-
1
-
-
84921875052
-
Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress
-
Allu PK, Marada A, Boggula Y, Karri S, Krishnamoorthy T, and Sepuri NB. Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress. Mol Biol Cell 26: 406-419, 2015.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 406-419
-
-
Allu, P.K.1
Marada, A.2
Boggula, Y.3
Karri, S.4
Krishnamoorthy, T.5
Sepuri, N.B.6
-
2
-
-
0015596284
-
Biological defense mechanisms. the production by leukocytes of superoxide, a potential bactericidal agent
-
Babior BM, Kipnes RS, and Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52: 741-744, 1973.
-
(1973)
J Clin Invest
, vol.52
, pp. 741-744
-
-
Babior, B.M.1
Kipnes, R.S.2
Curnutte, J.T.3
-
3
-
-
12844257477
-
Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins
-
Bigelow DJ and Squier TC. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703: 121-134, 2005.
-
(2005)
Biochim Biophys Acta
, vol.1703
, pp. 121-134
-
-
Bigelow, D.J.1
Squier, T.C.2
-
4
-
-
0042226507
-
Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the proteins biological activity
-
Caldwell P, Luk DC, Weissbach H, and Brot N. Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the proteins biological activity. Proc Natl Acad Sci U S A 75: 5349-5352, 1978.
-
(1978)
Proc Natl Acad Sci U S A
, vol.75
, pp. 5349-5352
-
-
Caldwell, P.1
Luk, D.C.2
Weissbach, H.3
Brot, N.4
-
5
-
-
77956194805
-
Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress
-
Cao G, Lee KP, van der Wijst J, deGraaf M, van der Kemp A, Bindels RJ, and Hoenderop JG. Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J Biol Chem 285: 26081-26087, 2010.
-
(2010)
J Biol Chem
, vol.285
, pp. 26081-26087
-
-
Cao, G.1
Lee, K.P.2
Van Der Wijst, J.3
DeGraaf, M.4
Van Der Kemp, A.5
Bindels, R.J.6
Hoenderop, J.G.7
-
6
-
-
0030952676
-
Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems
-
Chao CC, Ma YS, and Stadtman ER. Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci U S A 94: 2969-2974, 1997.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 2969-2974
-
-
Chao, C.C.1
Ma, Y.S.2
Stadtman, E.R.3
-
7
-
-
0032920132
-
Regulation of voltage-dependent K+ channels by methionine oxidation: Effect of nitric oxide and Vitamin C
-
Ciorba MA, Heinemann SH, Weissbach H, Brot N, and Hoshi T. Regulation of voltage-dependent K+ channels by methionine oxidation: effect of nitric oxide and vitamin C. FEBS Lett 442: 48-52, 1999.
-
(1999)
FEBS Lett
, vol.442
, pp. 48-52
-
-
Ciorba, M.A.1
Heinemann, S.H.2
Weissbach, H.3
Brot, N.4
Hoshi, T.5
-
8
-
-
0018843718
-
Neutrophil-platelet interaction mediated by myeloperoxidase and hydrogen peroxide
-
Clark RA and Klebanoff SJ. Neutrophil-platelet interaction mediated by myeloperoxidase and hydrogen peroxide. J Immunol 124: 399-405, 1980.
-
(1980)
J Immunol
, vol.124
, pp. 399-405
-
-
Clark, R.A.1
Klebanoff, S.J.2
-
9
-
-
0034163437
-
HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase
-
Davis DA, Newcomb FM, Moskovitz J, Wingfield PT, Stahl SJ, Kaufman J, Fales HM, Levine RL, and Yarchoan R. HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase. Biochem J 346 Pt 2: 305-311, 2000.
-
(2000)
Biochem J
, vol.346
, pp. 305-311
-
-
Davis, D.A.1
Newcomb, F.M.2
Moskovitz, J.3
Wingfield, P.T.4
Stahl, S.J.5
Kaufman, J.6
Fales, H.M.7
Levine, R.L.8
Yarchoan, R.9
-
10
-
-
84875737737
-
Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes
-
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830: 3217-3266, 2013.
-
(2013)
Biochim Biophys Acta
, vol.1830
, pp. 3217-3266
-
-
Deponte, M.1
-
11
-
-
84902287070
-
The physiological role of reversible methionine oxidation
-
Drazic A and Winter J. The physiological role of reversible methionine oxidation. Biochim Biophys Acta 1844: 1367- 1382, 2014.
-
(2014)
Biochim Biophys Acta
, vol.1844
, pp. 1367-1382
-
-
Drazic, A.1
Winter, J.2
-
12
-
-
84878675814
-
Methionine oxidation activates a transcription factor in response to oxidative stress
-
Drazic A, Miura H, Peschek J, Le Y, Bach NC, Kriehuber T, and Winter J. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc Natl Acad Sci U S A 110: 9493-9498, 2013.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 9493-9498
-
-
Drazic, A.1
Miura, H.2
Peschek, J.3
Le Bach Y, N.C.4
Kriehuber, T.5
Winter, J.6
-
13
-
-
0028245447
-
Flavin-containing monooxygenase (FMO)-dependent metabolism of methionine and evidence for FMO3 being the major FMO involved in methionine sulfoxidation in rabbit liver and kidney microsomes
-
Duescher RJ, Lawton MP, Philpot RM, and Elfarra AA. Flavin-containing monooxygenase (FMO)-dependent metabolism of methionine and evidence for FMO3 being the major FMO involved in methionine sulfoxidation in rabbit liver and kidney microsomes. J Biol Chem 269: 17525-17530, 1994.
-
(1994)
J Biol Chem
, vol.269
, pp. 17525-17530
-
-
Duescher, R.J.1
Lawton, M.P.2
Philpot, R.M.3
Elfarra, A.A.4
-
14
-
-
42949085382
-
A dynamic pathway for calciumindependent activation of CaMKII by methionine oxidation
-
Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, ODonnell SE, Aykin- Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, and Anderson ME. A dynamic pathway for calciumindependent activation of CaMKII by methionine oxidation. Cell 133: 462-474, 2008.
-
(2008)
Cell
, vol.133
, pp. 462-474
-
-
Erickson, J.R.1
Joiner, M.L.2
Guan, X.3
Kutschke, W.4
Yang, J.5
Oddis, C.V.6
Bartlett, R.K.7
Lowe, J.S.8
ODonnell, S.E.9
Aykin- Burns, N.10
Zimmerman, M.C.11
Zimmerman, K.12
Ham, A.J.13
Weiss, R.M.14
Spitz, D.R.15
Shea, M.A.16
Colbran, R.J.17
Mohler, P.J.18
Anderson, M.E.19
-
15
-
-
2442506617
-
Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli
-
Ezraty B, Grimaud R, El Hassouni M, Moinier D, and Barras F. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J 23: 1868- 1877, 2004.
-
(2004)
EMBO J
, vol.23
, pp. 1868-1877
-
-
Ezraty, B.1
Grimaud, R.2
El Hassouni, M.3
Moinier, D.4
Barras, F.5
-
16
-
-
0035847052
-
Selective degradation of oxidized calmodulin by the 20 S proteasome
-
Ferrington DA, Sun H, Murray KK, Costa J, Williams TD, Bigelow DJ, and Squier TC. Selective degradation of oxidized calmodulin by the 20 S proteasome. J Biol Chem 276: 937-943, 2001.
-
(2001)
J Biol Chem
, vol.276
, pp. 937-943
-
-
Ferrington, D.A.1
Sun, H.2
Murray, K.K.3
Costa, J.4
Williams, T.D.5
Bigelow, D.J.6
Squier, T.C.7
-
17
-
-
65549095447
-
MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: Roles of MsrB1 in redox regulation and identification of a novel selenoprotein form
-
Fomenko DE, Novoselov SV, Natarajan SK, Lee BC, Koc A, Carlson BA, Lee TH, Kim HY, Hatfield DL, and Gladyshev VN. MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J Biol Chem 284: 5986-5993, 2009.
-
(2009)
J Biol Chem
, vol.284
, pp. 5986-5993
-
-
Fomenko, D.E.1
Novoselov, S.V.2
Natarajan, S.K.3
Lee, B.C.4
Koc, A.5
Carlson, B.A.6
Lee, T.H.7
Kim, H.Y.8
Hatfield, D.L.9
Gladyshev, V.N.10
-
18
-
-
46449133872
-
The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling
-
Fourquet S, Huang ME, DAutreaux B, and Toledano MB. The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid Redox Signal 10: 1565-1576, 2008.
-
(2008)
Antioxid Redox Signal
, vol.10
, pp. 1565-1576
-
-
Fourquet, S.1
Huang, M.E.2
DAutreaux, B.3
Toledano, M.B.4
-
19
-
-
0019209724
-
Flavin adenine dinucleotide- dependent monooxygenase: Its role in the sulfoxidation of pesticides in mammals
-
Hajjar NP and Hodgson E. Flavin adenine dinucleotide- dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals. Science 209: 1134-1136, 1980.
-
(1980)
Science
, vol.209
, pp. 1134-1136
-
-
Hajjar, N.P.1
Hodgson, E.2
-
20
-
-
84856100794
-
Oxidation of CaMKII determines the cardiotoxic effects of aldosterone
-
He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, and Anderson ME. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17: 1610-1618, 2011.
-
(2011)
Nat Med
, vol.17
, pp. 1610-1618
-
-
He, B.J.1
Joiner, M.L.2
Singh, M.V.3
Luczak, E.D.4
Swaminathan, P.D.5
Koval, O.M.6
Kutschke, W.7
Allamargot, C.8
Yang, J.9
Guan, X.10
Zimmerman, K.11
Grumbach, I.M.12
Weiss, R.M.13
Spitz, D.R.14
Sigmund, C.D.15
Blankesteijn, W.M.16
Heymans, S.17
Mohler, P.J.18
Anderson, M.E.19
-
21
-
-
0034534165
-
Antioxidant function of thioredoxin and glutaredoxin systems
-
Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2: 811-820, 2000.
-
(2000)
Antioxid Redox Signal
, vol.2
, pp. 811-820
-
-
Holmgren, A.1
-
22
-
-
80052285848
-
Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly
-
Hung RJ and Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton 68: 415-433, 2011.
-
(2011)
Cytoskeleton
, vol.68
, pp. 415-433
-
-
Hung, R.J.1
Terman, J.R.2
-
23
-
-
84455205549
-
Direct redox regulation of F-actin assembly and disassembly by Mical
-
Hung RJ, Pak CW, and Terman JR. Direct redox regulation of F-actin assembly and disassembly by Mical. Science 334: 1710-1713, 2011.
-
(2011)
Science
, vol.334
, pp. 1710-1713
-
-
Hung, R.J.1
Pak, C.W.2
Terman, J.R.3
-
24
-
-
84893385313
-
SelR reverses Mical-mediated oxidation of actin to regulate Factin dynamics
-
Hung RJ, Spaeth CS, Yesilyurt HG, and Terman JR. SelR reverses Mical-mediated oxidation of actin to regulate Factin dynamics. Nat Cell Biol 15: 1445-1454, 2013.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1445-1454
-
-
Hung, R.J.1
Spaeth, C.S.2
Yesilyurt, H.G.3
Terman, J.R.4
-
25
-
-
76749102917
-
Mical links semaphorins to F-actin disassembly
-
Hung RJ, Yazdani U, Yoon J, Wu H, Yang T, Gupta N, Huang Z, van Berkel WJ, and Terman JR. Mical links semaphorins to F-actin disassembly. Nature 463: 823-827, 2010.
-
(2010)
Nature
, vol.463
, pp. 823-827
-
-
Hung, R.J.1
Yazdani, U.2
Yoon, J.3
Wu, H.4
Yang, T.5
Gupta, N.6
Huang, Z.7
Van Berkel, W.J.8
Terman, J.R.9
-
26
-
-
77957257416
-
Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast
-
Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, and Gladyshev VN. Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49: 8618-8625, 2010.
-
(2010)
Biochemistry
, vol.49
, pp. 8618-8625
-
-
Kaya, A.1
Koc, A.2
Lee, B.C.3
Fomenko, D.E.4
Rederstorff, M.5
Krol, A.6
Lescure, A.7
Gladyshev, V.N.8
-
27
-
-
2442456741
-
Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-)
-
Khor HK, Fisher MT, and Schoneich C. Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J Biol Chem 279: 19486-19493, 2004.
-
(2004)
J Biol Chem
, vol.279
, pp. 19486-19493
-
-
Khor, H.K.1
Fisher, M.T.2
Schoneich, C.3
-
28
-
-
29144494461
-
Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases
-
Kim HY and Gladyshev VN. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol 3: e375, 2005.
-
(2005)
PLoS Biol
, vol.3
, pp. e375
-
-
Kim, H.Y.1
Gladyshev, V.N.2
-
29
-
-
35748932403
-
Methionine sulfoxide reductases: Selenoprotein forms and roles in antioxidant protein repair in mammals
-
Kim HY and Gladyshev VN. Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 407: 321-329, 2007.
-
(2007)
Biochem J
, vol.407
, pp. 321-329
-
-
Kim, H.Y.1
Gladyshev, V.N.2
-
30
-
-
2542612966
-
Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and - Independent components of aging
-
Koc A, Gasch AP, Rutherford JC, Kim HY, and Gladyshev VN. Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and - independent components of aging. Proc Natl Acad Sci U S A 101: 7999-8004, 2004.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 7999-8004
-
-
Koc, A.1
Gasch, A.P.2
Rutherford, J.C.3
Kim, H.Y.4
Gladyshev, V.N.5
-
31
-
-
0030249888
-
Characterization of the methionine S-oxidase activity of rat liver and kidney microsomes: Immunochemical and kinetic evidence for FMO3 being the major catalyst
-
Krause RJ, Ripp SL, Sausen PJ, Overby LH, Philpot RM, and Elfarra AA. Characterization of the methionine S-oxidase activity of rat liver and kidney microsomes: immunochemical and kinetic evidence for FMO3 being the major catalyst. Arch Biochem Biophys 333: 109-116, 1996.
-
(1996)
Arch Biochem Biophys
, vol.333
, pp. 109-116
-
-
Krause, R.J.1
Ripp, S.L.2
Sausen, P.J.3
Overby, L.H.4
Philpot, R.M.5
Elfarra, A.A.6
-
32
-
-
78651227092
-
The biological significance of methionine sulfoxide stereochemistry
-
Lee BC and Gladyshev VN. The biological significance of methionine sulfoxide stereochemistry. Free Radic Biol Med 50: 221-227, 2011.
-
(2011)
Free Radic Biol Med
, vol.50
, pp. 221-227
-
-
Lee, B.C.1
Gladyshev, V.N.2
-
33
-
-
80055017121
-
Selective reduction of methylsulfinyl-containing compounds by mammalian MsrA suggests a strategy for improved drug efficacy
-
Lee BC, Fomenko DE, and Gladyshev VN. Selective reduction of methylsulfinyl-containing compounds by mammalian MsrA suggests a strategy for improved drug efficacy. ACS Chem Biol 6: 1029-1035, 2011.
-
(2011)
ACS Chem Biol
, vol.6
, pp. 1029-1035
-
-
Lee, B.C.1
Fomenko, D.E.2
Gladyshev, V.N.3
-
34
-
-
57649119783
-
Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase
-
Lee BC, Le DT, and Gladyshev VN. Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J Biol Chem 283: 28361-28369, 2008.
-
(2008)
J Biol Chem
, vol.283
, pp. 28361-28369
-
-
Lee, B.C.1
Le, D.T.2
Gladyshev, V.N.3
-
35
-
-
84881499141
-
MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation
-
Lee BC, Peterfi Z, Hoffmann FW, Moore RE, Kaya A, Avanesov A, Tarrago L, Zhou Y, Weerapana E, Fomenko DE, Hoffmann PR, and Gladyshev VN. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell 51: 397-404, 2013.
-
(2013)
Mol Cell
, vol.51
, pp. 397-404
-
-
Lee, B.C.1
Peterfi, Z.2
Hoffmann, F.W.3
Moore, R.E.4
Kaya, A.5
Avanesov, A.6
Tarrago, L.7
Zhou, Y.8
Weerapana, E.9
Fomenko, D.E.10
Hoffmann, P.R.11
Gladyshev, V.N.12
-
36
-
-
85017800787
-
Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A
-
Lim JC, Kim G, and Levine RL. Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A. Free Radic Biol Med 68: 220-233, 2013.
-
(2013)
Free Radic Biol Med
, vol.68
, pp. 220-233
-
-
Lim, J.C.1
Kim, G.2
Levine, R.L.3
-
37
-
-
34447308960
-
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function
-
Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, and Lowther WT. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 104: 9597-9602, 2007.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 9597-9602
-
-
Lin, Z.1
Johnson, L.C.2
Weissbach, H.3
Brot, N.4
Lively, M.O.5
Lowther, W.T.6
-
38
-
-
84883674898
-
The redox biochemistry of protein sulfenylation and sulfinylation
-
Lo Conte M and Carroll KS. The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 288: 26480-26488, 2013.
-
(2013)
J Biol Chem
, vol.288
, pp. 26480-26488
-
-
Lo Conte, M.1
Carroll, K.S.2
-
39
-
-
85017830519
-
Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells
-
Loria R, Bon G, Perotti V, Gallo E, Bersani I, Baldassari P, Porru M, Leonetti C, Di Carlo S, Visca P, Brizzi MF, Anichini A, Mortarini R, and Falcioni R. Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells. Oncotarget 2: 265-270, 2011.
-
(2011)
Oncotarget
, vol.2
, pp. 265-270
-
-
Loria, R.1
Bon, G.2
Perotti, V.3
Gallo, E.4
Bersani, I.5
Baldassari, P.6
Porru, M.7
Leonetti, C.8
Di Carlo, S.9
Visca, P.10
Brizzi, M.F.11
Anichini, A.12
Mortarini, R.13
Falcioni, R.14
-
40
-
-
0016148483
-
Superoxide radicals as precursors of mitochondrial hydrogen peroxide
-
Loschen G, Azzi A, Richter C, and Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42: 68-72, 1974.
-
(1974)
FEBS Lett
, vol.42
, pp. 68-72
-
-
Loschen, G.1
Azzi, A.2
Richter, C.3
Flohe, L.4
-
41
-
-
84895076694
-
Redox modification of nuclear actin by Mical-2 regulates SRF signaling
-
Lundquist MR, Storaska AJ, Liu TC, Larsen SD, Evans T, Neubig RR, and Jaffrey SR. Redox modification of nuclear actin by Mical-2 regulates SRF signaling. Cell 156: 563- 576, 2013.
-
(2013)
Cell
, vol.156
, pp. 563-576
-
-
Lundquist, M.R.1
Storaska, A.J.2
Liu, T.C.3
Larsen, S.D.4
Evans, T.5
Neubig, R.R.6
Jaffrey, S.R.7
-
42
-
-
33646761969
-
IkB is a sensitive target for oxidation by cell-permeable chloramines: Inhibition of NF-kB activity by glycine chloramine through methionine oxidation
-
Midwinter RG, Fook-Choe Cheah FC, Moskovitz J, Vissers MC, and Winterbourn CC. IkB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kB activity by glycine chloramine through methionine oxidation. Biochem J 396: 71-78, 2006.
-
(2006)
Biochem J
, vol.396
, pp. 71-78
-
-
Midwinter, R.G.1
Fook-Choe Cheah, F.C.2
Moskovitz, J.3
Vissers, M.C.4
Winterbourn, C.C.5
-
43
-
-
84885005705
-
Lack of robustness of life extension associated with several single-gene P element mutations in Drosophila melanogaster
-
Mockett RJ and Nobles AC. Lack of robustness of life extension associated with several single-gene P element mutations in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 68: 1157-1169, 2013.
-
(2013)
J Gerontol A Biol Sci Med Sci
, vol.68
, pp. 1157-1169
-
-
Mockett, R.J.1
Nobles, A.C.2
-
44
-
-
0035818520
-
Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals
-
Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, and Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98: 12920-12925, 2001.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 12920-12925
-
-
Moskovitz, J.1
Bar-Noy, S.2
Williams, W.M.3
Requena, J.4
Berlett, B.S.5
Stadtman, E.R.6
-
45
-
-
0036292867
-
Myeloperoxidase- mediated protein oxidation: Its possible biological functions
-
Naskalski JW, Marcinkiewicz J, and Drozdz R. Myeloperoxidase- mediated protein oxidation: its possible biological functions. Clin Chem Lab Med 40: 463-468, 2002.
-
(2002)
Clin Chem Lab Med
, vol.40
, pp. 463-468
-
-
Naskalski, J.W.1
Marcinkiewicz, J.2
Drozdz, R.3
-
46
-
-
0028852816
-
Oxidation of methionyl residues in proteins: Tools, targets, and reversal
-
Nogt W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18: 93-105, 1994.
-
(1994)
Free Radic Biol Med
, vol.18
, pp. 93-105
-
-
Nogt, W.1
-
47
-
-
56649119417
-
Purification and characterization of flavin-containing monooxygenase isoform 3 from rat kidney microsomes
-
Novick RM and Elfarra AA. Purification and characterization of flavin-containing monooxygenase isoform 3 from rat kidney microsomes. Drug Metab Dispos 36: 2468-2474, 2008.
-
(2008)
Drug Metab Dispos
, vol.36
, pp. 2468-2474
-
-
Novick, R.M.1
Elfarra, A.A.2
-
48
-
-
28844507218
-
Oxidative modification of IjB by monochloramine inhibits tumor necrosis factor a-induced NF-jB activation
-
Ogino T, Hosako M, Hiramatsu K, Omori M, Ozaki M, and Okada S. Oxidative modification of IjB by monochloramine inhibits tumor necrosis factor a-induced NF-jB activation. Biochim Biophys Acta 1746: 135-142, 2005.
-
(2005)
Biochim Biophys Acta
, vol.1746
, pp. 135-142
-
-
Ogino, T.1
Hosako, M.2
Hiramatsu, K.3
Omori, M.4
Ozaki, M.5
Okada, S.6
-
49
-
-
0018893766
-
Hamster hepatic nuclear mixedfunction amine oxidase: Location and specific activity
-
Patton SE, Rosen GM, Rauckman EJ, Graham DG, Small B, and Ziegler DM. Hamster hepatic nuclear mixedfunction amine oxidase: location and specific activity. Mol Pharmacol 1: 151-156, 1980.
-
(1980)
Mol Pharmacol
, vol.1
, pp. 151-156
-
-
Patton, S.E.1
Rosen, G.M.2
Rauckman, E.J.3
Graham, D.G.4
Small, B.5
Ziegler, D.M.6
-
51
-
-
73249129955
-
Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils
-
Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW, and Fu X. Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci U S A 106: 18686-18691, 2009.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 18686-18691
-
-
Rosen, H.1
Klebanoff, S.J.2
Wang, Y.3
Brot, N.4
Heinecke, J.W.5
Fu, X.6
-
52
-
-
0037022556
-
High-quality life extension by the enzyme peptide methionine sulfoxide reductase
-
Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, and Hoshi T. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99: 2748-2753, 2002.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 2748-2753
-
-
Ruan, H.1
Tang, X.D.2
Chen, M.L.3
Joiner, M.L.4
Sun, G.5
Brot, N.6
Weissbach, H.7
Heinemann, S.H.8
Iverson, L.9
Wu, C.F.10
Hoshi, T.11
-
53
-
-
70349693474
-
Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span
-
Salmon AB, Perez VI, Bokov A, Jernigan A, Kim G, Zhao H, Levine RL, and Richardson A. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J 23: 3601-3608, 2009.
-
(2009)
FASEB J
, vol.23
, pp. 3601-3608
-
-
Salmon, A.B.1
Perez, V.I.2
Bokov, A.3
Jernigan, A.4
Kim, G.5
Zhao, H.6
Levine, R.L.7
Richardson, A.8
-
54
-
-
12844260763
-
Methionine oxidation by reactive oxygen species: Reaction mechanisms and relevance to Alzheimers disease
-
Schöneich C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimers disease. Biochim Biophys Acta 1703: 111-119, 2005.
-
(2005)
Biochim Biophys Acta
, vol.1703
, pp. 111-119
-
-
Schöneich, C.1
-
55
-
-
50449086363
-
Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I
-
Shao B, Cavigiolio G, Brot N, Oda MN, and Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc Natl Acad Sci U S A 105: 12224-12229, 2008.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 12224-12229
-
-
Shao, B.1
Cavigiolio, G.2
Brot, N.3
Oda, M.N.4
Heinecke, J.W.5
-
56
-
-
33646941974
-
Myeloperoxidase impairs ABCA1- dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I
-
Shao B, Oda MN, Bergt C, Fu X, Green PS, Brot N, Oram JF, and Heinecke JW. Myeloperoxidase impairs ABCA1- dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J Biol Chem 281: 9001-9004, 2006.
-
(2006)
J Biol Chem
, vol.281
, pp. 9001-9004
-
-
Shao, B.1
Oda, M.N.2
Bergt, C.3
Fu, X.4
Green, P.S.5
Brot, N.6
Oram, J.F.7
Heinecke, J.W.8
-
57
-
-
84857633918
-
Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL
-
Shao B. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim Biophys Acta 1821: 490-501, 2012.
-
(2012)
Biochim Biophys Acta
, vol.1821
, pp. 490-501
-
-
Shao, B.1
-
58
-
-
84897444272
-
Role of metabolic H2O2 generation: Redox signaling and oxidative stress
-
Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289: 8735-8741, 2014.
-
(2014)
J Biol Chem
, vol.289
, pp. 8735-8741
-
-
Sies, H.1
-
59
-
-
0346100345
-
Free radical-mediated oxidation of free amino acids and amino acid residues in proteins
-
Stadtman ER and Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25: 207-218, 2003.
-
(2003)
Amino Acids
, vol.25
, pp. 207-218
-
-
Stadtman, E.R.1
Levine, R.L.2
-
60
-
-
0142151375
-
Oxidation of methionine residues of proteins: Biological consequences
-
Stadtman ER, Moskovitz J, and Levine RL. Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5: 577-582, 2003.
-
(2003)
Antioxid Redox Signal
, vol.5
, pp. 577-582
-
-
Stadtman, E.R.1
Moskovitz, J.2
Levine, R.L.3
-
61
-
-
4244218956
-
Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism
-
Stadtman ER, Moskovitz J, Berlett BS, and Levine RL. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biochem 234-235: 3-9, 2002.
-
(2002)
Mol Cell Biochem
, vol.234-235
, pp. 3-9
-
-
Stadtman, E.R.1
Moskovitz, J.2
Berlett, B.S.3
Levine, R.L.4
-
62
-
-
12844268130
-
Methionine oxidation and aging
-
Stadtman ER, Van Remmen H, Richardson A, Wehr NB, and Levine RL. Methionine oxidation and aging. Biochim Biophys Acta 1703: 135-140, 2005.
-
(2005)
Biochim Biophys Acta
, vol.1703
, pp. 135-140
-
-
Stadtman, E.R.1
Van Remmen, H.2
Richardson, A.3
Wehr, N.B.4
Levine, R.L.5
-
63
-
-
34447633762
-
Functional consequences of methionine oxidation of hERG potassium channels
-
Su Z, Limberis J, Martin RL, Xu R, Kolbe K, Heinemann SH, Hoshi T, Cox BF, and Gintant GA. Functional consequences of methionine oxidation of hERG potassium channels. Biochem Pharmacol 74: 702-711, 2007.
-
(2007)
Biochem Pharmacol
, vol.74
, pp. 702-711
-
-
Su, Z.1
Limberis, J.2
Martin, R.L.3
Xu, R.4
Kolbe, K.5
Heinemann, S.H.6
Hoshi, T.7
Cox, B.F.8
Gintant, G.A.9
-
64
-
-
84940005486
-
Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors
-
Tarrago L, Péterfi Z, Lee BC, Michel T, and Gladyshev VN. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 11: 332-338, 2015.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 332-338
-
-
Tarrago, L.1
Péterfi, Z.2
Lee, B.C.3
Michel, T.4
Gladyshev, V.N.5
-
65
-
-
0037188897
-
MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion
-
Terman JR, Mao T, Pasterkamp RJ, Yu HH, and Kolodkin AL. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109: 887-900, 2002.
-
(2002)
Cell
, vol.109
, pp. 887-900
-
-
Terman, J.R.1
Mao, T.2
Pasterkamp, R.J.3
Yu, H.H.4
Kolodkin, A.L.5
-
66
-
-
0018966601
-
Oxidation of methionine by human polymorphonuclear leukocytes
-
Tsan MF and Chen JW. Oxidation of methionine by human polymorphonuclear leukocytes. J Clin Invest 65: 1041-1050, 1980.
-
(1980)
J Clin Invest
, vol.65
, pp. 1041-1050
-
-
Tsan, M.F.1
Chen, J.W.2
-
67
-
-
84904299200
-
The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections
-
Van Battum EY, Gunput RA, Lemstra S, Groen EJ, Yu KL, Adolfs Y, Zhou Y, Hoogenraad CC, Yoshida Y, Schachner M, Akhmanova A, and Pasterkamp RJ. The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections. Nat Commun 5: 4317, 2014.
-
(2014)
Nat Commun
, vol.5
, pp. 4317
-
-
Van Battum, E.Y.1
Gunput, R.A.2
Lemstra, S.3
Groen, E.J.4
Yu, K.L.5
Adolfs, Y.6
Zhou, Y.7
Hoogenraad, C.C.8
Yoshida, Y.9
Schachner, M.10
Akhmanova, A.11
Pasterkamp, R.J.12
-
68
-
-
84865648246
-
Redox active thiol sensors of oxidative and nitrosative stress
-
Vazquez-Torres A. Redox active thiol sensors of oxidative and nitrosative stress. Antioxid Redox Signal 17: 1201- 1214, 2012.
-
(2012)
Antioxid Redox Signal
, vol.17
, pp. 1201-1214
-
-
Vazquez-Torres, A.1
-
69
-
-
3142661063
-
Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases
-
Vougier S, Mary J, Dautin N, Vinh J, Friguet B, and Ladant D. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. J Biol Chem 279: 30210-30218, 2004.
-
(2004)
J Biol Chem
, vol.279
, pp. 30210-30218
-
-
Vougier, S.1
Mary, J.2
Dautin, N.3
Vinh, J.4
Friguet, B.5
Ladant, D.6
-
70
-
-
12844264123
-
Methionine sulfoxide reductases: History and cellular role in protecting against oxidative damage
-
Weissbach H, Resnick L, and Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703: 203-212, 2005.
-
(2005)
Biochim Biophys Acta
, vol.1703
, pp. 203-212
-
-
Weissbach, H.1
Resnick, L.2
Brot, N.3
-
71
-
-
82255175041
-
MICALs in control of the cytoskeleton, exocytosis, and cell death
-
Zhou Y, Gunput RF, Adolfs Y, and Pasterkamp RJ. MICALs in control of the cytoskeleton, exocytosis, and cell death. Cell Mol Life Sci 68: 4033-4044, 2011.
-
(2011)
Cell Mol Life Sci
, vol.68
, pp. 4033-4044
-
-
Zhou, Y.1
Gunput, R.F.2
Adolfs, Y.3
Pasterkamp, R.J.4
-
72
-
-
84903649897
-
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release
-
Zorov DB, Juhaszova M, and Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94: 909-950, 2014.
-
(2014)
Physiol Rev
, vol.94
, pp. 909-950
-
-
Zorov, D.B.1
Juhaszova, M.2
Sollott, S.J.3
|