메뉴 건너뛰기




Volumn 11, Issue 12, 2015, Pages

RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification

Author keywords

[No Author keywords available]

Indexed keywords

DNA DIRECTED RNA POLYMERASE III; MAF1 PROTEIN, S CEREVISIAE; MAF1 PROTEIN, S POMBE; N(2),N(2)-DIMETHYLGUANOSINE-26-METHYLTRANSFERASE; RAPAMYCIN; REPRESSOR PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN; SCHIZOSACCHAROMYCES POMBE PROTEIN; SERINE TRANSFER RNA; TRANSCRIPTION FACTOR; TRANSFER RNA; TRANSFER RNA METHYLTRANSFERASE;

EID: 84953289848     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1005671     Document Type: Article
Times cited : (74)

References (61)
  • 1
    • 84908078106 scopus 로고    scopus 로고
    • A dual program for translation regulation in cellular proliferation and differentiation
    • Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, et al. (2014) A dual program for translation regulation in cellular proliferation and differentiation. Cell 158: 1281–1292. doi: 10.1016/j.cell.2014.08.011 25215487
    • (2014) Cell , vol.158 , pp. 1281-1292
    • Gingold, H.1    Tehler, D.2    Christoffersen, N.R.3    Nielsen, M.M.4    Asmar, F.5
  • 2
    • 84910675377 scopus 로고    scopus 로고
    • tRNA modifications regulate translation during cellular stress
    • Gu C, Begley TJ, Dedon PC, (2014) tRNA modifications regulate translation during cellular stress. FEBS Lett 588: 4287–4296. doi: 10.1016/j.febslet.2014.09.038 25304425
    • (2014) FEBS Lett , vol.588 , pp. 4287-4296
    • Gu, C.1    Begley, T.J.2    Dedon, P.C.3
  • 3
    • 0036463655 scopus 로고    scopus 로고
    • Gcn4p, master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress
    • Hinnebusch AG, Natarajan K, (2002) Gcn4p, master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32. 12455968
    • (2002) Eukaryot Cell , vol.1 , pp. 22-32
    • Hinnebusch, A.G.1    Natarajan, K.2
  • 4
    • 42549130434 scopus 로고    scopus 로고
    • Cell biology. RNA metabolism and oncogenesis
    • Johnson DL, Johnson SA, (2008) Cell biology. RNA metabolism and oncogenesis. Science 320: 461–462. doi: 10.1126/science.1158680 18436765
    • (2008) Science , vol.320 , pp. 461-462
    • Johnson, D.L.1    Johnson, S.A.2
  • 5
    • 75149181741 scopus 로고    scopus 로고
    • tRNA over-expression in breast cancer and functional consequences
    • Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, et al. (2009) tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37: 7268–7280. doi: 10.1093/nar/gkp787 19783824
    • (2009) Nucleic Acids Res , vol.37 , pp. 7268-7280
    • Pavon-Eternod, M.1    Gomes, S.2    Geslain, R.3    Dai, Q.4    Rosner, M.R.5
  • 6
    • 50349091830 scopus 로고    scopus 로고
    • Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation
    • Johnson SA, Dubeau L, Johnson DL, (2008) Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J Biol Chem 283: 19184–19191. doi: 10.1074/jbc.M802872200 18456653
    • (2008) J Biol Chem , vol.283 , pp. 19184-19191
    • Johnson, S.A.1    Dubeau, L.2    Johnson, D.L.3
  • 7
    • 11244281646 scopus 로고    scopus 로고
    • RNA polymerases I and III, growth control and cancer
    • White RJ, (2005) RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 6: 69–78. 15688068
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 69-78
    • White, R.J.1
  • 8
    • 84919625964 scopus 로고    scopus 로고
    • Maf1 is a novel target of PTEN and PI3K signaling that negatively regulates oncogenesis and lipid metabolism
    • Palian BM, Rohira AD, Johnson SA, He L, Zheng N, et al. (2014) Maf1 is a novel target of PTEN and PI3K signaling that negatively regulates oncogenesis and lipid metabolism. PLoS Genet 10: e1004789. doi: 10.1371/journal.pgen.1004789 25502566
    • (2014) PLoS Genet , vol.10 , pp. e1004789
    • Palian, B.M.1    Rohira, A.D.2    Johnson, S.A.3    He, L.4    Zheng, N.5
  • 9
    • 84902662079 scopus 로고    scopus 로고
    • Different types of secondary information in the genetic code
    • Maraia RJ, Iben JR, (2014) Different types of secondary information in the genetic code. RNA 20: 977–984. doi: 10.1261/rna.044115.113 24935971
    • (2014) RNA , vol.20 , pp. 977-984
    • Maraia, R.J.1    Iben, J.R.2
  • 10
    • 33846021292 scopus 로고    scopus 로고
    • Tissue-specific differences in human transfer RNA expression
    • Dittmar KA, Goodenbour JM, Pan T, (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2: e221. 17194224
    • (2006) PLoS Genet , vol.2 , pp. e221
    • Dittmar, K.A.1    Goodenbour, J.M.2    Pan, T.3
  • 11
    • 36749085941 scopus 로고    scopus 로고
    • Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response
    • Begley U, Dyavaiah M, Patil A, Rooney JP, Direnzo D, et al. (2007) Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response. Mol Cell 28: 860–870. 18082610
    • (2007) Mol Cell , vol.28 , pp. 860-870
    • Begley, U.1    Dyavaiah, M.2    Patil, A.3    Rooney, J.P.4    Direnzo, D.5
  • 12
  • 13
    • 84931576485 scopus 로고    scopus 로고
    • Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity
    • Nedialkova DD, Leidel SA, (2015) Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell 161: 1606–1618. doi: 10.1016/j.cell.2015.05.022 26052047
    • (2015) Cell , vol.161 , pp. 1606-1618
    • Nedialkova, D.D.1    Leidel, S.A.2
  • 14
    • 84880693760 scopus 로고    scopus 로고
    • Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast
    • Lamichhane TN, Blewett NH, Crawford AK, Cherkasova VA, Iben JR, et al. (2013) Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol Cell Biol 33: 2918–2929. doi: 10.1128/MCB.00278-13 23716598
    • (2013) Mol Cell Biol , vol.33 , pp. 2918-2929
    • Lamichhane, T.N.1    Blewett, N.H.2    Crawford, A.K.3    Cherkasova, V.A.4    Iben, J.R.5
  • 15
    • 37249019494 scopus 로고    scopus 로고
    • Mutation of RNA polymerase III subunit rpc2/polr3b leads to deficiency of the RNA cleavage subunit, Rpc11/Polr3k, and disrupts zebrafish digestive system development
    • Yee NS, Gong W, Huang Y, Lorent K, Dolan AC, et al. (2007) Mutation of RNA polymerase III subunit rpc2/polr3b leads to deficiency of the RNA cleavage subunit, Rpc11/Polr3k, and disrupts zebrafish digestive system development. PLoS Biol 5: 2484–2492.
    • (2007) PLoS Biol , vol.5 , pp. 2484-2492
    • Yee, N.S.1    Gong, W.2    Huang, Y.3    Lorent, K.4    Dolan, A.C.5
  • 16
    • 37249014905 scopus 로고    scopus 로고
    • Diminished Activity of RNA Polymerase III Selectively Disrupts Tissues with the Most Actively Dividing Cells
    • Marshall L, Goodfellow SJ, White RJ, (2007) Diminished Activity of RNA Polymerase III Selectively Disrupts Tissues with the Most Actively Dividing Cells. PLoS Biol 5: e286. doi: 10.1371/journal.pbio.0050286 20076650
    • (2007) PLoS Biol , vol.5 , pp. e286
    • Marshall, L.1    Goodfellow, S.J.2    White, R.J.3
  • 17
    • 84874771923 scopus 로고    scopus 로고
    • Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism
    • Daoud H, Tetreault M, Gibson W, Guerrero K, Cohen A, et al. (2013) Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism. J Med Genet 50: 194–197. doi: 10.1136/jmedgenet-2012-101357 23355746
    • (2013) J Med Genet , vol.50 , pp. 194-197
    • Daoud, H.1    Tetreault, M.2    Gibson, W.3    Guerrero, K.4    Cohen, A.5
  • 18
    • 84875238269 scopus 로고    scopus 로고
    • Regulation of pol III transcription by nutrient and stress signaling pathways
    • Moir RD, Willis IM, (2013) Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta 1829: 361–375. doi: 10.1016/j.bbagrm.2012.11.001 23165150
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 361-375
    • Moir, R.D.1    Willis, I.M.2
  • 19
    • 84875236968 scopus 로고    scopus 로고
    • Maf1, a general negative regulator of RNA polymerase III in yeast
    • Boguta M, (2013) Maf1, a general negative regulator of RNA polymerase III in yeast. Biochim Biophys Acta 1829: 376–384. doi: 10.1016/j.bbagrm.2012.11.004 23201230
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 376-384
    • Boguta, M.1
  • 20
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM, (2012) mTOR signaling in growth control and disease. Cell 149: 274–293. doi: 10.1016/j.cell.2012.03.017 22500797
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 21
    • 84929497645 scopus 로고    scopus 로고
    • Loss of the RNA polymerase III repressor MAF1 confers obesity resistance
    • Bonhoure N, Byrnes A, Moir RD, Hodroj W, Preitner F, et al. (2015) Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev 29: 934–947. doi: 10.1101/gad.258350.115 25934505
    • (2015) Genes Dev , vol.29 , pp. 934-947
    • Bonhoure, N.1    Byrnes, A.2    Moir, R.D.3    Hodroj, W.4    Preitner, F.5
  • 22
    • 0031053040 scopus 로고    scopus 로고
    • Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae
    • Boguta M, Czerska K, Zoladek T, (1997) Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae. Gene 185: 291–296. 9055829
    • (1997) Gene , vol.185 , pp. 291-296
    • Boguta, M.1    Czerska, K.2    Zoladek, T.3
  • 23
    • 0034952725 scopus 로고    scopus 로고
    • Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae
    • Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, et al. (2001) Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 21: 5031–5040. 11438659
    • (2001) Mol Cell Biol , vol.21 , pp. 5031-5040
    • Pluta, K.1    Lefebvre, O.2    Martin, N.C.3    Smagowicz, W.J.4    Stanford, D.R.5
  • 24
    • 33645473067 scopus 로고    scopus 로고
    • The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability
    • Copela LA, Chakshusmathi G, Sherrer RL, Wolin SL, (2006) The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA 12: 644–654. 16581807
    • (2006) RNA , vol.12 , pp. 644-654
    • Copela, L.A.1    Chakshusmathi, G.2    Sherrer, R.L.3    Wolin, S.L.4
  • 25
    • 84904342694 scopus 로고    scopus 로고
    • Requirement of the spindle pole body for targeting and/or tethering proteins to the inner nuclear membrane
    • Diaz-Munoz G, Harchar TA, Lai TP, Shen KF, Hopper AK, (2014) Requirement of the spindle pole body for targeting and/or tethering proteins to the inner nuclear membrane. Nucleus 5: 352–366. doi: 10.4161/nucl.29793 25482124
    • (2014) Nucleus , vol.5 , pp. 352-366
    • Diaz-Munoz, G.1    Harchar, T.A.2    Lai, T.P.3    Shen, K.F.4    Hopper, A.K.5
  • 26
    • 0042823564 scopus 로고    scopus 로고
    • The fission yeast TOR proteins and the rapamycin response: an unexpected tale
    • Weisman R, (2004) The fission yeast TOR proteins and the rapamycin response: an unexpected tale. Curr Top Microbiol Immunol 279: 85–95. 14560953
    • (2004) Curr Top Microbiol Immunol , vol.279 , pp. 85-95
    • Weisman, R.1
  • 27
    • 84922680530 scopus 로고    scopus 로고
    • A methods review on nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis
    • Rijal K, Maraia RJ, Arimbasseri AG, (2015) A methods review on nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 556: 35–50. doi: 10.1016/j.gene.2014.11.034 25447915
    • (2015) Gene , vol.556 , pp. 35-50
    • Rijal, K.1    Maraia, R.J.2    Arimbasseri, A.G.3
  • 28
    • 80053194776 scopus 로고    scopus 로고
    • Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases
    • Lamichhane TN, Blewett NH, Maraia RJ, (2011) Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. RNA 17: 1846–1857. doi: 10.1261/rna.2628611 21873461
    • (2011) RNA , vol.17 , pp. 1846-1857
    • Lamichhane, T.N.1    Blewett, N.H.2    Maraia, R.J.3
  • 29
    • 0028709501 scopus 로고
    • maf1 mutation alters the subcellular localization of the Mod5 protein in yeast
    • Murawski M, Szczesniak B, Zoladek T, Hopper AK, Martin NC, et al. (1994) maf1 mutation alters the subcellular localization of the Mod5 protein in yeast. Acta Biochim Pol 41: 441–8. 7732762
    • (1994) Acta Biochim Pol , vol.41 , pp. 441-448
    • Murawski, M.1    Szczesniak, B.2    Zoladek, T.3    Hopper, A.K.4    Martin, N.C.5
  • 30
    • 0036238273 scopus 로고    scopus 로고
    • The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis
    • Kaminska J, Grabinska K, Kwapisz M, Sikora J, Smagowicz WJ, et al. (2002) The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Res 2: 31–37. 12702319
    • (2002) FEMS Yeast Res , vol.2 , pp. 31-37
    • Kaminska, J.1    Grabinska, K.2    Kwapisz, M.3    Sikora, J.4    Smagowicz, W.J.5
  • 31
    • 0034602703 scopus 로고    scopus 로고
    • Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression
    • Benko AL, Vaduva G, Martin NC, Hopper AK, (2000) Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc Natl Acad Sci USA 97: 61–66. 10618371
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 61-66
    • Benko, A.L.1    Vaduva, G.2    Martin, N.C.3    Hopper, A.K.4
  • 32
    • 84893137842 scopus 로고    scopus 로고
    • Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor
    • Lamichhane TN, Mattijssen S, Maraia RJ, (2013) Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol Cell Biol 33: 4900–4908. doi: 10.1128/MCB.01041-13 24126054
    • (2013) Mol Cell Biol , vol.33 , pp. 4900-4908
    • Lamichhane, T.N.1    Mattijssen, S.2    Maraia, R.J.3
  • 33
    • 84940484187 scopus 로고    scopus 로고
    • Efficient and quantitative high-throughput tRNA sequencing
    • Zheng G, Qin Y, Clark WC, Dai Q, Yi C, et al. (2015) Efficient and quantitative high-throughput tRNA sequencing. Nat Methods 12: 835–837. doi: 10.1038/nmeth.3478 26214130
    • (2015) Nat Methods , vol.12 , pp. 835-837
    • Zheng, G.1    Qin, Y.2    Clark, W.C.3    Dai, Q.4    Yi, C.5
  • 34
    • 84940551378 scopus 로고    scopus 로고
    • ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments
    • Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, et al. (2015) ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 12: 879–884. doi: 10.1038/nmeth.3508 26237225
    • (2015) Nat Methods , vol.12 , pp. 879-884
    • Cozen, A.E.1    Quartley, E.2    Holmes, A.D.3    Hrabeta-Robinson, E.4    Phizicky, E.M.5
  • 35
    • 84899576549 scopus 로고    scopus 로고
    • Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function
    • Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, et al. (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157: 636–650. doi: 10.1016/j.cell.2014.02.058 24766809
    • (2014) Cell , vol.157 , pp. 636-650
    • Karaca, E.1    Weitzer, S.2    Pehlivan, D.3    Shiraishi, H.4    Gogakos, T.5
  • 36
    • 58149189877 scopus 로고    scopus 로고
    • GtRNAdb: a database of transfer RNA genes detected in genomic sequence
    • Chan PP, Lowe TM, (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37: D93–97. doi: 10.1093/nar/gkn787 18984615
    • (2009) Nucleic Acids Res , vol.37 , pp. D93-97
    • Chan, P.P.1    Lowe, T.M.2
  • 37
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W, (2010) Differential expression analysis for sequence count data. Genome Biology 11: R106. doi: 10.1186/gb-2010-11-10-r106 20979621
    • (2010) Genome Biology , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 38
    • 84888418863 scopus 로고    scopus 로고
    • HAMR: high-throughput annotation of modified ribonucleotides
    • Ryvkin P, Leung YY, Silverman IM, Childress M, Valladares O, et al. (2013) HAMR: high-throughput annotation of modified ribonucleotides. RNA 19: 1684–1692. doi: 10.1261/rna.036806.112 24149843
    • (2013) RNA , vol.19 , pp. 1684-1692
    • Ryvkin, P.1    Leung, Y.Y.2    Silverman, I.M.3    Childress, M.4    Valladares, O.5
  • 40
    • 0029801329 scopus 로고    scopus 로고
    • Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review
    • Grosjean H, Auxilien S, Constantinesco F, Simon C, Corda Y, et al. (1996) Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78: 488–501. 8915538
    • (1996) Biochimie , vol.78 , pp. 488-501
    • Grosjean, H.1    Auxilien, S.2    Constantinesco, F.3    Simon, C.4    Corda, Y.5
  • 42
    • 0022996130 scopus 로고
    • Isolation and characterization of the TRM1 gene essential for N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae
    • Ellis SR, Morales MJ, Li JM, Hopper AK, Martin NC, (1986) Isolation and characterization of the TRM1 gene essential for N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. J Biol Chem 261: 9703–9. 2426253
    • (1986) J Biol Chem , vol.261 , pp. 9703-9709
    • Ellis, S.R.1    Morales, M.J.2    Li, J.M.3    Hopper, A.K.4    Martin, N.C.5
  • 43
    • 0028988341 scopus 로고
    • Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: importance of the tRNA architecture
    • Edqvist J, Straby KB, Grosjean H, (1995) Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: importance of the tRNA architecture. Biochimie 77: 54–61. 7599276
    • (1995) Biochimie , vol.77 , pp. 54-61
    • Edqvist, J.1    Straby, K.B.2    Grosjean, H.3
  • 44
    • 0342546428 scopus 로고    scopus 로고
    • The tRNA N2,N2-dimethylguanosine-26 methyltransferase encoded by gene trm1 increases efficiency of suppression of an ochre codon in Schizosaccharomyces pombe
    • Niederberger C, Graub R, Costa A, Desgres J, Schweingruber ME, (1999) The tRNA N2,N2-dimethylguanosine-26 methyltransferase encoded by gene trm1 increases efficiency of suppression of an ochre codon in Schizosaccharomyces pombe. FEBS Lett 464: 67–70. 10611485
    • (1999) FEBS Lett , vol.464 , pp. 67-70
    • Niederberger, C.1    Graub, R.2    Costa, A.3    Desgres, J.4    Schweingruber, M.E.5
  • 45
    • 84875249090 scopus 로고    scopus 로고
    • Transcription termination by the eukaryotic RNA polymerase III
    • Arimbasseri AG, Rijal K, Maraia RJ, (2013) Transcription termination by the eukaryotic RNA polymerase III. Biochim Biophys Acta 1829: 318–330. doi: 10.1016/j.bbagrm.2012.10.006 23099421
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 318-330
    • Arimbasseri, A.G.1    Rijal, K.2    Maraia, R.J.3
  • 46
    • 84953232677 scopus 로고    scopus 로고
    • Bernard G, Vanderver A (2012–2015) Pol III-Related Leukodystrophies. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle (WA).
  • 47
    • 84871727963 scopus 로고    scopus 로고
    • RNA polymerase III mutants in TFIIFα-like C37 cause terminator readthrough with no decrease in transcription output
    • Rijal K, Maraia RJ, (2013) RNA polymerase III mutants in TFIIFα-like C37 cause terminator readthrough with no decrease in transcription output. Nucleic Acids Research 41: 139–155. doi: 10.1093/nar/gks985 23093604
    • (2013) Nucleic Acids Research , vol.41 , pp. 139-155
    • Rijal, K.1    Maraia, R.J.2
  • 48
    • 0036923835 scopus 로고    scopus 로고
    • Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription
    • Upadhya R, Lee J, Willis IM, (2002) Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell 10: 1489–1494. 12504022
    • (2002) Mol Cell , vol.10 , pp. 1489-1494
    • Upadhya, R.1    Lee, J.2    Willis, I.M.3
  • 50
    • 0033199801 scopus 로고    scopus 로고
    • The best yeast?
    • Forsburg SL, (1999) The best yeast? Trends Genet 15: 340–344. 10461200
    • (1999) Trends Genet , vol.15 , pp. 340-344
    • Forsburg, S.L.1
  • 51
    • 35648946305 scopus 로고    scopus 로고
    • Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription
    • Ciesla M, Towpik J, Graczyk D, Oficjalska-Pham et al. (2007) Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 27:7693–7702. 17785443
    • (2007) Mol Cell Biol , vol.27 , pp. 7693-7702
    • Ciesla, M.1    Towpik, J.2    Graczyk, D.3    Oficjalska-Pham4
  • 52
    • 80655144725 scopus 로고    scopus 로고
    • Maf1, repressor of RNA polymerase III, indirectly affects tRNA processing
    • Karkusiewicz I, Turowski TW, Graczyk D, Towpik J, et al. (2011) Maf1, repressor of RNA polymerase III, indirectly affects tRNA processing. J Biol Chem 286:39478–88. doi: 10.1074/jbc.M111.253310 21940626
    • (2011) J Biol Chem , vol.286 , pp. 39478-39488
    • Karkusiewicz, I.1    Turowski, T.W.2    Graczyk, D.3    Towpik, J.4
  • 53
    • 84866622511 scopus 로고    scopus 로고
    • The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications
    • Dewe JM, Whipple JM, Chernyakov I, Jaramillo LN, Phizicky EM, (2012) The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA 18: 1886–1896. doi: 10.1261/rna.033654.112 22895820
    • (2012) RNA , vol.18 , pp. 1886-1896
    • Dewe, J.M.1    Whipple, J.M.2    Chernyakov, I.3    Jaramillo, L.N.4    Phizicky, E.M.5
  • 54
    • 84891368395 scopus 로고    scopus 로고
    • Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae
    • Kramer EB, Hopper AK, (2013) Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 110:21042–7. doi: 10.1073/pnas.1316579110 24297920
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 21042-21047
    • Kramer, E.B.1    Hopper, A.K.2
  • 55
    • 41649102484 scopus 로고    scopus 로고
    • Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast
    • Gustavsson M, Ronne H, (2008) Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast. RNA 14: 666–674. doi: 10.1261/rna.966208 18314501
    • (2008) RNA , vol.14 , pp. 666-674
    • Gustavsson, M.1    Ronne, H.2
  • 56
    • 0029400768 scopus 로고
    • A correlation between N2-dimethylguanosine presence and alternate tRNA conformers
    • Steinberg S, Cedergren R, (1995) A correlation between N2-dimethylguanosine presence and alternate tRNA conformers. RNA 1:886–891. 8548653
    • (1995) RNA , vol.1 , pp. 886-891
    • Steinberg, S.1    Cedergren, R.2
  • 57
    • 0036975278 scopus 로고    scopus 로고
    • Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-delta mutant of Saccharomyces cerevisiae
    • Kwapisz M, Smagowicz WJ, Oficjalska D, Hatin I, Rousset JP, et al. (2002) Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-delta mutant of Saccharomyces cerevisiae. Curr Genet 42: 147–152. 12491008
    • (2002) Curr Genet , vol.42 , pp. 147-152
    • Kwapisz, M.1    Smagowicz, W.J.2    Oficjalska, D.3    Hatin, I.4    Rousset, J.P.5
  • 58
    • 0028988344 scopus 로고
    • Location of N2,N2-dimethylguanosine-specific tRNA methyltransferase
    • Rose AM, Belford HG, Shen WC, Greer CL, Hopper AK, et al. (1995) Location of N2,N2-dimethylguanosine-specific tRNA methyltransferase. Biochimie 77: 45–53. 7599275
    • (1995) Biochimie , vol.77 , pp. 45-53
    • Rose, A.M.1    Belford, H.G.2    Shen, W.C.3    Greer, C.L.4    Hopper, A.K.5
  • 59
    • 33746112995 scopus 로고    scopus 로고
    • ORFeome cloning and global analysis of protein localization in fission yeast Schizosaccharomyces pombe
    • Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, et al. (2006) ORFeome cloning and global analysis of protein localization in fission yeast Schizosaccharomyces pombe. Nat Biotechnol 24: 841–847. 16823372
    • (2006) Nat Biotechnol , vol.24 , pp. 841-847
    • Matsuyama, A.1    Arai, R.2    Yashiroda, Y.3    Shirai, A.4    Kamata, A.5
  • 60
    • 0028022677 scopus 로고
    • Codon usage table for Schizosaccharomyces pombe
    • Forsburg SL, (1994) Codon usage table for Schizosaccharomyces pombe. Yeast 10: 1045–7. 7992504
    • (1994) Yeast , vol.10 , pp. 1045-1047
    • Forsburg, S.L.1
  • 61
    • 48249120798 scopus 로고    scopus 로고
    • Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes
    • Willis IM, Chua G, Tong AH, Brost RL, Hughes TR, et al. (2008) Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes. PLoS Genet 4: e1000112. doi: 10.1371/journal.pgen.1000112 18604275
    • (2008) PLoS Genet , vol.4 , pp. e1000112
    • Willis, I.M.1    Chua, G.2    Tong, A.H.3    Brost, R.L.4    Hughes, T.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.