.8
Yokogawa, T.9
-
60
-
-
80053415582
-
Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure
-
PMID:21844194
-
Awai T, Ochi A, Ihsanawati, Sengoku T, Hirata A, Bessho Y, Yokoyama S, Hori H. Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure. J Biol Chem 2011; 286:35236-46; PMID:21844194; http://dx.doi.org/10.1074/jbc.M111.253641
-
(2011)
J Biol Chem
, vol.286
, pp. 35236-35246
-
-
Awai, T.1
Ochi, A.2
Ihsanawatisengoku, T.3
Hirata, A.4
Bessho, Y.5
Yokoyama, S.6
Hori, H.7
-
61
-
-
53149120960
-
Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii
-
PMID:18789948
-
Ihsanawati, Nishimoto M, Higashijima K, Shirouzu M, Grosjean H, Bessho Y, Yokoyama S. Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii. J Mol Biol 2008; 383:871-84; PMID:18789948; http://dx.doi.org/10.1016/j.jmb.2008.08.068
-
(2008)
J Mol Biol
, vol.383
, pp. 871-884
-
-
Ihsanawatinishimoto, M.1
Higashijima, K.2
Shirouzu, M.3
Grosjean, H.4
Bessho, Y.5
Yokoyama, S.6
-
62
-
-
66449122137
-
The yfiC gene of E. Coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC)
-
PMID:19383770
-
Golovina AY, Sergiev PV, Golovin AV, Serebryakova MV, Demina I, Govorun VM, Dontsova OA. The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC). RNA 2009; 15:1134-41; PMID:19383770; http://dx.doi.org/10.1261/rna.1494409
-
(2009)
RNA
, vol.15
, pp. 1134-1141
-
-
Golovina, A.Y.1
Sergiev, P.V.2
Golovin, A.V.3
Serebryakova, M.V.4
Demina, I.5
Govorun, V.M.6
Dontsova, O.A.7
-
63
-
-
34648840096
-
Comparative RNomics and modomics in Mollicutes: Prediction of gene function and evolutionary implications
-
PMID:17852564
-
de Crecy-Lagard V, Marck C, Brochier-Armanet C, Grosjean H. Comparative RNomics and modomics in Mollicutes: Prediction of gene function and evolutionary implications. IUBMB Life 2007; 59:634-58; PMID:17852564; http://dx.doi.org/10.1080/15216540701604632
-
(2007)
IUBMB Life
, vol.59
, pp. 634-658
-
-
De Crecy-Lagard, V.1
Marck, C.2
Brochier-Armanet, C.3
Grosjean, H.4
-
64
-
-
33845919828
-
Functional categorization of the conserved basic amino acid residues in TrmH (TRNA (Gm18) methyltransferase) enzymes
-
PMID:16963456
-
Watanabe K, Nureki O, Fukai S, Endo Y, Hori H. Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. J Biol Chem 2006; 281:34630-9; PMID:16963456; http://dx.doi.org/10.1074/jbc.M606141200
-
(2006)
J Biol Chem
, vol.281
, pp. 34630-34639
-
-
Watanabe, K.1
Nureki, O.2
Fukai, S.3
Endo, Y.4
Hori, H.5
-
65
-
-
1842607227
-
Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme
-
PMID:15062082
-
Nureki O, Watanabe K, Fukai S, Ishii R, Endo Y, Hori H, Yokoyama S. Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme. Structure 2004; 12:593-602; PMID:15062082; http://dx.doi.org/10.1016/j. str.2004.03.003
-
(2004)
Structure
, vol.12
, pp. 593-602
-
-
Nureki, O.1
Watanabe, K.2
Fukai, S.3
Ishii, R.4
Endo, Y.5
Hori, H.6
Yokoyama, S.7
-
66
-
-
58149191269
-
MODOMICS: A database of RNA modification pathways. 2008 update
-
PMID:18854352
-
Czerwoniec A, Dunin-Horkawicz S, Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Grosjean H, Rother K. MODOMICS: A database of RNA modification pathways. 2008 update. Nucleic Acids Res 2009; 37:D118-21; PMID:18854352; http://dx.doi.org/10.1093/nar/gkn710
-
(2009)
Nucleic Acids Res
, vol.37
, pp. D118-D121
-
-
Czerwoniec, A.1
Dunin-Horkawicz, S.2
Purta, E.3
Kaminska, K.H.4
Kasprzak, J.M.5
Bujnicki, J.M.6
Grosjean, H.7
Rother, K.8
-
67
-
-
0029966338
-
Enzymatic formation of modified nucleosides in tRNA: Dependence on tRNA architecture
-
PMID:8568876
-
Grosjean H, Edqvist J, Straby KB, Giege R. Enzymatic formation of modified nucleosides in tRNA: Dependence on tRNA architecture. J Mol Biol 1996; 255:67-85; PMID:8568876; http://dx.doi.org/10.1006/jmbi.1996.0007
-
(1996)
J Mol Biol
, vol.255
, pp. 67-85
-
-
Grosjean, H.1
Edqvist, J.2
Straby, K.B.3
Giege, R.4
-
68
-
-
84928264091
-
TRNA biogenesis
-
Chichester: John Wiley & Sons, Ltd
-
Jackman JE. tRNA biogenesis. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd., 2011; http://dx.doi.org/10.1002/9780470015902.a002089
-
(2011)
Encyclopedia of Life Sciences
-
-
Jackman, J.E.1
-
69
-
-
0032475871
-
Substrate recognition of tRNA (Guanosine-2’-)-methyltransferase from Thermus thermophilus HB27
-
PMID:9748240
-
Hori H, Yamazaki N, Matsumoto T, Watanabe Y, Ueda T, Nishikawa K, Kumagai I, Watanabe K. Substrate recognition of tRNA (Guanosine-2’-)-methyltransferase from Thermus thermophilus HB27. J Biol Chem 1998; 273:25721-7; PMID:9748240; http://dx.doi.org/10.1074/jbc.273.40.25721
-
(1998)
J Biol Chem
, vol.273
, pp. 25721-25727
-
-
Hori, H.1
Yamazaki, N.2
Matsumoto, T.3
Watanabe, Y.4
Ueda, T.5
Nishikawa, K.6
Kumagai, I.7
Watanabe, K.8
-
70
-
-
84865118848
-
Recognition of guanosine by dissimilar tRNA methyltransferases
-
PMID:22847817
-
Sakaguchi R, Giessing A, Dai Q, Lahoud G, Liutkeviciute Z, Klimasauskas S, Piccirilli J, Kirpekar F, Hou YM Recognition of guanosine by dissimilar tRNA methyltransferases. RNA 2012; 18:1687-701; PMID:22847817;http://dx.doi.org/10.1261/rna.032029.111
-
(2012)
RNA
, vol.18
, pp. 1687-1701
-
-
Sakaguchi, R.1
Giessing, A.2
Dai, Q.3
Lahoud, G.4
Liutkeviciute, Z.5
Klimasauskas, S.6
Piccirilli, J.7
Kirpekar, F.8
Hou, Y.M.9
-
71
-
-
33745253953
-
Two substrates are better than one: Dual specificities for Dnmt2 methyltransferases
-
PMID:16679017
-
Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: Dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 2006; 31:306-8; PMID:16679017; http://dx.doi.org/10.1016/j. tibs.2006.04.005
-
(2006)
Trends Biochem Sci
, vol.31
, pp. 306-308
-
-
Jeltsch, A.1
Nellen, W.2
Lyko, F.3
-
72
-
-
31144449613
-
Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2
-
PMID:16424344
-
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311:395-8; PMID:16424344; http://dx.doi.org/10.1126/science.1120976
-
(2006)
Science
, vol.311
, pp. 395-398
-
-
Goll, M.G.1
Kirpekar, F.2
Maggert, K.A.3
Yoder, J.A.4
Hsieh, C.L.5
Zhang, X.6
Golic, K.G.7
Jacobsen, S.E.8
Bestor, T.H.9
-
73
-
-
77955884641
-
RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage
-
PMID:20679393
-
Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 2010; 24:1590-5; PMID:20679393; http://dx.doi.org/10.1101/gad. 586710
-
(2010)
Genes Dev
, vol.24
, pp. 1590-1595
-
-
Schaefer, M.1
Pollex, T.2
Hanna, K.3
Tuorto, F.4
Meusburger, M.5
Helm, M.6
Lyko, F.7
-
74
-
-
84871235870
-
Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling
-
PMID:23074192
-
Becker M, Muller S, Nellen W, Jurkowski TP, Jeltsch A, Ehrenhofer-Murray AE. Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Nucleic Acids Res 2012; 40:11648-58; PMID:23074192; http://dx.doi.org/10.1093/nar/gks956
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11648-11658
-
-
Becker, M.1
Muller, S.2
Nellen, W.3
Jurkowski, T.P.4
Jeltsch, A.5
Ehrenhofer-Murray, A.E.6
-
75
-
-
84885935618
-
Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA)
-
PMID:23877245
-
Muller S, Windhof IM, Maximov V, Jurkowski T, Jeltsch A, Forstner KU, Sharma CM, Gräf R, Nellen W. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucleic Acids Res 2013; 41:8615-27; PMID:23877245; http://dx. doi.org/10.1093/nar/gkt634
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 8615-8627
-
-
Muller, S.1
Windhof, I.M.2
Maximov, V.3
Jurkowski, T.4
Jeltsch, A.5
Forstner, K.U.6
Sharma, C.M.7
Gräf, R.8
Nellen, W.9
-
76
-
-
84903140945
-
The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu
-
PMID:24711368
-
Shanmugam R, Aklujkar M, Schafer M, Reinhardt R, Nickel O, Reuter G, Lovley DR, Ehrenhofer-Murray A, Nellen W, Ankri S, et al. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu. Nucleic Acids Res 2014; 42:6487-96; PMID:24711368; http://dx.doi.org/10.1093/nar/gku256
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 6487-6496
-
-
Shanmugam, R.1
Aklujkar, M.2
Schafer, M.3
Reinhardt, R.4
Nickel, O.5
Reuter, G.6
Lovley, D.R.7
Ehrenhofer-Murray, A.8
Nellen, W.9
Ankri, S.10
-
77
-
-
77950589659
-
Flexible recognition of the tRNA G18 methylation target site by TrmH methyltransferase through first binding and induced fit processes
-
PMID:20053984
-
Ochi A, Makabe K, Kuwajima K, Hori H. Flexible recognition of the tRNA G18 methylation target site by TrmH methyltransferase through first binding and induced fit processes. J Biol Chem 2010; 285:9018-29; PMID:20053984; http://dx.doi.org/10.1074/jbc.M109.065698
-
(2010)
J Biol Chem
, vol.285
, pp. 9018-9029
-
-
Ochi, A.1
Makabe, K.2
Kuwajima, K.3
Hori, H.4
-
78
-
-
0042591322
-
Aquifex aeolicus tRNA (Gm18) methyltransferase has unique substrate specificity. TRNA recognition mechanism of the enzyme
-
PMID:12704200
-
Hori H, Kubota S, Watanabe K, Kim JM, Ogasawara T, Sawasaki T, Endo Y. Aquifex aeolicus tRNA (Gm18) methyltransferase has unique substrate specificity. TRNA recognition mechanism of the enzyme. J Biol Chem 2003; 278:25081-90; PMID:12704200; http://dx.doi.org/10.1074/jbc.M212577200
-
(2003)
J Biol Chem
, vol.278
, pp. 25081-25090
-
-
Hori, H.1
Kubota, S.2
Watanabe, K.3
Kim, J.M.4
Ogasawara, T.5
Sawasaki, T.6
Endo, Y.7
-
79
-
-
84883372113
-
The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process
-
PMID:23867454
-
Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. J Biol Chem 2013; 288:25562-74; PMID:23867454; http://dx.doi.org/10.1074/jbc.M113.485128
-
(2013)
J Biol Chem
, vol.288
, pp. 25562-25574
-
-
Ochi, A.1
Makabe, K.2
Yamagami, R.3
Hirata, A.4
Sakaguchi, R.5
Hou, Y.M.6
Watanabe, K.7
Nureki, O.8
Kuwajima, K.9
Hori, H.10
-
80
-
-
84904503504
-
Characterization of two homologous 2’-O-methyltransferases showing different specificities for their tRNA substrates
-
PMID:24951554
-
Somme J, Van Laer B, Roovers M, Steyaert J, Versees W, Droogmans L. Characterization of two homologous 2’-O-methyltransferases showing different specificities for their tRNA substrates. RNA 2014; 20:1257-71; PMID:24951554; http://dx.doi.org/10.1261/rna.044503.114
-
(2014)
RNA
, vol.20
, pp. 1257-1271
-
-
Somme, J.1
Van Laer, B.2
Roovers, M.3
Steyaert, J.4
Versees, W.5
Droogmans, L.6
-
81
-
-
84880683872
-
Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10
-
PMID:23793893
-
Swinehart WE, Henderson JC, Jackman JE. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10. RNA 2013; PMID:23793893
-
(2013)
RNA
-
-
Swinehart, W.E.1
Henderson, J.C.2
Jackman, J.E.3
-
82
-
-
0037407933
-
Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9
-
PMID:12702816
-
Jackman JE, Montange RK, Malik HS, Phizicky EM. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 2003; 9:574-85; PMID:12702816; http://dx.doi.org/10.1261/rna.5070303
-
(2003)
RNA
, vol.9
, pp. 574-585
-
-
Jackman, J.E.1
Montange, R.K.2
Malik, H.S.3
Phizicky, E.M.4
-
83
-
-
54549088876
-
RNase P without RNA: Identification and functional reconstitution of the human mitochondrial tRNA processing enzyme
-
PMID:18984158
-
Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: Identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008; 135:462-74; PMID:18984158; http://dx.doi.org/10.1016/j.cell.2008.09.013
-
(2008)
Cell
, vol.135
, pp. 462-474
-
-
Holzmann, J.1
Frank, P.2
Loffler, E.3
Bennett, K.L.4
Gerner, C.5
Rossmanith, W.6
-
84
-
-
84871194226
-
A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase– extensive moonlighting in mitochondrial tRNA biogenesis
-
PMID:23042678
-
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase– extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res 2012; 40:11583-93; PMID:23042678; http://dx.doi.org/10.1093/nar/gks910
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11583-11593
-
-
Vilardo, E.1
Nachbagauer, C.2
Buzet, A.3
Taschner, A.4
Holzmann, J.5
Rossmanith, W.6
-
85
-
-
84879029297
-
RNA-methyltransferase TrmA is a dual-specific enzyme responsible for C5-methylation of uridine in both tmRNA and tRNA
-
PMID:23603891
-
Ranaei-Siadat E, Fabret C, Seijo B, Dardel F, Grosjean H, Nonin-Lecomte S. RNA-methyltransferase TrmA is a dual-specific enzyme responsible for C5-methylation of uridine in both tmRNA and tRNA. RNA Biol 2013; 10:572-8; PMID:23603891; http://dx.doi.org/10.4161/rna.24327
-
(2013)
RNA Biol
, vol.10
, pp. 572-578
-
-
Ranaei-Siadat, E.1
Fabret, C.2
Seijo, B.3
Dardel, F.4
Grosjean, H.5
Nonin-Lecomte, S.6
-
86
-
-
78650489654
-
Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases
-
PMID:21051506
-
Auxilien S, Rasmussen A, Rose S, Brochier-Armanet C, Husson C, Fourmy D, Grosjean H, Douthwaite S. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases. RNA 2011; 17:45-53; PMID:21051506; http://dx.doi.org/10.1261/rna.2323411
-
(2011)
RNA
, vol.17
, pp. 45-53
-
-
Auxilien, S.1
Rasmussen, A.2
Rose, S.3
Brochier-Armanet, C.4
Husson, C.5
Fourmy, D.6
Grosjean, H.7
Douthwaite, S.8
-
87
-
-
33751157452
-
In vitro methylation of Escherichia coli 16S rRNA by tRNA (M5U54)-methyltransferase
-
PMID:8117682
-
Gu X, Ofengand J, Santi DV. In vitro methylation of Escherichia coli 16S rRNA by tRNA (m5U54)-methyltransferase. Biochemistry 1994; 33:2255-61; PMID:8117682; http://dx.doi.org/10.1021/bi00174a036
-
(1994)
Biochemistry
, vol.33
, pp. 2255-2261
-
-
Gu, X.1
Ofengand, J.2
Santi, D.V.3
-
88
-
-
50849135134
-
The crystal structure of Pyrococcus abyssi tRNA (Uracil-54, C5)-methyltransferase provides insights into its tRNA specificity
-
PMID:18653523
-
Walbott H, Leulliot N, Grosjean H, Golinelli-Pimpaneau B. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity. Nucleic Acids Res 2008; 36:4929-40; PMID:18653523; http://dx.doi.org/10.1093/nar/gkn437
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 4929-4940
-
-
Walbott, H.1
Leulliot, N.2
Grosjean, H.3
Golinelli-Pimpaneau, B.4
-
89
-
-
37349022099
-
Acquisition of a bacterial RumA-type tRNA (Uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer
-
PMID:18069966
-
Urbonavicius J, Auxilien S, Walbott H, Trachana K, Golinelli-Pimpaneau B, Brochier-Armanet C, Grosjean H. Acquisition of a bacterial RumA-type tRNA (uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer. Mol Microbiol 2008; 67:323-35; PMID:18069966; http://dx.doi.org/10.1111/j.1365-2958.2007.06047.x
-
(2008)
Mol Microbiol
, vol.67
, pp. 323-335
-
-
Urbonavicius, J.1
Auxilien, S.2
Walbott, H.3
Trachana, K.4
Golinelli-Pimpaneau, B.5
Brochier-Armanet, C.6
Grosjean, H.7
-
90
-
-
0031113361
-
The dynamic NMR structure of the T psi C-loop: Implications for the specificity of tRNA methylation
-
PMID:9204554
-
Yao LJ, James TL, Kealey JT, Santi DV, Schmitz U. The dynamic NMR structure of the T psi C-loop: Implications for the specificity of tRNA methylation. J Biomol NMR 1997; 9:229-44; PMID:9204554; http://dx.doi.org/10.1023/A:1018618606857
-
(1997)
J Biomol NMR
, vol.9
, pp. 229-244
-
-
Yao, L.J.1
James, T.L.2
Kealey, J.T.3
Santi, D.V.4
Schmitz, U.5
-
91
-
-
84866603533
-
The Escherichia coli RlmN methyltransferase is a dualspecificity enzyme that modifies both rRNA and tRNA and controls translational accuracy
-
PMID:22891362
-
Benitez-Paez A, Villarroya M, Armengod ME. The Escherichia coli RlmN methyltransferase is a dualspecificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA 2012; 18:1783-95; PMID:22891362; http://dx.doi.org/10.1261/rna.033266.112
-
(2012)
RNA
, vol.18
, pp. 1783-1795
-
-
Benitez-Paez, A.1
Villarroya, M.2
Armengod, M.E.3
-
92
-
-
84876536945
-
The T. Brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function
-
PMID:23520175
-
Paris Z, Horakova E, Rubio MA, Sample P, Fleming IM, Armocida S, Lukes J, Alfonzo JD. The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function. RNA 2013; 19:649-58; PMID:23520175; http://dx.doi.org/10.1261/rna.036665.112
-
(2013)
RNA
, vol.19
, pp. 649-658
-
-
Paris, Z.1
Horakova, E.2
Rubio, M.A.3
Sample, P.4
Fleming, I.M.5
Armocida, S.6
Lukes, J.7
Alfonzo, J.D.8
-
93
-
-
78049370805
-
New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA
-
PMID:20525789
-
Kempenaers M, Roovers M, Oudjama Y, Tkaczuk KL, Bujnicki JM, Droogmans L. New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA. Nucleic Acids Res 2010; 38:6533-43; PMID:20525789; http://dx.doi.org/10.1093/nar/gkq451
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6533-6543
-
-
Kempenaers, M.1
Roovers, M.2
Oudjama, Y.3
Tkaczuk, K.L.4
Bujnicki, J.M.5
Droogmans, L.6
-
94
-
-
84901430363
-
Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: Role of a remarkable bifunctional tRNA(Phe):M1G/imG2 methyltransferase
-
PMID:24837075
-
Urbonavicius J, Meskys R, Grosjean H. Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase. RNA 2014; 20:747-53; PMID:24837075; http://dx.doi.org/10.1261/rna.043315.113
-
(2014)
RNA
, vol.20
, pp. 747-753
-
-
Urbonavicius, J.1
Meskys, R.2
Grosjean, H.3
-
95
-
-
77955957864
-
Biosynthesis of wyosine derivatives in tRNA: An ancient and highly diverse pathway in Archaea
-
PMID:20382657
-
de Crecy-Lagard V, Brochier-Armanet C, Urbonavicius J, Fernandez B, Phillips G, Lyons B, Noma A, Alvarez S, Droogmans L, Armengaud J, Grosjean H. Biosynthesis of wyosine derivatives in tRNA: An ancient and highly diverse pathway in Archaea. Mol Biol Evol 2010; 27:2062-77; PMID:20382657; http://dx.doi.org/10.1093/molbev/msq096
-
(2010)
Mol Biol Evol
, vol.27
, pp. 2062-2077
-
-
De Crecy-Lagard, V.1
Brochier-Armanet, C.2
Urbonavicius, J.3
Fernandez, B.4
Phillips, G.5
Lyons, B.6
Noma, A.7
Alvarez, S.8
Droogmans, L.9
Armengaud, J.10
Grosjean, H.11
-
96
-
-
84908355026
-
A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA
-
PMID:25219964
-
Sakaguchi R, Lahoud G, Christian T, Gamper H, Hou YM. A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA. Chem Biol 2014; 21:1351-60; PMID:25219964; http://dx.doi.org/10.1016/j.chembiol.2014.07.023
-
(2014)
Chem Biol
, vol.21
, pp. 1351-1360
-
-
Sakaguchi, R.1
Lahoud, G.2
Christian, T.3
Gamper, H.4
Hou, Y.M.5
-
97
-
-
34548740836
-
In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: Evolutionary implications
-
PMID:17673080
-
Urbonavicius J, Brochier-Armanet C, Skouloubris S, Myllykallio H, Grosjean H. In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: Evolutionary implications. Methods Enzymol 2007; 425:103-19; PMID:17673080; http://dx.doi.org/10.1016/S0076-6879(07)25004-9
-
(2007)
Methods Enzymol
, vol.425
, pp. 103-119
-
-
Urbonavicius, J.1
Brochier-Armanet, C.2
Skouloubris, S.3
Myllykallio, H.4
Grosjean, H.5
-
98
-
-
84878685711
-
Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function
-
PMID:23676670
-
Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, et al. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Nature 2013; 498:123-6; PMID:23676670; http://dx.doi.org/10.1038/nature12180
-
(2013)
Nature
, vol.498
, pp. 123-126
-
-
Kim, J.1
Xiao, H.2
Bonanno, J.B.3
Kalyanaraman, C.4
Brown, S.5
Tang, X.6
Al-Obaidi, N.F.7
Patskovsky, Y.8
Babbitt, P.C.9
Jacobson, M.P.10
-
99
-
-
0036795285
-
Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA
-
PMID:12403464
-
Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 2002; 8:1253-66; PMID:12403464; http://dx.doi.org/10.1017/S1355838202024019
-
(2002)
RNA
, vol.8
, pp. 1253-1266
-
-
Alexandrov, A.1
Martzen, M.R.2
Phizicky, E.M.3
-
100
-
-
34047187493
-
RNA recognition mechanism of eukaryote tRNA (M7G46) methyltransferase (Trm8-Trm82 complex)
-
PMID:17382321
-
Matsumoto K, Toyooka T, Tomikawa C, Ochi A, Takano Y, Takayanagi N, Endo Y, Hori H. RNA recognition mechanism of eukaryote tRNA (m7G46) methyltransferase (Trm8-Trm82 complex). FEBS Lett 2007; 581:1599-604; PMID:17382321; http://dx.doi.org/10.1016/j.febslet.2007.03.023
-
(2007)
FEBS Lett
, vol.581
, pp. 1599-1604
-
-
Matsumoto, K.1
Toyooka, T.2
Tomikawa, C.3
Ochi, A.4
Takano, Y.5
Takayanagi, N.6
Endo, Y.7
Hori, H.8
-
101
-
-
0036795285
-
Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA
-
PMID:12403464
-
Alexandrov AV, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. Rna 2002; 8:1253-66; PMID:12403464; http://dx.doi.org/10.1017/S1355838202024019
-
(2002)
Rna
, vol.8
, pp. 1253-1266
-
-
Alexandrov, A.V.1
Martzen, M.R.2
Phizicky, E.M.3
-
102
-
-
0032428969
-
The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA
-
PMID:9851972
-
Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Björk GR, Tamame M, Hinnebusch AG. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 1998; 12:3650-62; PMID:9851972; http://dx.doi.org/10.1101/gad.12.23.3650
-
(1998)
Genes Dev
, vol.12
, pp. 3650-3662
-
-
Anderson, J.1
Phan, L.2
Cuesta, R.3
Carlson, B.A.4
Pak, M.5
Asano, K.6
Björk, G.R.7
Tamame, M.8
Hinnebusch, A.G.9
-
103
-
-
0034625166
-
The Gcd10p/Gcd14p complex is the essential two-subunit tRNA (1-methyladenosine) methyltransferase of Saccharomyces cerevisiae
-
PMID:10779558
-
Anderson J, Phan L, Hinnebusch AG. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA (1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2000; 97:5173-8; PMID:10779558; http://dx.doi.org/10.1073/pnas.090102597
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 5173-5178
-
-
Anderson, J.1
Phan, L.2
Hinnebusch, A.G.3
-
104
-
-
36749070892
-
Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding
-
PMID:17932071
-
Ozanick SG, Bujnicki JM, Sem DS, Anderson JT. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res 2007; 35:6808-19; PMID:17932071; http://dx. doi.org/10.1093/nar/gkm574
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 6808-6819
-
-
Ozanick, S.G.1
Bujnicki, J.M.2
Sem, D.S.3
Erson, J.T.4
-
105
-
-
33845988761
-
The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast
-
PMID:17008308
-
Heurgue-Hamard V, Graille M, Scrima N, Ulryck N, Champ S, van Tilbeurgh H, Buckingham RH. The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast. J Biol Chem 2006; 281:36140-8; PMID:17008308; http://dx.doi.org/10.1074/jbc.M608571200
-
(2006)
J Biol Chem
, vol.281
, pp. 36140-36148
-
-
Heurgue-Hamard, V.1
Graille, M.2
Scrima, N.3
Ulryck, N.4
Champ, S.5
Van Tilbeurgh, H.6
Buckingham, R.H.7
-
106
-
-
80051719282
-
Mechanism of activation of methyltransferases involved in translation by the Trm112 ’hub’ protein
-
PMID:21478168
-
Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgue-Hamard V, Graille M. Mechanism of activation of methyltransferases involved in translation by the Trm112 ’hub’ protein. Nucleic Acids Res 2011; 39:6249-59; PMID:21478168; http://dx.doi.org/10.1093/nar/gkr176
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 6249-6259
-
-
Liger, D.1
Mora, L.2
Lazar, N.3
Figaro, S.4
Henri, J.5
Scrima, N.6
Buckingham, R.H.7
Van Tilbeurgh, H.8
Heurgue-Hamard, V.9
Graille, M.10
-
107
-
-
77953320100
-
Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast
-
PMID:20400505
-
Mazauric MH, Dirick L, Purushothaman SK, Bjork GR, Lapeyre B. Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J Biol Chem 2010; 285:18505-15; PMID:20400505; http://dx. doi.org/10.1074/jbc.M110.113100
-
(2010)
J Biol Chem
, vol.285
, pp. 18505-18515
-
-
Mazauric, M.H.1
Dirick, L.2
Purushothaman, S.K.3
Bjork, G.R.4
Lapeyre, B.5
-
108
-
-
84868250838
-
The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits
-
PMID:22956767
-
Sardana R, Johnson AW. The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits. Mol Biol Cell 2012; 23:4313-22; PMID:22956767; http://dx.doi.org/10.1091/mbc. E12-05-0370
-
(2012)
Mol Biol Cell
, vol.23
, pp. 4313-4322
-
-
Sardana, R.1
Johnson, A.W.2
-
109
-
-
84864000733
-
Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575
-
PMID:22493060
-
Figaro S, Wacheul L, Schillewaert S, Graille M, Huvelle E, Mongeard R, Zorbas C, Lafontaine DL, Heurgue-Hamard V. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol Cell Biol 2012; 32:2254-67; PMID:22493060; http://dx.doi.org/10.1128/MCB. 06623-11
-
(2012)
Mol Cell Biol
, vol.32
, pp. 2254-2267
-
-
Figaro, S.1
Wacheul, L.2
Schillewaert, S.3
Graille, M.4
Huvelle, E.5
Mongeard, R.6
Zorbas, C.7
Lafontaine, D.L.8
Heurgue-Hamard, V.9
-
110
-
-
76449119803
-
The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth
-
PMID:19929876
-
Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z, Hu Y. The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. Plant J 2010; 61:600-10; PMID:19929876; http://dx.doi.org/10.1111/j.1365-313X.2009.04085.x
-
(2010)
Plant J
, vol.61
, pp. 600-610
-
-
Hu, Z.1
Qin, Z.2
Wang, M.3
Xu, C.4
Feng, G.5
Liu, J.6
Meng, Z.7
Hu, Y.8
-
111
-
-
0037007220
-
Trm7p catalyses the formation of two 2’-O-methylriboses in yeast tRNA anticodon loop
-
PMID:11927565
-
Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B. Trm7p catalyses the formation of two 2’-O-methylriboses in yeast tRNA anticodon loop. EMBO J 2002; 21:1811-20; PMID:11927565; http://dx.doi.org/10.1093/emboj/21.7.1811
-
(2002)
EMBO J
, vol.21
, pp. 1811-1820
-
-
Pintard, L.1
Lecointe, F.2
Bujnicki, J.M.3
Bonnerot, C.4
Grosjean, H.5
Lapeyre, B.6
-
112
-
-
0037188470
-
Trm7p catalyses the formation of two 2’-O-methylriboses in yeast tRNA anticodon loop
-
PMID:12032325
-
Tsai EY, Thim S, Baena A, Boussiotis VA, Reynes JM, Sath S, Grosjean P, Yunis EJ, Goldfeld AE. Trm7p catalyses the formation of two 2’-O-methylriboses in yeast tRNA anticodon loop. Proc Natl Acad Sci U S A 2002; 99:7576-81; PMID:12032325; http://dx.doi.org/10.1073/pnas.062056099
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 7576-7581
-
-
Tsai, E.Y.1
Thim, S.2
Baena, A.3
Boussiotis, V.A.4
Reynes, J.M.5
Sath, S.6
Grosjean, P.7
Yunis, E.J.8
Goldfeld, A.E.9
-
113
-
-
84866610711
-
Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop
-
PMID:22912484
-
Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 2012; 18:1921-33; PMID:22912484; http://dx.doi.org/10.1261/rna.035287.112
-
(2012)
RNA
, vol.18
, pp. 1921-1933
-
-
Guy, M.P.1
Podyma, B.M.2
Preston, M.A.3
Shaheen, H.H.4
Krivos, K.L.5
Limbach, P.A.6
Hopper, A.K.7
Phizicky, E.M.8
-
114
-
-
1542358790
-
Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys)
-
PMID:15019776
-
Helm M, Attardi G. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys). J Mol Biol 2004; 337:545-60; PMID:15019776; http://dx.doi.org/10.1016/j.jmb.2004.01.036
-
(2004)
J Mol Biol
, vol.337
, pp. 545-560
-
-
Helm, M.1
Attardi, G.2
-
115
-
-
0025897378
-
Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria)
-
PMID:1708763
-
Edmonds CG, Crain PF, Gupta R, Hashizume T, Hocart CH, Kowalak JA, Pomerantz SC, Stetter KO, McCloskey JA. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol 1991; 173:3138-48; PMID:1708763
-
(1991)
J Bacteriol
, vol.173
, pp. 3138-3148
-
-
Edmonds, C.G.1
Crain, P.F.2
Gupta, R.3
Hashizume, T.4
Hocart, C.H.5
Kowalak, J.A.6
Pomerantz, S.C.7
Stetter, K.O.8
McCloskey, J.A.9
-
116
-
-
2642574393
-
Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. Cerevisiae
-
PMID:15145828
-
Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 2004; 18:1227-40; PMID:15145828; http://dx.doi.org/10.1101/gad.1183804
-
(2004)
Genes Dev
, vol.18
, pp. 1227-1240
-
-
Kadaba, S.1
Krueger, A.2
Trice, T.3
Krecic, A.M.4
Hinnebusch, A.G.5
Erson, J.6
-
117
-
-
84905228696
-
Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis
-
PMID:25085423
-
Guy MP, Young DL, Payea MJ, Zhang X, Kon Y, Dean KM, Grayhack EJ, Mathews DH, Fields S, Phizicky EM. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis. Genes Dev 2014; 28:1721-32; PMID:25085423; http://dx.doi.org/10.1101/gad.245936.114
-
(2014)
Genes Dev
, vol.28
, pp. 1721-1732
-
-
Guy, M.P.1
Young, D.L.2
Payea, M.J.3
Zhang, X.4
Kon, Y.5
Dean, K.M.6
Grayhack, E.J.7
Mathews, D.H.8
Fields, S.9
Phizicky, E.M.10
-
118
-
-
0024316220
-
Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine
-
PMID:2471265
-
Bjork GR, Wikstrom PM, Bystrom AS. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 1989; 244:986-9; PMID:2471265; http://dx.doi.org/10.1126/science. 2471265
-
(1989)
Science
, vol.244
, pp. 986-989
-
-
Bjork, G.R.1
Wikstrom, P.M.2
Bystrom, A.S.3
-
119
-
-
78650683942
-
A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress
-
PMID:NOT_FOUND
-
Chan CT, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 2010; 6: e1001247; PMID:NOT_FOUND
-
(2010)
Plos Genet
, vol.6
-
-
Chan, C.T.1
Dyavaiah, M.2
Demott, M.S.3
Taghizadeh, K.4
Dedon, P.C.5
Begley, T.J.6
-
120
-
-
84864828979
-
Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins
-
PMID:22760636
-
Chan CT, Pang YL, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 2012; 3:937; PMID:22760636; http://dx.doi.org/10.1038/ncomms1938
-
(2012)
Nat Commun
, vol.3
, pp. 937
-
-
Chan, C.T.1
Pang, Y.L.2
Deng, W.3
Babu, I.R.4
Dyavaiah, M.5
Begley, T.J.6
Dedon, P.C.7
-
121
-
-
24344499742
-
Depletion of Saccharomyces cerevisiae tRNA (His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C
-
PMID:16135808
-
Gu W, Hurto RL, Hopper AK, Grayhack EJ, Phizicky EM. Depletion of Saccharomyces cerevisiae tRNA (His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Mol Cell Biol 2005; 25:8191-201; PMID:16135808; http://dx.doi.org/10.1128/MCB.25.18.8191-8201.2005
-
(2005)
Mol Cell Biol
, vol.25
, pp. 8191-8201
-
-
Gu, W.1
Hurto, R.L.2
Hopper, A.K.3
Grayhack, E.J.4
Phizicky, E.M.5
-
122
-
-
84872584130
-
TRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae
-
PMID:23249748
-
Preston MA, D’Silva S, Kon Y, Phizicky EM. tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae. RNA 2013; 19:243-56; PMID:23249748; http://dx.doi.org/10.1261/rna.035808.112
-
(2013)
RNA
, vol.19
, pp. 243-256
-
-
Preston, M.A.1
D’Silva, S.2
Kon, Y.3
Phizicky, E.M.4
-
123
-
-
80755169463
-
Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases
-
PMID:21910628
-
Suzuki T, Nagao A. Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases. Annu Rev Genet 2011; 45:299-329; PMID:21910628; http://dx.doi.org/10.1146/annurev-genet-110410-132531
-
(2011)
Annu Rev Genet
, vol.45
, pp. 299-329
-
-
Suzuki, T.1
Nagao, A.2
-
124
-
-
84907054437
-
TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly
-
PMID:25053765
-
Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet 2014; 51:581-6; PMID:25053765; http://dx.doi.org/10.1136/jmedgenet-2014-102282
-
(2014)
J Med Genet
, vol.51
, pp. 581-586
-
-
Gillis, D.1
Krishnamohan, A.2
Yaacov, B.3
Shaag, A.4
Jackman, J.E.5
Elpeleg, O.6
-
125
-
-
84887300561
-
TRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans
-
PMID:24204302
-
Igoillo-Esteve M, Genin A, Lambert N, Desir J, Pirson I, Abdulkarim B, Simonis N, Drielsma A, Marselli L, Marchetti P, et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 2013; 9:e1003888; PMID:24204302; http://dx.doi.org/10.1371/journal.pgen.1003888
-
(2013)
Plos Genet
, vol.9
-
-
Igoillo-Esteve, M.1
Genin, A.2
Lambert, N.3
Desir, J.4
Pirson, I.5
Abdulkarim, B.6
Simonis, N.7
Drielsma, A.8
Marselli, L.9
Marchetti, P.10
-
126
-
-
77649264369
-
TRNA binds to cytochrome c and inhibits caspase activation
-
PMID:20227371
-
Mei Y, Yong J, Liu H, Shi Y, Meinkoth J, Dreyfuss G, Yang X. tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 2010; 37:668-78; PMID:20227371; http://dx.doi.org/10.1016/j. molcel.2010.01.023
-
(2010)
Mol Cell
, vol.37
, pp. 668-678
-
-
Mei, Y.1
Yong, J.2
Liu, H.3
Shi, Y.4
Meinkoth, J.5
Dreyfuss, G.6
Yang, X.7
-
127
-
-
84880654254
-
Regulation of cell death by transfer RNA
-
PMID:23350625
-
Hou YM, Yang X. Regulation of cell death by transfer RNA. Antioxid Redox Signal 2013; 19:583-94; PMID:23350625; http://dx.doi.org/10.1089/ars. 2012.5171
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 583-594
-
-
Hou, Y.M.1
Yang, X.2
-
128
-
-
84864110032
-
Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome
-
PMID:22577224
-
Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, Frye M, Al-Gazali L, Gleeson JG. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 2012; 49:380-5; PMID:22577224; http://dx.doi.org/10.1136/jmedgenet-2011-100686
-
(2012)
J Med Genet
, vol.49
, pp. 380-385
-
-
Martinez, F.J.1
Lee, J.H.2
Lee, J.E.3
Blanco, S.4
Nickerson, E.5
Gabriel, S.6
Frye, M.7
Al-Gazali, L.8
Gleeson, J.G.9
-
129
-
-
84860760092
-
Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability
-
PMID:22541562
-
Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, Rupp V, Vincent AK, Malli R, Ali G, Khan FS, et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 2012; 90:856-63; PMID:22541562; http://dx.doi.org/10.1016/j.ajhg.2012.03.023
-
(2012)
Am J Hum Genet
, vol.90
, pp. 856-863
-
-
Khan, M.A.1
Rafiq, M.A.2
Noor, A.3
Hussain, S.4
Flores, J.V.5
Rupp, V.6
Vincent, A.K.7
Malli, R.8
Ali, G.9
Khan, F.S.10
-
130
-
-
84860741715
-
Mutations in NSUN2 cause autosomal-recessive intellectual disability
-
PMID:22541559
-
Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, Cirak S, Wieczorek D, Motazacker MM, Esmaeeli-Nieh S, Cremer K, et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Human Genet 2012; 90:847-55; PMID:22541559; http://dx.doi.org/10.1016/j.ajhg.2012.03.021
-
(2012)
Am J Human Genet
, vol.90
, pp. 847-855
-
-
Abbasi-Moheb, L.1
Mertel, S.2
Gonsior, M.3
Nouri-Vahid, L.4
Kahrizi, K.5
Cirak, S.6
Wieczorek, D.7
Motazacker, M.M.8
Esmaeeli-Nieh, S.9
Cremer, K.10
-
131
-
-
84908153517
-
Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders
-
PMID:25063673
-
Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Popis M, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 2014; 33:2020-39; PMID:25063673; http://dx.doi.org/10.15252/embj.201489282
-
(2014)
EMBO J
, vol.33
, pp. 2020-2039
-
-
Blanco, S.1
Dietmann, S.2
Flores, J.V.3
Hussain, S.4
Kutter, C.5
Humphreys, P.6
Lukk, M.7
Lombard, P.8
Treps, L.9
Popis, M.10
-
132
-
-
84875141476
-
The human tRNA m (5) C methyltransferase Misu is multisite-specific
-
PMID:22995836
-
Auxilien S, Guerineau V, Szweykowska-Kulinska Z, Golinelli-Pimpaneau B. The human tRNA m (5) C methyltransferase Misu is multisite-specific. RNA Biol 2012; 9:1331-8; PMID:22995836; http://dx.doi.org/10.4161/rna.22180
-
(2012)
RNA Biol
, vol.9
, pp. 1331-1338
-
-
Auxilien, S.1
Guerineau, V.2
Szweykowska-Kulinska, Z.3
Golinelli-Pimpaneau, B.4
-
133
-
-
84866074106
-
RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis
-
PMID:22885326
-
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 2012; 19:900-5; PMID:22885326; http://dx.doi.org/10.1038/nsmb.2357
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 900-905
-
-
Tuorto, F.1
Liebers, R.2
Musch, T.3
Schaefer, M.4
Hofmann, S.5
Kellner, S.6
Frye, M.7
Helm, M.8
Stoecklin, G.9
Lyko, F.10
-
134
-
-
84901601146
-
Role of tRNA modifications in human diseases
-
PMID:24581449
-
Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med 2014; 20:306-14; PMID:24581449; http://dx. doi.org/10.1016/j.molmed.2014.01.008
-
(2014)
Trends Mol Med
, vol.20
, pp. 306-314
-
-
Torres, A.G.1
Batlle, E.2
De Ribas Pouplana, L.3
-
135
-
-
0023046272
-
Comparative structural analysis of 1-methyladenosine, 7-methylguanosine, ethenoadenosine and their protonated salts IV: 1H, 13C, and 15N NMR studies at natural isotope abundance
-
PMID:3022235
-
Sierzputowska-Gracz H, Gopal HD, Agris PF. Comparative structural analysis of 1-methyladenosine, 7-methylguanosine, ethenoadenosine and their protonated salts IV: 1H, 13C, and 15N NMR studies at natural isotope abundance. Nucleic Acids Res 1986; 14:7783-801; PMID:3022235; http://dx.doi.org/10.1093/nar/14.19.7783
-
(1986)
Nucleic Acids Res
, vol.14
, pp. 7783-7801
-
-
Sierzputowska-Gracz, H.1
Gopal, H.D.2
Agris, P.F.3
|