메뉴 건너뛰기




Volumn 20, Issue 7, 2000, Pages 2505-2516

Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the α subunit of eukaryotic translation initiation factor 2

Author keywords

[No Author keywords available]

Indexed keywords

INITIATION FACTOR 2; PROTEIN KINASE; PROTEIN SUBUNIT; PSEUDOURIDINE; RIBONUCLEASE; SYNTHETASE; TRANSFER RNA;

EID: 0034073380     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.20.7.2505-2516.2000     Document Type: Article
Times cited : (65)

References (60)
  • 1
    • 0032428969 scopus 로고    scopus 로고
    • The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA
    • Anderson, J., L. Phan, R. Cuesta, B. A. Carlson, M. Pak, K. Asano, G. R. Bjork, M. Tamame, and A. G. Hinnebusch. 1998. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12:3650-3662.
    • (1998) Genes Dev. , vol.12 , pp. 3650-3662
    • Anderson, J.1    Phan, L.2    Cuesta, R.3    Carlson, B.A.4    Pak, M.5    Asano, K.6    Bjork, G.R.7    Tamame, M.8    Hinnebusch, A.G.9
  • 2
    • 0032510462 scopus 로고    scopus 로고
    • Identification of a nuclear export receptor for tRNA
    • Arts, G. J., M. Fornerod, and I. J. Mattaj. 1998. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8:305-314.
    • (1998) Curr. Biol. , vol.8 , pp. 305-314
    • Arts, G.J.1    Fornerod, M.2    Mattaj, I.J.3
  • 3
    • 0032535450 scopus 로고    scopus 로고
    • The role of exportin-t in selective nuclear export of mature tRNAs
    • Arts, G. J., S. Kuersten, P. Romby, B. Ehresmann, and I. W. Mattaj. 1998. The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J. 17:7430-7441.
    • (1998) EMBO J. , vol.17 , pp. 7430-7441
    • Arts, G.J.1    Kuersten, S.2    Romby, P.3    Ehresmann, B.4    Mattaj, I.W.5
  • 4
    • 0011895723 scopus 로고    scopus 로고
    • Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA
    • Auxillien, S., P. F. Crain, R. W. Trewyn, and H. Grosjean. 1996 Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J. Mol. Biol. 262: 437-458.
    • (1996) J. Mol. Biol. , vol.262 , pp. 437-458
    • Auxillien, S.1    Crain, P.F.2    Trewyn, R.W.3    Grosjean, H.4
  • 5
    • 0027438034 scopus 로고
    • Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: Analysis by the application of a new sequencing technique
    • Bakin, A., and J. Ofengand. 1993. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32:9754-9762.
    • (1993) Biochemistry , vol.32 , pp. 9754-9762
    • Bakin, A.1    Ofengand, J.2
  • 6
    • 0029143665 scopus 로고
    • Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution
    • Bakin, A., and J. Ofengand. 1995. Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res. 23:3290-3294.
    • (1995) Nucleic Acids Res. , vol.23 , pp. 3290-3294
    • Bakin, A.1    Ofengand, J.2
  • 7
    • 0030772852 scopus 로고    scopus 로고
    • The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of ψ55 in both mitochondrial and cytoplasmic tRNAs
    • Becker, H. F., Y. Motorin, R. J. Planta, and H. Grosjean. 1997. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of ψ55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25;4493-4499.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 4493-4499
    • Becker, H.F.1    Motorin, Y.2    Planta, R.J.3    Grosjean, H.4
  • 8
    • 0031565927 scopus 로고    scopus 로고
    • Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the Tψ-loop of yeast tRNAs
    • Becker, H. F., Y. Motorin, M. Sissler, C. Florentz, and H. Grosjean. 1997. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the Tψ-loop of yeast tRNAs. J. Mol. Biol. 274:505-518.
    • (1997) J. Mol. Biol. , vol.274 , pp. 505-518
    • Becker, H.F.1    Motorin, Y.2    Sissler, M.3    Florentz, C.4    Grosjean, H.5
  • 10
    • 0033013122 scopus 로고    scopus 로고
    • GCD 14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae
    • Calvo, O., R. Cuesta, J. Anderson, N. Gutierrez, M. T. Garcia-Barrio, A. G. Hinnebusch, and M. Tamame. 1999. GCD 14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4167-4181.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4167-4181
    • Calvo, O.1    Cuesta, R.2    Anderson, J.3    Gutierrez, N.4    Garcia-Barrio, M.T.5    Hinnebusch, A.G.6    Tamame, M.7
  • 11
    • 2642635832 scopus 로고    scopus 로고
    • Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP
    • Chamberlain, J. R., Y. Lee, W. S. Lane, and D. R. Engelke. 1998. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev. 12:1678-1690.
    • (1998) Genes Dev. , vol.12 , pp. 1678-1690
    • Chamberlain, J.R.1    Lee, Y.2    Lane, W.S.3    Engelke, D.R.4
  • 12
    • 0015979238 scopus 로고
    • Biosynthesis of pseudouridine in transfer ribonucleic acid
    • Cortese, R., H. O. Kammen, S. J. Spengler, and B. N. Ames. 1974. Biosynthesis of pseudouridine in transfer ribonucleic acid. J. Biol. Chem. 249: 1103-1108.
    • (1974) J. Biol. Chem. , vol.249 , pp. 1103-1108
    • Cortese, R.1    Kammen, H.O.2    Spengler, S.J.3    Ames, B.N.4
  • 13
    • 0031982348 scopus 로고    scopus 로고
    • Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae
    • Cuesta, R., A. G. Hinnebusch, and M. Tamame. 1998. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae. Genetics 148:1007-1020.
    • (1998) Genetics , vol.148 , pp. 1007-1020
    • Cuesta, R.1    Hinnebusch, A.G.2    Tamame, M.3
  • 14
    • 0026556814 scopus 로고
    • Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
    • Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. D. Donahue, and A. G. Hinnebusch. 1992. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585-596.
    • (1992) Cell , vol.68 , pp. 585-596
    • Dever, T.E.1    Feng, L.2    Wek, R.C.3    Cigan, A.M.4    Donahue, T.D.5    Hinnebusch, A.G.6
  • 17
    • 0028295911 scopus 로고
    • The UV response involving the ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals
    • Engelberg, D., C. Klein, H. Martinetto, K. Struhl, and M. Karin. 1994. The UV response involving the ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77:381-390.
    • (1994) Cell , vol.77 , pp. 381-390
    • Engelberg, D.1    Klein, C.2    Martinetto, H.3    Struhl, K.4    Karin, M.5
  • 18
    • 0026544930 scopus 로고
    • Anticodon-independent aminoacylation of an RNA minihelix with valine
    • Frugier, M., C. Florentz, and R. Giege. 1992. Anticodon-independent aminoacylation of an RNA minihelix with valine. Proc. Natl. Acad. Sci. USA 89: 3990-3994.
    • (1992) Proc. Natl. Acad. Sci. USA , vol.89 , pp. 3990-3994
    • Frugier, M.1    Florentz, C.2    Giege, R.3
  • 19
    • 0029085423 scopus 로고
    • GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3
    • Garcia-Barrio, M. T., T. Naranda, R. Cuesta, A. G. Hinnebusch, J. W. B. Hershey, and M. Tamame. 1995. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Dev. 9:1781-1796.
    • (1995) Genes Dev. , vol.9 , pp. 1781-1796
    • Garcia-Barrio, M.T.1    Naranda, T.2    Cuesta, R.3    Hinnebusch, A.G.4    Hershey, J.W.B.5    Tamame, M.6
  • 20
    • 85012734147 scopus 로고
    • Ribonucleoside analysis by reversed-phase high-performance liquid chromatography
    • p. A3-A71. C. W. Gehrke and K. C. Kuo (ed.), Elsevier, Amsterdam, The Netherlands
    • Gehrke, C. W., and K. C. Kuo. 1990. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography, p. A3-A71. In C. W. Gehrke and K. C. Kuo (ed.), Chromatography and modification of nucleosides. Elsevier, Amsterdam, The Netherlands.
    • (1990) Chromatography and Modification of Nucleosides
    • Gehrke, C.W.1    Kuo, K.C.2
  • 21
    • 0024266139 scopus 로고
    • New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
    • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527-534.
    • (1988) Gene , vol.74 , pp. 527-534
    • Gietz, R.D.1    Sugino, A.2
  • 22
    • 0032488604 scopus 로고    scopus 로고
    • Molecular recognition of tRNA by tRNA pseudouridine 55 synthase
    • Gu, X., M. Yu, K. M. Ivanetich, and D. V. Santi. 1998. Molecular recognition of tRNA by tRNA pseudouridine 55 synthase. Biochemistry 37:339-343.
    • (1998) Biochemistry , vol.37 , pp. 339-343
    • Gu, X.1    Yu, M.2    Ivanetich, K.M.3    Santi, D.V.4
  • 23
    • 0022817680 scopus 로고
    • Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae
    • Harashima, S., and A. G. Hinnebusch. 1986. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3990-3998.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 3990-3998
    • Harashima, S.1    Hinnebusch, A.G.2
  • 24
    • 0031771756 scopus 로고    scopus 로고
    • Yeast los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA
    • Hellmuth, K., D. M. Lau, F. R. Bischoff, M. Kunzler, E. Hurt, and G. Simos. 1998. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18:6374-6386.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6374-6386
    • Hellmuth, K.1    Lau, D.M.2    Bischoff, F.R.3    Kunzler, M.4    Hurt, E.5    Simos, G.6
  • 25
    • 0028695223 scopus 로고
    • The eIF-2α kinases: Regulators of protein synthesis in starvation and stress
    • Hinnebusch, A. G. 1994. The eIF-2α kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5:417-426.
    • (1994) Semin. Cell Biol. , vol.5 , pp. 417-426
    • Hinnebusch, A.G.1
  • 26
    • 0000729653 scopus 로고    scopus 로고
    • Translational control of GCN4: Gene-specific regulation by phosphorylation of eIF2
    • p. 199-244. In J. W. B. Hershey, M. B. Mathews, and N. Sonenberg (ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
    • Hinnebusch, A. G. 1996. Translational control of GCN4: gene-specific regulation by phosphorylation of eIF2, p. 199-244. In J. W. B. Hershey, M. B. Mathews, and N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
    • (1996) Translational Control
    • Hinnebusch, A.G.1
  • 27
    • 0030803256 scopus 로고    scopus 로고
    • Translational regulation of yeast GCN4: A window on factors that control initiator-tRNA binding to the ribosome
    • Hinnebusch, A. G. 1997. Translational regulation of yeast GCN4: a window on factors that control initiator-tRNA binding to the ribosome. J. Biol. Chem. 272:21661-21664.
    • (1997) J. Biol. Chem. , vol.272 , pp. 21661-21664
    • Hinnebusch, A.G.1
  • 28
    • 0020572457 scopus 로고
    • Positive regulation in the general amino acid control of saccharomyces cerevisiae
    • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374-5378.
    • (1983) Proc. Natl. Acad. Sci. USA , vol.80 , pp. 5374-5378
    • Hinnebusch, A.G.1    Fink, G.R.2
  • 29
    • 0018841174 scopus 로고
    • Processing of intervening sequences: A new yeast mutant which fails to excise intervening sequences from precursor tRNAs
    • Hopper, A. K., L. D. Schultz, and R. A. Shapiro. 1980. Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs. Cell 19:741-751.
    • (1980) Cell , vol.19 , pp. 741-751
    • Hopper, A.K.1    Schultz, L.D.2    Shapiro, R.A.3
  • 30
    • 0023103568 scopus 로고
    • Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing
    • Hurt, D. J., S. S. Wang, Y. H. Lin, and A. K. Hopper. 1987. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. Mol. Cell. Biol. 7:1208-1216.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 1208-1216
    • Hurt, D.J.1    Wang, S.S.2    Lin, Y.H.3    Hopper, A.K.4
  • 32
    • 0015186285 scopus 로고
    • Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids
    • Kelmers, A. D., and D. E. Heatherly. 1971. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal. Biochem. 44:486-495.
    • (1971) Anal. Biochem. , vol.44 , pp. 486-495
    • Kelmers, A.D.1    Heatherly, D.E.2
  • 33
    • 0029945504 scopus 로고    scopus 로고
    • Pseudouridine synthases: Four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases
    • Koonin, E. V. 1996. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24:2411-2415.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 2411-2415
    • Koonin, E.V.1
  • 35
    • 0026726804 scopus 로고
    • Autoregulation of the yeast lysyl-tRNA synthetase gene GCD5/KRSI by translational and transcriptional control mechanisms
    • Lanker, S., J. L. Bushman, A. G. Hinnebusch, H. Trachsel, and P. P. Mueller. 1992. Autoregulation of the yeast lysyl-tRNA synthetase gene GCD5/KRSI by translational and transcriptional control mechanisms. Cell 70:647-657.
    • (1992) Cell , vol.70 , pp. 647-657
    • Lanker, S.1    Bushman, J.L.2    Hinnebusch, A.G.3    Trachsel, H.4    Mueller, P.P.5
  • 37
    • 0028058235 scopus 로고
    • Molecular cloning and expression of the Saccharomyces cerevisiae RFC3 gene, an essential component of replication factor C
    • Li, X., and P. M. Burgers. 1994. Molecular cloning and expression of the Saccharomyces cerevisiae RFC3 gene, an essential component of replication factor C. Proc. Natl. Acad. Sci. USA 91:868-872.
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , pp. 868-872
    • Li, X.A.1    Burgers, P.M.2
  • 38
    • 0021659705 scopus 로고
    • Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae
    • Lucchini, G., A. G. Hinnebusch, C. Chen, and G. R. Fink. 1984. Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1326-1333.
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 1326-1333
    • Lucchini, G.1    Hinnebusch, A.G.2    Chen, C.3    Fink, G.R.4
  • 39
    • 0032509304 scopus 로고    scopus 로고
    • Proofreading and aminoacylation of tRNAs before export from the nucleus
    • Lund, E., and J. E. Dahlberg. 1998. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282:2082-2085.
    • (1998) Science , vol.282 , pp. 2082-2085
    • Lund, E.1    Dahlberg, J.E.2
  • 40
    • 0028244439 scopus 로고
    • The POP1 gene encodes protein component common to the RNase MRP and RNase P ribonucleoproteins
    • Lygerou, Z., P. Mitchell, E. Petfalski, B. Seraphin, and D. Tollervey. 1994. The POP1 gene encodes protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 8:1423-1433.
    • (1994) Genes Dev. , vol.8 , pp. 1423-1433
    • Lygerou, Z.1    Mitchell, P.2    Petfalski, E.3    Seraphin, B.4    Tollervey, D.5
  • 41
    • 1842287951 scopus 로고    scopus 로고
    • Evidence that GCN1 and GCN20, translational regulators of GCN4, function on enlongating ribosomes in activation of the eIF2α kinase GCN2
    • Marton, M. J., C. R. Vazquez de Aldana, H. Qiu, K. Chakraburtty, and A. G. Hinnebusch. 1997. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on enlongating ribosomes in activation of the eIF2α kinase GCN2. Mol. Cell. Biol. 17:4474-4489.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4474-4489
    • Marton, M.J.1    Vazquez De Aldana, C.R.2    Qiu, H.3    Chakraburtty, K.4    Hinnebusch, A.G.5
  • 42
    • 0027175499 scopus 로고
    • GCN1, a translational activator of GCN4 in S. cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2
    • Marton, M. J., D. Crouch, and A. G. Hinnebusch. 1993. GCN1, a translational activator of GCN4 in S. cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol. Cell. Biol. 13:3541-3556.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3541-3556
    • Marton, M.J.1    Crouch, D.2    Hinnebusch, A.G.3
  • 43
    • 0017076448 scopus 로고
    • Role of transfer ribonucleic acids in the regulation of several biosyntheses in saccharomyces cerevisiae
    • Messenguy, F., and J. Delforge. 1976. Role of transfer ribonucleic acids in the regulation of several biosyntheses in Saccharomyces cerevisiae. Eur. J. Biochem. 67:335-339.
    • (1976) Eur. J. Biochem. , vol.67 , pp. 335-339
    • Messenguy, F.1    Delforge, A.J.2
  • 44
    • 0020557078 scopus 로고
    • Influence of the general control of amino acid biosynthesis on cell growth and cell viability in Saccharomyces cerevisiae
    • Niederberger, P., M. Aebi, and R. Huetter. 1983. Influence of the general control of amino acid biosynthesis on cell growth and cell viability in Saccharomyces cerevisiae. J. Gen. Microbiol. 129:2571-2583.
    • (1983) J. Gen. Microbiol. , vol.129 , pp. 2571-2583
    • Niederberger, P.1    Aebi, M.2    Huetter, R.3
  • 45
    • 0026059582 scopus 로고
    • In vivo pre-tRNA processing in saccharomyces cerevisiae
    • O'Connor, J. P., and C. L. Peebles. 1991. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:425-439.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 425-439
    • O'Connor, J.P.1    Peebles, C.L.2
  • 46
    • 0026008878 scopus 로고
    • Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil
    • Samuelsson, T. 1991. Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil. Nucleic Acids Res. 19:6139-6144.
    • (1991) Nucleic Acids Res. , vol.19 , pp. 6139-6144
    • Samuelsson, T.1
  • 47
    • 0025370090 scopus 로고
    • Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae
    • Samuelsson, T., and M. Olsson. 1990. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae. J. Biol. Chem. 265:8782-8787.
    • (1990) J. Biol. Chem. , vol.265 , pp. 8782-8787
    • Samuelsson, T.1    Olsson, M.2
  • 48
    • 0031739249 scopus 로고    scopus 로고
    • TRNA nuclear export in Saccharomyces cerevisiae: In situ hybridization analysis
    • Sarkar, S., and A. K. Hopper. 1998. tRNA nuclear export in Saccharomyces cerevisiae: in situ hybridization analysis. Mol. Biol. Cell 9:3041-3055.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3041-3055
    • Sarkar, S.1    Hopper, A.K.2
  • 49
    • 0033431040 scopus 로고    scopus 로고
    • Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae
    • Sarkar, S., A. K. Azad, and A. K. Hopper. 1999. Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96:14366-14371.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 14366-14371
    • Sarkar, S.1    Azad, A.K.2    Hopper, A.K.3
  • 50
    • 0026699593 scopus 로고
    • Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNAse MRP RNA and essential for cell viability
    • Schmitt, M. E., and D. A. Clayton. 1992. Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNAse MRP RNA and essential for cell viability. Genes Dev. 6: 1975-1985.
    • (1992) Genes Dev. , vol.6 , pp. 1975-1985
    • Schmitt, M.E.1    Clayton, D.A.2
  • 53
    • 0030583733 scopus 로고    scopus 로고
    • Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation
    • Tavernarakis, N., D. Alexandraki, P. Liodis, D. Tzamarias, and G. Thireos. 1996. Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation. Gene 179:271-277.
    • (1996) Gene , vol.179 , pp. 271-277
    • Tavernarakis, N.1    Alexandraki, D.2    Liodis, P.3    Tzamarias, D.4    Thireos, G.5
  • 54
    • 0026350896 scopus 로고
    • Direct analysis of aminoacylation levels of tRNA as in vivo
    • Varshney, U., C. P. Lee, and U. L. RajBhandary. 1991. Direct analysis of aminoacylation levels of tRNA as in vivo. J. Biol. Chem. 266:24712-24718.
    • (1991) J. Biol. Chem. , vol.266 , pp. 24712-24718
    • Varshney, U.1    Lee, C.P.2    RajBhandary, U.L.3
  • 55
    • 0029001571 scopus 로고
    • GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acid-starved cells
    • Vazquez de Aldana, C. R., M. J. Marton, and A. G. Hinnebusch. 1995. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2α kinase GCN2 in amino acid-starved cells. EMBO J. 14:3184-3199.
    • (1995) EMBO J. , vol.14 , pp. 3184-3199
    • Vazquez De Aldana, C.R.1    Marton, M.J.2    Hinnebusch, A.G.3
  • 56
    • 0028033979 scopus 로고
    • Multicopy tRNA genes functionally suppress mutations in yeast elF-2α kinase GCN2: Evidence for separate pathways coupling GCN4 expression to uncharged tRNA
    • Vazquez de Aldana, C. R., R. C. Wek, P. San Segundo, A. G. Truesdell, and A. G. Hinnebusch. 1994. Multicopy tRNA genes functionally suppress mutations in yeast elF-2α kinase GCN2: evidence for separate pathways coupling GCN4 expression to uncharged tRNA. Mol. Cell. Biol. 14:7920-7932.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 7920-7932
    • Vazquez De Aldana, C.R.1    Wek, R.C.2    Segundo, P.S.3    Truesdell, A.G.4    Hinnebusch, A.G.5
  • 57
    • 0024381444 scopus 로고
    • Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling gcn4 expression to amino acid availability
    • Wek, R. C., B. M. Jackson, and A. G. Hinnebusch. 1989. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. USA 86:4579-4583.
    • (1989) Proc. Natl. Acad. Sci. USA , vol.86 , pp. 4579-4583
    • Wek, R.C.1    Jackson, B.M.2    Hinnebusch, A.G.3
  • 58
    • 0025330827 scopus 로고
    • Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression
    • Wek, R. C., M. Ramirez, B. M. Jackson, and A. G. Hinnebusch. 1990. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol. Cell. Biol. 10:2820-2831.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 2820-2831
    • Wek, R.C.1    Ramirez, M.2    Jackson, B.M.3    Hinnebusch, A.G.4
  • 59
    • 0029006391 scopus 로고
    • The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
    • Wek, S. A., S. Zhu, and R. C. Wek. 1995. The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15:4497-4506.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 4497-4506
    • Wek, S.A.1    Zhu, S.2    Wek, R.C.3
  • 60
    • 0029785485 scopus 로고    scopus 로고
    • Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2
    • Zhu, S., A. Y. Sobolev, and R. C. Wek. 1996. Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J. Biol. Chem. 271:24989-24994.
    • (1996) J. Biol. Chem. , vol.271 , pp. 24989-24994
    • Zhu, S.1    Sobolev, A.Y.2    Wek, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.