메뉴 건너뛰기




Volumn 50, Issue 2, 2016, Pages 150-171

One- and two-electron oxidation of thiols: Mechanisms, kinetics and biological fates

Author keywords

Cysteine; peroxidases sulfenic acid; thiol; thiyl radical

Indexed keywords

CARBONIC ACID; CARBONIC ACID DERIVATIVE; HALOAMINE; HYDROGEN PEROXIDE; HYDROPEROXIDE DERIVATIVE; HYDROXYL RADICAL; METAL COMPLEX; NITROGEN DIOXIDE; PEROXIDE; PEROXYNITRITE; RADICAL; SULFENIC ACID DERIVATIVE; SUPEROXIDE; THIOL; FREE RADICAL; THIOL DERIVATIVE;

EID: 84955479140     PISSN: 10715762     EISSN: 10292470     Source Type: Journal    
DOI: 10.3109/10715762.2015.1089988     Document Type: Article
Times cited : (114)

References (250)
  • 1
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001;30:1191-1212.
    • (2001) Free Radic Biol Med , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 2
    • 0025370816 scopus 로고
    • Structure-function relationships in dihydrolipoamide acyltransferases
    • Reed LJ, Hackert ML. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem 1990; 265:8971-8974.
    • (1990) J Biol Chem , vol.265 , pp. 8971-8974
    • Reed, L.J.1    Hackert, M.L.2
  • 3
    • 37649019601 scopus 로고    scopus 로고
    • Mechanism of action of the disease-modifying anti-arthritic thiol agents D-penicillamine and sodium aurothiomalate: Restoration of cellular free thiols and sequestration of reactive aldehydes
    • Wood PL, Khan MA, Moskal JR. Mechanism of action of the disease-modifying anti-arthritic thiol agents D-penicillamine and sodium aurothiomalate: restoration of cellular free thiols and sequestration of reactive aldehydes. Eur J Pharmacol 2008;580:48-54.
    • (2008) Eur J Pharmacol , vol.580 , pp. 48-54
    • Wood, P.L.1    Khan, M.A.2    Moskal, J.R.3
  • 4
    • 0037020249 scopus 로고    scopus 로고
    • Reaction mechanism, evolutionary analysis, and role of zinc in drosophila methionine-R-sulfoxide reductase
    • Kumar RA, Koc A, Cerny RL, Gladyshev VN. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 2002;277:37527-37535.
    • (2002) J Biol Chem , vol.277 , pp. 37527-37535
    • Kumar, R.A.1    Koc, A.2    Cerny, R.L.3    Gladyshev, V.N.4
  • 7
    • 0346398321 scopus 로고    scopus 로고
    • Thiol-dependent peroxidases care little about homology-based assignments of function
    • Flohe L, Jaeger T, Pilawa S, Sztajer H. Thiol-dependent peroxidases care little about homology-based assignments of function. Redox Rep 2003;8:256-264.
    • (2003) Redox Rep , vol.8 , pp. 256-264
    • Flohe, L.1    Jaeger, T.2    Pilawa, S.3    Sztajer, H.4
  • 8
    • 33845480287 scopus 로고    scopus 로고
    • Protein tyrosine phosphorylation and reversible oxidation: Two cross-talking posttranslation modifications
    • Chiarugi P, Buricchi F. Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid Redox Signal 2007;9:1-24.
    • (2007) Antioxid Redox Signal , vol.9 , pp. 1-24
    • Chiarugi, P.1    Buricchi, F.2
  • 9
    • 33746228340 scopus 로고    scopus 로고
    • Redox regulation in anabolic and catabolic processes
    • Droge W. Redox regulation in anabolic and catabolic processes. Curr Opin Clin Nutr Metab Care 2006;9: 190-195.
    • (2006) Curr Opin Clin Nutr Metab Care , vol.9 , pp. 190-195
    • Droge, W.1
  • 10
    • 3242712276 scopus 로고    scopus 로고
    • Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers
    • Forman HJ, Fukuto JM, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 2004;287:C246-256.
    • (2004) Am J Physiol Cell Physiol , vol.287 , pp. C246-256
    • Forman, H.J.1    Fukuto, J.M.2    Torres, M.3
  • 11
    • 84875592333 scopus 로고    scopus 로고
    • Thiol/disulfide redox states in signaling and sensing
    • Go YM, Jones DP. Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol 2013;48:173-181.
    • (2013) Crit Rev Biochem Mol Biol , vol.48 , pp. 173-181
    • Go, Y.M.1    Jones, D.P.2
  • 12
    • 84924119180 scopus 로고    scopus 로고
    • Are free radicals involved in thiol-based redox signaling?
    • Winterbourn CC. Are free radicals involved in thiol-based redox signaling? Free Radic Biol Med 2015;80:164-170.
    • (2015) Free Radic Biol Med , vol.80 , pp. 164-170
    • Winterbourn, C.C.1
  • 13
    • 34248581972 scopus 로고    scopus 로고
    • The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH
    • Madej E, Wardman P. The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH. Arch Biochem Biophys 2007;462:94-102.
    • (2007) Arch Biochem Biophys , vol.462 , pp. 94-102
    • Madej, E.1    Wardman, P.2
  • 14
    • 0034622573 scopus 로고    scopus 로고
    • Redox properties of protein disulfide bond in oxidized thioredoxin and lysozyme: A pulse radiolysis study
    • Lmoumene CE, Conte D, Jacquot JP, Houee-Levin C. Redox properties of protein disulfide bond in oxidized thioredoxin and lysozyme: a pulse radiolysis study. Biochemistry 2000;39:9295-9301.
    • (2000) Biochemistry , vol.39 , pp. 9295-9301
    • Lmoumene, C.E.1    Conte, D.2    Jacquot, J.P.3    Houee-Levin, C.4
  • 15
    • 84877864738 scopus 로고    scopus 로고
    • Electron capture by the thiyl radical and disulfide bond: Ligand effects on the reduction potential
    • Roos G, De Proft F, Geerlings P. Electron capture by the thiyl radical and disulfide bond: ligand effects on the reduction potential. Chemistry 2013;19:5050-5060.
    • (2013) Chemistry , vol.19 , pp. 5050-5060
    • Roos, G.1    De Proft, F.2    Geerlings, P.3
  • 16
    • 0028943722 scopus 로고
    • Heterocyclic thiols as antioxidants: Why ovothiol C is a better antioxidant than ergothioneine
    • Marjanovic B, Simic MG, Jovanovic SV. Heterocyclic thiols as antioxidants: why ovothiol C is a better antioxidant than ergothioneine. Free Radic Biol Med 1995;18:679-685.
    • (1995) Free Radic Biol Med , vol.18 , pp. 679-685
    • Marjanovic, B.1    Simic, M.G.2    Jovanovic, S.V.3
  • 17
    • 84875709337 scopus 로고    scopus 로고
    • The fairytale of the GSSG/GSH redox potential
    • Flohe L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta 2013;1830:3139-3142.
    • (2013) Biochim Biophys Acta , vol.1830 , pp. 3139-3142
    • Flohe, L.1
  • 18
    • 0023759565 scopus 로고
    • The potential diagram for oxygen at pH 7
    • Wood PM. The potential diagram for oxygen at pH 7. Biochem J 1988;253:287-289.
    • (1988) Biochem J , vol.253 , pp. 287-289
    • Wood, P.M.1
  • 21
    • 0021944046 scopus 로고
    • Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals
    • Thornalley PJ, Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 1985;827:36-44.
    • (1985) Biochim Biophys Acta , vol.827 , pp. 36-44
    • Thornalley, P.J.1    Vasak, M.2
  • 22
    • 0016827580 scopus 로고
    • Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks of killing of mammalian cells
    • Roots R, Okada S. Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks of killing of mammalian cells. Radiat Res 1975;64:306-320.
    • (1975) Radiat Res , vol.64 , pp. 306-320
    • Roots, R.1    Okada, S.2
  • 24
    • 33645037891 scopus 로고    scopus 로고
    • The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation
    • Lee JW, Helmann JD. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 2006;440:363-367.
    • (2006) Nature , vol.440 , pp. 363-367
    • Lee, J.W.1    Helmann, J.D.2
  • 25
    • 34248574049 scopus 로고    scopus 로고
    • Acceleration of nitric oxide autoxidation and nitrosation by membranes
    • Moller MN, Li Q, Lancaster JR Jr, Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life 2007;59:243-248.
    • (2007) IUBMB Life , vol.59 , pp. 243-248
    • Moller, M.N.1    Li, Q.2    Lancaster, J.R.3    Denicola, A.4
  • 27
    • 0030249458 scopus 로고    scopus 로고
    • Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations
    • Denicola A, Freeman BA, Trujillo M, Radi R. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 1996;333:49-58.
    • (1996) Arch Biochem Biophys , vol.333 , pp. 49-58
    • Denicola, A.1    Freeman, B.A.2    Trujillo, M.3    Radi, R.4
  • 28
    • 0032171410 scopus 로고    scopus 로고
    • Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide
    • Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998;25:392-403.
    • (1998) Free Radic Biol Med , vol.25 , pp. 392-403
    • Squadrito, G.L.1    Pryor, W.A.2
  • 29
    • 57449110511 scopus 로고    scopus 로고
    • Kinetic analysis of intracellular concentrations of reactive nitrogen species
    • Lim CH, Dedon PC, Deen WM. Kinetic analysis of intracellular concentrations of reactive nitrogen species. Chem Res Toxicol 2008;21:2134-2147.
    • (2008) Chem Res Toxicol , vol.21 , pp. 2134-2147
    • Lim, C.H.1    Dedon, P.C.2    Deen, W.M.3
  • 30
    • 0034697361 scopus 로고    scopus 로고
    • Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation
    • van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ. Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem 2000;275: 11638-11644.
    • (2000) J Biol Chem , vol.275 , pp. 11638-11644
    • Van Dalen, C.J.1    Winterbourn, C.C.2    Senthilmohan, R.3    Kettle, A.J.4
  • 34
    • 0037096198 scopus 로고    scopus 로고
    • Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH
    • Ford E, Hughes MN, Wardman P. Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic Biol Med 2002;32:1314-1323.
    • (2002) Free Radic Biol Med , vol.32 , pp. 1314-1323
    • Ford, E.1    Hughes, M.N.2    Wardman, P.3
  • 35
    • 10644245807 scopus 로고    scopus 로고
    • Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate
    • Bonini MG, Miyamoto S, Di Mascio P, Augusto O. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate. J Biol Chem 2004;279:51836-51843.
    • (2004) J Biol Chem , vol.279 , pp. 51836-51843
    • Bonini, M.G.1    Miyamoto, S.2    Di Mascio, P.3    Augusto, O.4
  • 36
    • 66049108956 scopus 로고    scopus 로고
    • Peroxymonocarbonate and carbonate radical displace the hydroxyl-like oxidant in the sod1 peroxidase activity under physiological conditions
    • Medinas DB, Toledo JC Jr, Cerchiaro G, do-Amaral AT, de-Rezende L, Malvezzi A, Augusto O. Peroxymonocarbonate and carbonate radical displace the hydroxyl-like oxidant in the Sod1 peroxidase activity under physiological conditions. Chem Res Toxicol 2009;22: 639-648.
    • (2009) Chem Res Toxicol , vol.22 , pp. 639-648
    • Medinas, D.B.1    Toledo, J.C.2    Cerchiaro, G.3    Do-Amaral, A.T.4    De-Rezende, L.5    Malvezzi, A.6    Augusto, O.7
  • 37
    • 0033574624 scopus 로고    scopus 로고
    • Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide
    • Bonini MG, Radi R, Ferrer-Sueta G, Ferreira AM, Augusto O. Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J Biol Chem 1999;274:10802-10806.
    • (1999) J Biol Chem , vol.274 , pp. 10802-10806
    • Bonini, M.G.1    Radi, R.2    Ferrer-Sueta, G.3    Ferreira, A.M.4    Augusto, O.5
  • 38
    • 84889557831 scopus 로고
    • Rate constants for reactions of inorganic radicals in aqueous solutions
    • Neta P, Huie RE, Ross AB. Rate constants for reactions of inorganic radicals in aqueous solutions. J Phys Chem Ref Data 1988;17:1027-1284.
    • (1988) J Phys Chem Ref Data , vol.17 , pp. 1027-1284
    • Neta, P.1    Huie, R.E.2    Ross, A.B.3
  • 39
    • 0027303364 scopus 로고
    • Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase
    • Floris R, Piersma SR, Yang G, Jones P, Wever R. Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur J Biochem 1993;215:767-775.
    • (1993) Eur J Biochem , vol.215 , pp. 767-775
    • Floris, R.1    Piersma, S.R.2    Yang, G.3    Jones, P.4    Wever, R.5
  • 41
    • 0033030493 scopus 로고    scopus 로고
    • Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II
    • Burner U, Jantschko W, Obinger C. Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Lett 1999;443:290-296.
    • (1999) FEBS Lett , vol.443 , pp. 290-296
    • Burner, U.1    Jantschko, W.2    Obinger, C.3
  • 42
    • 0031567617 scopus 로고    scopus 로고
    • Transient-state and steadystate kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase
    • Burner U, Obinger C. Transient-state and steadystate kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett 1997;411: 269-274.
    • (1997) FEBS Lett , vol.411 , pp. 269-274
    • Burner, U.1    Obinger, C.2
  • 43
    • 1842581658 scopus 로고    scopus 로고
    • Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: Immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct
    • Guo Q, Detweiler CD, Mason RP. Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct. J Biol Chem 2004;279:13272-13283.
    • (2004) J Biol Chem , vol.279 , pp. 13272-13283
    • Guo, Q.1    Detweiler, C.D.2    Mason, R.P.3
  • 44
    • 38149130666 scopus 로고    scopus 로고
    • A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase
    • Kitajima S, Kurioka M, Yoshimoto T, Shindo M, Kanaori K, Tajima K, Oda K. A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase. FEBS J 2008;275:470-480.
    • (2008) FEBS J , vol.275 , pp. 470-480
    • Kitajima, S.1    Kurioka, M.2    Yoshimoto, T.3    Shindo, M.4    Kanaori, K.5    Tajima, K.6    Oda, K.7
  • 45
    • 84862257675 scopus 로고    scopus 로고
    • Reactivity toward oxygen radicals and antioxidant action of thiol compounds
    • Takashima M, Shichiri M, Hagihara Y, Yoshida Y, Niki E. Reactivity toward oxygen radicals and antioxidant action of thiol compounds. Biofactors 2012;38:240-248.
    • (2012) Biofactors , vol.38 , pp. 240-248
    • Takashima, M.1    Shichiri, M.2    Hagihara, Y.3    Yoshida, Y.4    Niki, E.5
  • 46
    • 0037273831 scopus 로고    scopus 로고
    • Inhibition of protein hydroperoxide formation by protein thiols
    • Platt AA, Gieseg SP. Inhibition of protein hydroperoxide formation by protein thiols. Redox Rep 2003;8:81-86.
    • (2003) Redox Rep , vol.8 , pp. 81-86
    • Platt, A.A.1    Gieseg, S.P.2
  • 47
    • 0028966950 scopus 로고
    • Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: Implications for benzene toxicity
    • Stoyanovsky DA, Goldman R, Claycamp HG, Kagan VE. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity. Arch Biochem Biophys 1995;317:315-323.
    • (1995) Arch Biochem Biophys , vol.317 , pp. 315-323
    • Stoyanovsky, D.A.1    Goldman, R.2    Claycamp, H.G.3    Kagan, V.E.4
  • 48
    • 0028932998 scopus 로고
    • Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin
    • Goldman R, Stoyanovsky DA, Day BW, Kagan VE. Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Biochemistry 1995;34:4765-4772.
    • (1995) Biochemistry , vol.34 , pp. 4765-4772
    • Goldman, R.1    Stoyanovsky, D.A.2    Day, B.W.3    Kagan, V.E.4
  • 50
    • 0037015996 scopus 로고    scopus 로고
    • EPR detection of glutathiyl and hemoglobin-cysteinyl radicals during the interaction of peroxynitrite with human erythrocytes
    • Augusto O, Lopes de Menezes S, Linares E, Romero N, Radi R, Denicola A. EPR detection of glutathiyl and hemoglobin-cysteinyl radicals during the interaction of peroxynitrite with human erythrocytes. Biochemistry 2002;41:14323-14328.
    • (2002) Biochemistry , vol.41 , pp. 14323-14328
    • Augusto, O.1    Lopes De-Menezes, S.2    Linares, E.3    Romero, N.4    Radi, R.5    Denicola, A.6
  • 51
    • 44849111614 scopus 로고    scopus 로고
    • Influence of intramolecular electron transfer mechanism in biological nitration, nitrosation, and oxidation of redox-sensitive amino acids
    • Zhang H, Xu Y, Joseph J, Kalyanaraman B. Influence of intramolecular electron transfer mechanism in biological nitration, nitrosation, and oxidation of redox-sensitive amino acids. Methods Enzymol 2008;440:65-94.
    • (2008) Methods Enzymol , vol.440 , pp. 65-94
    • Zhang, H.1    Xu, Y.2    Joseph, J.3    Kalyanaraman, B.4
  • 53
    • 84877877973 scopus 로고    scopus 로고
    • Reversible, long-range radical transfer in E. Coli class Ia ribonucleotide reductase
    • Minnihan EC, Nocera DG, Stubbe J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res 2013;46:2524-2535.
    • (2013) Acc Chem Res , vol.46 , pp. 2524-2535
    • Minnihan, E.C.1    Nocera, D.G.2    Stubbe, J.3
  • 54
    • 84899752756 scopus 로고    scopus 로고
    • Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: Disparate susceptibilities due to the repair of tyr35 radical by cys83 in Fe-SODB through intramolecular electron transfer
    • Martinez A, Peluffo G, Petruk AA, Hugo M, Pineyro D, Demicheli V, et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. J Biol Chem 2014;289:12760-12778.
    • (2014) J Biol Chem , vol.289 , pp. 12760-12778
    • Martinez, A.1    Peluffo, G.2    Petruk, A.A.3    Hugo, M.4    Pineyro, D.5    Demicheli, V.6
  • 56
    • 84923920135 scopus 로고    scopus 로고
    • Protein thiyl radical reactions and product formation: A kinetic simulation
    • Nauser T, Koppenol WH, Schoneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic Biol Med 2015;80:158-163.
    • (2015) Free Radic Biol Med , vol.80 , pp. 158-163
    • Nauser, T.1    Koppenol, W.H.2    Schoneich, C.3
  • 59
    • 0020982223 scopus 로고
    • Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen
    • Wefers H, Sies H. Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen. Eur J Biochem 1983;137:29-36.
    • (1983) Eur J Biochem , vol.137 , pp. 29-36
    • Wefers, H.1    Sies, H.2
  • 60
    • 0035971225 scopus 로고    scopus 로고
    • Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite
    • Bonini MG, Augusto O. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J Biol Chem 2001;276:9749-9754.
    • (2001) J Biol Chem , vol.276 , pp. 9749-9754
    • Bonini, M.G.1    Augusto, O.2
  • 61
    • 0025099316 scopus 로고
    • The formation and structure of the sulfoxyl radicals RSO(.), RSOO(.), RSO2(.), and RSO2OO(.) from the reaction of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen
    • Sevilla MD, Becker D, Yan M. The formation and structure of the sulfoxyl radicals RSO(.), RSOO(.), RSO2(.), and RSO2OO(.) from the reaction of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen. Int J Radiat Biol 1990;57:65-81.
    • (1990) Int J Radiat Biol , vol.57 , pp. 65-81
    • Sevilla, M.D.1    Becker, D.2    Yan, M.3
  • 62
    • 37049105665 scopus 로고
    • Thiyl free radicals: Direct observation of electron transfer reactions with phenotiacynes and ascorbate
    • Forni LG, Monig J, Mora-Arellano VO, Willson RL. Thiyl free radicals: direct observation of electron transfer reactions with phenotiacynes and ascorbate. J Chem Soc Perkin Trans II 1983:961-965.
    • (1983) J Chem Soc Perkin Trans II , pp. 961-965
    • Forni, L.G.1    Monig, J.2    Mora-Arellano, V.O.3    Willson, R.L.4
  • 63
    • 0001065226 scopus 로고    scopus 로고
    • Rate constant determination for the reaction of hydroxyl and glutathione thiyl radicals with glutathione in aqueous solution
    • Mezyk SP. Rate constant determination for the reaction of hydroxyl and glutathione thiyl radicals with glutathione in aqueous solution. J Phys Chem 1996;100:8861-8866.
    • (1996) J Phys Chem , vol.100 , pp. 8861-8866
    • Mezyk, S.P.1
  • 64
    • 84872846883 scopus 로고
    • Reduction potentials of one-electron couples involving free radicals in aquaous solutions
    • Wardman P. Reduction potentials of one-electron couples involving free radicals in aquaous solutions. J Phys Chem Ref Data 1989;18:1637-1755.
    • (1989) J Phys Chem Ref Data , vol.18 , pp. 1637-1755
    • Wardman, P.1
  • 66
    • 0027390329 scopus 로고
    • Superoxide as an intracellular radical sink
    • Winterbourn CC. Superoxide as an intracellular radical sink. Free Radic Biol Med 1993;14:85-90.
    • (1993) Free Radic Biol Med , vol.14 , pp. 85-90
    • Winterbourn, C.C.1
  • 68
    • 43849090222 scopus 로고    scopus 로고
    • Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit
    • Madej E, Folkes LK, Wardman P, Czapski G, Goldstein S. Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radic Biol Med 2008;44:2013-2018.
    • (2008) Free Radic Biol Med , vol.44 , pp. 2013-2018
    • Madej, E.1    Folkes, L.K.2    Wardman, P.3    Czapski, G.4    Goldstein, S.5
  • 69
    • 15744398054 scopus 로고    scopus 로고
    • Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein
    • Moller M, Botti H, Batthyany C, Rubbo H, Radi R, Denicola A. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J Biol Chem 2005;280:8850-8854.
    • (2005) J Biol Chem , vol.280 , pp. 8850-8854
    • Moller, M.1    Botti, H.2    Batthyany, C.3    Rubbo, H.4    Radi, R.5    Denicola, A.6
  • 70
    • 0031684106 scopus 로고    scopus 로고
    • Thiyl radical-induced cis/trans-isomerization of methyl linoleate in methanol and of linoleic acid residues in liposomes
    • Schwinn J, Sprinz H, Drossler K, Leistner S, Brede O. Thiyl radical-induced cis/trans-isomerization of methyl linoleate in methanol and of linoleic acid residues in liposomes. Int J Radiat Biol 1998;74:359-365.
    • (1998) Int J Radiat Biol , vol.74 , pp. 359-365
    • Schwinn, J.1    Sprinz, H.2    Drossler, K.3    Leistner, S.4    Brede, O.5
  • 72
    • 0034814705 scopus 로고    scopus 로고
    • Cis-trans isomerization of polyunsaturated fatty acid residues in phospholipids catalyzed by thiyl radicals
    • Ferreri C, Costantino C, Perrotta L, Landi L, Mulazzani QG, Chatgilialoglu C. Cis-trans isomerization of polyunsaturated fatty acid residues in phospholipids catalyzed by thiyl radicals. J Am Chem Soc 2001;123: 4459-4468.
    • (2001) J Am Chem Soc , vol.123 , pp. 4459-4468
    • Ferreri, C.1    Costantino, C.2    Perrotta, L.3    Landi, L.4    Mulazzani, Q.G.5    Chatgilialoglu, C.6
  • 73
    • 84903479809 scopus 로고    scopus 로고
    • Radical-induced cis-trans isomerization of fatty acids: A theoretical study
    • Tzeng YZ, Hu CH. Radical-induced cis-trans isomerization of fatty acids: a theoretical study. J Phys Chem A 2014;118:4554-4564.
    • (2014) J Phys Chem A , vol.118 , pp. 4554-4564
    • Tzeng, Y.Z.1    Hu, C.H.2
  • 75
    • 84919843680 scopus 로고    scopus 로고
    • How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to QM/MM calculations on human 2-cys peroxiredoxin
    • Olah J, van Bergen L, De Proft F, Roos G. How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to QM/MM calculations on human 2-Cys peroxiredoxin. J Biomol Struct Dyn 2015;33:584-596.
    • (2015) J Biomol Struct Dyn , vol.33 , pp. 584-596
    • Olah, J.1    Van Bergen, L.2    De Proft, F.3    Roos, G.4
  • 76
    • 0030695902 scopus 로고    scopus 로고
    • Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria
    • Aslund F, Berndt KD, Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem 1997;272: 30780-30786.
    • (1997) J Biol Chem , vol.272 , pp. 30780-30786
    • Aslund, F.1    Berndt, K.D.2    Holmgren, A.3
  • 77
    • 0015056379 scopus 로고
    • An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase
    • McCord JM, Keele BB, Jr., Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA 1971;68:1024-1027.
    • (1971) Proc Natl Acad Sci USA , vol.68 , pp. 1024-1027
    • McCord, J.M.1    Keele, B.B.2    Fridovich, I.3
  • 78
    • 0027491617 scopus 로고
    • The inactivation of Fe-S cluster containing hydro-lyases by superoxide
    • Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 1993;268:22369-22376.
    • (1993) J Biol Chem , vol.268 , pp. 22369-22376
    • Flint, D.H.1    Tuminello, J.F.2    Emptage, M.H.3
  • 80
    • 41449116766 scopus 로고    scopus 로고
    • Ero1 and redox homeostasis in the endoplasmic reticulum
    • Sevier CS, Kaiser CA. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 2008;1783:549-556.
    • (2008) Biochim Biophys Acta , vol.1783 , pp. 549-556
    • Sevier, C.S.1    Kaiser, C.A.2
  • 81
    • 0018095480 scopus 로고
    • Localization of D-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes
    • Robinson JM, Briggs RT, Karnovsky MJ. Localization of D-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes. J Cell Biol 1978; 77:59-71.
    • (1978) J Cell Biol , vol.77 , pp. 59-71
    • Robinson, J.M.1    Briggs, R.T.2    Karnovsky, M.J.3
  • 82
    • 0016719209 scopus 로고
    • Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system
    • Kellogg EW III, Fridovich I. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 1975;250: 8812-8817.
    • (1975) J Biol Chem , vol.250 , pp. 8812-8817
    • Kellogg, E.W.1    Fridovich, I.2
  • 83
    • 0031105668 scopus 로고    scopus 로고
    • Xanthine oxidase binding to glycosaminoglycans: Kinetics and superoxide dismutase interactions of immobilized xanthine oxidaseheparin complexes
    • Radi R, Rubbo H, Bush K, Freeman BA. Xanthine oxidase binding to glycosaminoglycans: kinetics and superoxide dismutase interactions of immobilized xanthine oxidaseheparin complexes. Arch Biochem Biophys 1997;339: 125-135.
    • (1997) Arch Biochem Biophys , vol.339 , pp. 125-135
    • Radi, R.1    Rubbo, H.2    Bush, K.3    Freeman, B.A.4
  • 84
    • 84858682092 scopus 로고    scopus 로고
    • Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
    • Zeida A, Babbush R, Lebrero MC, Trujillo M, Radi R, Estrin DA. Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm. Chem Res Toxicol 2012;25:741-746.
    • (2012) Chem Res Toxicol , vol.25 , pp. 741-746
    • Zeida, A.1    Babbush, R.2    Lebrero, M.C.3    Trujillo, M.4    Radi, R.5    Estrin, D.A.6
  • 86
    • 34249703509 scopus 로고    scopus 로고
    • The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents
    • Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 2007;282: 11885-11892.
    • (2007) J Biol Chem , vol.282 , pp. 11885-11892
    • Peskin, A.V.1    Low, F.M.2    Paton, L.N.3    Maghzal, G.J.4    Hampton, M.B.5    Winterbourn, C.C.6
  • 87
    • 77956171017 scopus 로고    scopus 로고
    • Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
    • Hall A, Parsonage D, Poole LB, Karplus PA. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J Mol Biol 2010;402: 194-209.
    • (2010) J Mol Biol , vol.402 , pp. 194-209
    • Hall, A.1    Parsonage, D.2    Poole, L.B.3    Karplus, P.A.4
  • 88
    • 79955967159 scopus 로고    scopus 로고
    • Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study
    • Nagy P, Karton A, Betz A, Peskin AV, Pace P, O'Reilly RJ, et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J Biol Chem 2011;286: 18048-18055.
    • (2011) J Biol Chem , vol.286 , pp. 18048-18055
    • Nagy, P.1    Karton, A.2    Betz, A.3    Peskin, A.V.4    Pace, P.5    O'Reilly, R.J.6
  • 89
    • 84905573259 scopus 로고    scopus 로고
    • The extraordinary catalytic ability of peroxiredoxins: A combined experimental and QM/MM study on the fast thiol oxidation step
    • Zeida A, Reyes AM, Lebrero MC, Radi R, Trujillo M, Estrin DA. The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step. Chem Commun (Camb) 2014;50:10070-10073.
    • (2014) Chem Commun (Camb) , vol.50 , pp. 10070-10073
    • Zeida, A.1    Reyes, A.M.2    Lebrero, M.C.3    Radi, R.4    Trujillo, M.5    Estrin, D.A.6
  • 91
    • 38749122130 scopus 로고    scopus 로고
    • Structural survey of the peroxiredoxins
    • Karplus PA, Hall A. Structural survey of the peroxiredoxins. Subcell Biochem 2007;44:41-60.
    • (2007) Subcell Biochem , vol.44 , pp. 41-60
    • Karplus, P.A.1    Hall, A.2
  • 92
    • 0037082141 scopus 로고    scopus 로고
    • Tryparedoxin peroxidase of leishmania donovani: Molecular cloning, heterologous expression, specificity, and catalytic mechanism
    • Flohe L, Budde H, Bruns K, Castro H, Clos J, Hofmann B, et al. Tryparedoxin peroxidase of leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch Biochem Biophys 2002;397:324-335.
    • (2002) Arch Biochem Biophys , vol.397 , pp. 324-335
    • Flohe, L.1    Budde, H.2    Bruns, K.3    Castro, H.4    Clos, J.5    Hofmann, B.6
  • 93
    • 33644753761 scopus 로고    scopus 로고
    • Peroxiredoxin Q of arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis
    • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, et al. Peroxiredoxin Q of arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 2006;45:968-981.
    • (2006) Plant J , vol.45 , pp. 968-981
    • Lamkemeyer, P.1    Laxa, M.2    Collin, V.3    Li, W.4    Finkemeier, I.5    Schottler, M.A.6
  • 94
    • 78651278810 scopus 로고    scopus 로고
    • PREX: Peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family
    • Soito L, Williamson C, Knutson ST, Fetrow JS, Poole LB, Nelson KJ. PREX: peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res 2011;39:D332-D337.
    • (2011) Nucleic Acids Res , vol.39 , pp. D332-D337
    • Soito, L.1    Williamson, C.2    Knutson, S.T.3    Fetrow, J.S.4    Poole, L.B.5    Nelson, K.J.6
  • 96
    • 0037729054 scopus 로고    scopus 로고
    • A putative glutathione peroxidase of drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity
    • Missirlis F, Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, et al. A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. Biol Chem 2003;384:463-472.
    • (2003) Biol Chem , vol.384 , pp. 463-472
    • Missirlis, F.1    Rahlfs, S.2    Dimopoulos, N.3    Bauer, H.4    Becker, K.5    Hilliker, A.6
  • 98
    • 0032994431 scopus 로고    scopus 로고
    • Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status
    • Aslund F, Zheng M, Beckwith J, Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 1999;96:6161-6165.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6161-6165
    • Aslund, F.1    Zheng, M.2    Beckwith, J.3    Storz, G.4
  • 99
    • 79951906200 scopus 로고    scopus 로고
    • Thiol-based redox switches and gene regulation
    • Antelmann H, Helmann JD. Thiol-based redox switches and gene regulation. Antioxid Redox Signal 2011;14: 1049-1063.
    • (2011) Antioxid Redox Signal , vol.14 , pp. 1049-1063
    • Antelmann, H.1    Helmann, J.D.2
  • 101
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008;45:549-561.
    • (2008) Free Radic Biol Med , vol.45 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 104
    • 0042974241 scopus 로고    scopus 로고
    • Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite
    • Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 2003;42:9906-9914.
    • (2003) Biochemistry , vol.42 , pp. 9906-9914
    • Carballal, S.1    Radi, R.2    Kirk, M.C.3    Barnes, S.4    Freeman, B.A.5    Alvarez, B.6
  • 106
    • 84884551591 scopus 로고    scopus 로고
    • The thiol pool in human plasma: The central contribution of albumin to redox processes
    • Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 2013;65:244-253.
    • (2013) Free Radic Biol Med , vol.65 , pp. 244-253
    • Turell, L.1    Radi, R.2    Alvarez, B.3
  • 108
    • 33845346496 scopus 로고    scopus 로고
    • A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair
    • Trindade DF, Cerchiaro G, Augusto O. A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair. Chem Res Toxicol 2006;19:1475-1482.
    • (2006) Chem Res Toxicol , vol.19 , pp. 1475-1482
    • Trindade, D.F.1    Cerchiaro, G.2    Augusto, O.3
  • 109
    • 84863516911 scopus 로고    scopus 로고
    • Kinetics of the oxidation of reduced Cu,Zn-superoxide dismutase by peroxymonocarbonate
    • Ranguelova K, Ganini D, Bonini MG, London RE, Mason RP. Kinetics of the oxidation of reduced Cu,Zn-superoxide dismutase by peroxymonocarbonate. Free Radic Biol Med 2012;53:589-594.
    • (2012) Free Radic Biol Med , vol.53 , pp. 589-594
    • Ranguelova, K.1    Ganini, D.2    Bonini, M.G.3    London, R.E.4    Mason, R.P.5
  • 111
    • 39749189443 scopus 로고    scopus 로고
    • The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines
    • Balagam B, Richardson DE. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorg Chem 2008;47:1173-1178.
    • (2008) Inorg Chem , vol.47 , pp. 1173-1178
    • Balagam, B.1    Richardson, D.E.2
  • 112
    • 79959341904 scopus 로고    scopus 로고
    • Oxidizing substrate specificity of mycobacterium tuberculosis alkyl hydroperoxide reductase E: Kinetics and mechanisms of oxidation and overoxidation
    • Reyes AM, Hugo M, Trostchansky A, Capece L, Radi R, Trujillo M. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Free Radic Biol Med 2011;51:464-473.
    • (2011) Free Radic Biol Med , vol.51 , pp. 464-473
    • Reyes, A.M.1    Hugo, M.2    Trostchansky, A.3    Capece, L.4    Radi, R.5    Trujillo, M.6
  • 113
    • 70350050576 scopus 로고    scopus 로고
    • Thiol and sulfenic acid oxidation of AhpE, the onecysteine peroxiredoxin from mycobacterium tuberculosis: Kinetics, acidity constants, and conformational dynamics
    • Hugo M, Turell L, Manta B, Botti H, Monteiro G, Netto LE, et al. Thiol and sulfenic acid oxidation of AhpE, the onecysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 2009;48:9416-9426.
    • (2009) Biochemistry , vol.48 , pp. 9416-9426
    • Hugo, M.1    Turell, L.2    Manta, B.3    Botti, H.4    Monteiro, G.5    Netto, L.E.6
  • 114
    • 0025730414 scopus 로고
    • Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide
    • Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991;266:4244-4250.
    • (1991) J Biol Chem , vol.266 , pp. 4244-4250
    • Radi, R.1    Beckman, J.S.2    Bush, K.M.3    Freeman, B.A.4
  • 116
    • 77956207316 scopus 로고    scopus 로고
    • Changing paradigms in thiology from antioxidant defense toward redox regulation
    • Flohe L. Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol 2010;473:1-39.
    • (2010) Methods Enzymol , vol.473 , pp. 1-39
    • Flohe, L.1
  • 118
    • 0002429093 scopus 로고
    • Nucleophilic displacement of oxygen in peroxides
    • Edwards JO, ed. New York: Interscience
    • Edwards JO. Nucleophilic displacement of oxygen in peroxides. In: Edwards JO, ed. Peroxide reaction mechanisms. New York: Interscience; 1962;67-106.
    • (1962) Peroxide Reaction Mechanisms , pp. 67-106
    • Edwards, J.O.1
  • 119
    • 77954590069 scopus 로고    scopus 로고
    • Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase
    • Cussiol JR, Alegria TG, Szweda LI, Netto LE. Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. J Biol Chem 2010;285:21943-21950.
    • (2010) J Biol Chem , vol.285 , pp. 21943-21950
    • Cussiol, J.R.1    Alegria, T.G.2    Szweda, L.I.3    Netto, L.E.4
  • 120
    • 72649102227 scopus 로고    scopus 로고
    • Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme
    • Toppo S, Flohe L, Ursini F, Vanin S, Maiorino M. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 2009;1790:1486-1500.
    • (2009) Biochim Biophys Acta , vol.1790 , pp. 1486-1500
    • Toppo, S.1    Flohe, L.2    Ursini, F.3    Vanin, S.4    Maiorino, M.5
  • 121
    • 40849136587 scopus 로고    scopus 로고
    • Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin
    • Parsonage D, Karplus PA, Poole LB. Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci USA 2008;105:8209-8214.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 8209-8214
    • Parsonage, D.1    Karplus, P.A.2    Poole, L.B.3
  • 122
    • 38749120994 scopus 로고    scopus 로고
    • Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite
    • Trujillo M, Ferrer-Sueta G, Thomson L, Flohe L, Radi R. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell Biochem 2007;44: 83-113.
    • (2007) Subcell Biochem , vol.44 , pp. 83-113
    • Trujillo, M.1    Ferrer-Sueta, G.2    Thomson, L.3    Flohe, L.4    Radi, R.5
  • 123
    • 84866648571 scopus 로고    scopus 로고
    • Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes
    • Perkins A, Gretes MC, Nelson KJ, Poole LB, Karplus PA. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry 2012;51:7638-7650.
    • (2012) Biochemistry , vol.51 , pp. 7638-7650
    • Perkins, A.1    Gretes, M.C.2    Nelson, K.J.3    Poole, L.B.4    Karplus, P.A.5
  • 124
  • 125
    • 0030781227 scopus 로고    scopus 로고
    • Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis
    • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 1997;10:1285-1292.
    • (1997) Chem Res Toxicol , vol.10 , pp. 1285-1292
    • Kissner, R.1    Nauser, T.2    Bugnon, P.3    Lye, P.G.4    Koppenol, W.H.5
  • 127
    • 0029037495 scopus 로고
    • The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide
    • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 1995;268:L699-L722.
    • (1995) Am J Physiol , vol.268 , pp. L699-L722
    • Pryor, W.A.1    Squadrito, G.L.2
  • 128
    • 46449115525 scopus 로고    scopus 로고
    • Peroxynitrite detoxification and its biologic implications
    • Trujillo M, Ferrer-Sueta G, Radi R. Peroxynitrite detoxification and its biologic implications. Antioxid Redox Signal 2008;10:1607-1620.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 1607-1620
    • Trujillo, M.1    Ferrer-Sueta, G.2    Radi, R.3
  • 129
    • 64749101531 scopus 로고    scopus 로고
    • Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals
    • Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009;4:161-177.
    • (2009) ACS Chem Biol , vol.4 , pp. 161-177
    • Ferrer-Sueta, G.1    Radi, R.2
  • 130
    • 11944262823 scopus 로고
    • Rapid reaction between peroxynitrite anion and carbon dioxide: Implication for biological activity
    • Lymar SV, Hurst JK. Rapid reaction between peroxynitrite anion and carbon dioxide: implication for biological activity. J Am Chem Soc 1995;117:8867-8868.
    • (1995) J Am Chem Soc , vol.117 , pp. 8867-8868
    • Lymar, S.V.1    Hurst, J.K.2
  • 131
    • 0036324618 scopus 로고    scopus 로고
    • Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: New insights into the reaction of peroxynitrite with thiols
    • Trujillo M, Radi R. Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys 2002;397:91-98.
    • (2002) Arch Biochem Biophys , vol.397 , pp. 91-98
    • Trujillo, M.1    Radi, R.2
  • 132
    • 35448954324 scopus 로고    scopus 로고
    • Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of trp84 fluorescence increase upon oxidation
    • Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A, Declercq JP, et al. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch Biochem Biophys 2007;467:95-106.
    • (2007) Arch Biochem Biophys , vol.467 , pp. 95-106
    • Trujillo, M.1    Clippe, A.2    Manta, B.3    Ferrer-Sueta, G.4    Smeets, A.5    Declercq, J.P.6
  • 133
    • 84882504638 scopus 로고    scopus 로고
    • Mechanisms and biological consequences of peroxynitrite-dependent protein oxidation and nitration
    • Ignarro LJ, ed, second edition. Biology and pathobiology: Elsevier
    • Trujillo M, Alvarez B, Souza JM, Romero N, Castro L, Thomson L, Radi R. Mechanisms and biological consequences of peroxynitrite-dependent protein oxidation and nitration. In: Ignarro LJ, ed. Nitric oxide, second edition. Biology and pathobiology: Elsevier; 2010:61-102.
    • (2010) Nitric Oxide , pp. 61-102
    • Trujillo, M.1    Alvarez, B.2    Souza, J.M.3    Romero, N.4    Castro, L.5    Thomson, L.6    Radi, R.7
  • 134
    • 84884939103 scopus 로고    scopus 로고
    • Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study
    • Zeida A, Lebrero MCG, Radi R, Trujillo M, Estrin DA. Mechanism of cysteine oxidation by peroxynitrite: an integrated experimental and theoretical study. Arch Biochem Biophys 2013;539:81-86.
    • (2013) Arch Biochem Biophys , vol.539 , pp. 81-86
    • Zeida, A.1    Lebrero, M.C.G.2    Radi, R.3    Trujillo, M.4    Estrin, D.A.5
  • 135
    • 0032535514 scopus 로고    scopus 로고
    • Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite
    • Souza JM, Radi R. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Arch Biochem Biophys 1998;360:187-194.
    • (1998) Arch Biochem Biophys , vol.360 , pp. 187-194
    • Souza, J.M.1    Radi, R.2
  • 136
    • 0035425780 scopus 로고    scopus 로고
    • Oxidation of active center cysteine of bovine 1-cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite
    • Peshenko IV, Shichi H. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med 2001;31:292-303.
    • (2001) Free Radic Biol Med , vol.31 , pp. 292-303
    • Peshenko, I.V.1    Shichi, H.2
  • 138
    • 18244390487 scopus 로고    scopus 로고
    • Myeloperoxidase: Friend and foe
    • Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol 2005;77:598-625.
    • (2005) J Leukoc Biol , vol.77 , pp. 598-625
    • Klebanoff, S.J.1
  • 139
    • 0034687654 scopus 로고    scopus 로고
    • Spectral and kinetic studies on the formation of eosinophil peroxidase compound I and its reaction with halides and thiocyanate
    • Furtmuller PG, Burner U, Regelsberger G, Obinger C. Spectral and kinetic studies on the formation of eosinophil peroxidase compound I and its reaction with halides and thiocyanate. Biochemistry 2000;39:15578-15584.
    • (2000) Biochemistry , vol.39 , pp. 15578-15584
    • Furtmuller, P.G.1    Burner, U.2    Regelsberger, G.3    Obinger, C.4
  • 140
    • 0024554014 scopus 로고
    • Eosinophils preferentially use bromide to generate halogenating agents
    • Mayeno AN, Curran AJ, Roberts RL, Foote CS. Eosinophils preferentially use bromide to generate halogenating agents. J Biol Chem 1989;264:5660-5668.
    • (1989) J Biol Chem , vol.264 , pp. 5660-5668
    • Mayeno, A.N.1    Curran, A.J.2    Roberts, R.L.3    Foote, C.S.4
  • 141
    • 0036698594 scopus 로고    scopus 로고
    • Variations of lactoperoxidase activity and thiocyanate content in cows' and goats' milk throughout lactation
    • Fonteh FA, Grandison AS, Lewis MJ. Variations of lactoperoxidase activity and thiocyanate content in cows' and goats' milk throughout lactation. J Dairy Res 2002;69:401-409.
    • (2002) J Dairy Res , vol.69 , pp. 401-409
    • Fonteh, F.A.1    Grandison, A.S.2    Lewis, M.J.3
  • 142
    • 84868544160 scopus 로고    scopus 로고
    • Vascular peroxidase 1 catalyzes the formation of hypohalous acids: Characterization of its substrate specificity and enzymatic properties
    • Li H, Cao Z, Zhang G, Thannickal VJ, Cheng G. Vascular peroxidase 1 catalyzes the formation of hypohalous acids: characterization of its substrate specificity and enzymatic properties. Free Radic Biol Med 2012;53: 1954-1959.
    • (2012) Free Radic Biol Med , vol.53 , pp. 1954-1959
    • Li, H.1    Cao, Z.2    Zhang, G.3    Thannickal, V.J.4    Cheng, G.5
  • 143
    • 33646078598 scopus 로고    scopus 로고
    • Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid
    • Nagy P, Beal JL, Ashby MT. Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid. Chem Res Toxicol 2006;19:587-593.
    • (2006) Chem Res Toxicol , vol.19 , pp. 587-593
    • Nagy, P.1    Beal, J.L.2    Ashby, M.T.3
  • 144
    • 84929126104 scopus 로고    scopus 로고
    • Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health
    • Chandler JD, Day BJ. Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic Res 2015:1-16.
    • (2015) Free Radic Res , pp. 1-16
    • Chandler, J.D.1    Day, B.J.2
  • 146
    • 43049173503 scopus 로고    scopus 로고
    • Mammalian heme peroxidases: From molecular mechanisms to health implications
    • Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 2008;10:1199-1234.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 1199-1234
    • Davies, M.J.1    Hawkins, C.L.2    Pattison, D.I.3    Rees, M.D.4
  • 147
    • 50949098899 scopus 로고    scopus 로고
    • Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid
    • Lloyd MM, van Reyk DM, Davies MJ, Hawkins CL. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Biochem J 2008;414:271-280.
    • (2008) Biochem J , vol.414 , pp. 271-280
    • Lloyd, M.M.1    Van Reyk, D.M.2    Davies, M.J.3    Hawkins, C.L.4
  • 148
    • 77954221839 scopus 로고    scopus 로고
    • Redox chemistry of biological thiols
    • James CF, ed. Amsterdam: Elsevier
    • Nagy P, Winterbourn CC. Redox chemistry of biological thiols. In: James CF, ed. Advances in molecular toxicology. Vol. 4. Amsterdam: Elsevier; 2010:183-222.
    • (2010) Advances in Molecular Toxicology , vol.4 , pp. 183-222
    • Nagy, P.1    Winterbourn, C.C.2
  • 149
    • 36148995826 scopus 로고    scopus 로고
    • Reactive sulfur species: Kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid
    • Nagy P, Ashby MT. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 2007;129:14082-14091.
    • (2007) J Am Chem Soc , vol.129 , pp. 14082-14091
    • Nagy, P.1    Ashby, M.T.2
  • 150
    • 0034681349 scopus 로고    scopus 로고
    • First steps in the oxidation of sulfurcontaining amino acids by hypohalogenation: Very fast generation of intermediate sulfenyl halides and halosulfonium cations
    • Armesto XL, Canle M, Fernández MI, García MV, Santaballa JA. First steps in the oxidation of sulfurcontaining amino acids by hypohalogenation: very fast generation of intermediate sulfenyl halides and halosulfonium cations. tetrahedron 2000;56:1103-1109.
    • (2000) Tetrahedron , vol.56 , pp. 1103-1109
    • Armesto, X.L.1    Canle, M.2    Fernández, M.I.3    García, M.V.4    Santaballa, J.A.5
  • 151
    • 84901803984 scopus 로고    scopus 로고
    • Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach
    • Storkey C, Davies MJ, Pattison DI. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic Biol Med 2014;73:60-66.
    • (2014) Free Radic Biol Med , vol.73 , pp. 60-66
    • Storkey, C.1    Davies, M.J.2    Pattison, D.I.3
  • 152
    • 0035283131 scopus 로고    scopus 로고
    • Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate
    • Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 2001;30:572-579.
    • (2001) Free Radic Biol Med , vol.30 , pp. 572-579
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 153
    • 84862186506 scopus 로고    scopus 로고
    • Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines
    • Stacey MM, Vissers MC, Winterbourn CC. Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines. Antioxid Redox Signal 2012;17:411-421.
    • (2012) Antioxid Redox Signal , vol.17 , pp. 411-421
    • Stacey, M.M.1    Vissers, M.C.2    Winterbourn, C.C.3
  • 154
    • 28744458907 scopus 로고    scopus 로고
    • Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase
    • Peskin AV, Winterbourn CC. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Free Radic Biol Med 2006;40:45-53.
    • (2006) Free Radic Biol Med , vol.40 , pp. 45-53
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 155
    • 1942502782 scopus 로고    scopus 로고
    • Kinetic analysis of the reactions of hypobromous acid with protein components: Implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress
    • Pattison DI, Davies MJ. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004;43:4799-4809.
    • (2004) Biochemistry , vol.43 , pp. 4799-4809
    • Pattison, D.I.1    Davies, M.J.2
  • 156
    • 72749119238 scopus 로고    scopus 로고
    • Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione
    • Nagy P, Jameson GN, Winterbourn CC. Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chem Res Toxicol 2009;22:1833-1840.
    • (2009) Chem Res Toxicol , vol.22 , pp. 1833-1840
    • Nagy, P.1    Jameson, G.N.2    Winterbourn, C.C.3
  • 157
    • 68749097272 scopus 로고    scopus 로고
    • Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: Absolute rate constants and assessment of biological relevance
    • Skaff O, Pattison DI, Davies MJ. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance. Biochem J 2009;422:111-117.
    • (2009) Biochem J , vol.422 , pp. 111-117
    • Skaff, O.1    Pattison, D.I.2    Davies, M.J.3
  • 159
    • 0018099284 scopus 로고
    • Lactoperoxidase, peroxide, thiocyanate antimicrobial system: Correlation of sulfhydryl oxidation with antimicrobial action
    • Thomas EL, Aune TM. Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action. Infect Immun 1978;20:456-463.
    • (1978) Infect Immun , vol.20 , pp. 456-463
    • Thomas, E.L.1    Aune, T.M.2
  • 160
    • 84857232751 scopus 로고    scopus 로고
    • Inactivation of thiol-dependent enzymes by hypothiocyanous acid: Role of sulfenyl thiocyanate and sulfenic acid intermediates
    • Barrett TJ, Pattison DI, Leonard SE, Carroll KS, Davies MJ, Hawkins CL. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates. Free Radic Biol Med 2012;52:1075-1085.
    • (2012) Free Radic Biol Med , vol.52 , pp. 1075-1085
    • Barrett, T.J.1    Pattison, D.I.2    Leonard, S.E.3    Carroll, K.S.4    Davies, M.J.5    Hawkins, C.L.6
  • 161
    • 77955474149 scopus 로고    scopus 로고
    • The myeloperoxidase-derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages
    • Lane AE, Tan JT, Hawkins CL, Heather AK, Davies MJ. The myeloperoxidase-derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Biochem J 2010;430:161-169.
    • (2010) Biochem J , vol.430 , pp. 161-169
    • Lane, A.E.1    Tan, J.T.2    Hawkins, C.L.3    Heather, A.K.4    Davies, M.J.5
  • 162
    • 84868631078 scopus 로고    scopus 로고
    • Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinccysteine/histidine clusters in proteins
    • Cook NL, Pattison DI, Davies MJ. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinccysteine/histidine clusters in proteins. Free Radic Biol Med 2012;53:2072-2080.
    • (2012) Free Radic Biol Med , vol.53 , pp. 2072-2080
    • Cook, N.L.1    Pattison, D.I.2    Davies, M.J.3
  • 163
    • 84880052989 scopus 로고    scopus 로고
    • Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense
    • Chandler JD, Nichols DP, Nick JA, Hondal RJ, Day BJ. Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J Biol Chem 2013;288:18421-18428.
    • (2013) J Biol Chem , vol.288 , pp. 18421-18428
    • Chandler, J.D.1    Nichols, D.P.2    Nick, J.A.3    Hondal, R.J.4    Day, B.J.5
  • 165
    • 84895869820 scopus 로고    scopus 로고
    • Taurine and inflammatory diseases
    • Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids 2014;46:7-20.
    • (2014) Amino Acids , vol.46 , pp. 7-20
    • Marcinkiewicz, J.1    Kontny, E.2
  • 166
    • 67849123906 scopus 로고    scopus 로고
    • Taurine chloramine activates nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide
    • Sun Jang J, Piao S, Cha YN, Kim C. Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr 2009;45:37-43.
    • (2009) J Clin Biochem Nutr , vol.45 , pp. 37-43
    • Sun Jang, J.1    Piao, S.2    Cha, Y.N.3    Kim, C.4
  • 167
    • 1542673228 scopus 로고    scopus 로고
    • Production of inflammatory mediators by activated C6 cells is attenuated by taurine chloramine inhibition of NF-kappaB activation
    • Liu Y, Barua M, Serban V, Quinn MR. Production of inflammatory mediators by activated C6 cells is attenuated by taurine chloramine inhibition of NF-kappaB activation. Adv Exp Med Biol 2003;526:365-372.
    • (2003) Adv Exp Med Biol , vol.526 , pp. 365-372
    • Liu, Y.1    Barua, M.2    Serban, V.3    Quinn, M.R.4
  • 168
    • 67649986506 scopus 로고    scopus 로고
    • What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach
    • Pattison DI, Hawkins CL, Davies MJ. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Chem Res Toxicol 2009; 22:807-817.
    • (2009) Chem Res Toxicol , vol.22 , pp. 807-817
    • Pattison, D.I.1    Hawkins, C.L.2    Davies, M.J.3
  • 169
    • 0021262832 scopus 로고
    • Chlorination of endogenous amines by isolated neutrophils. Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines
    • Grisham MB, Jefferson MM, Melton DF, Thomas EL. Chlorination of endogenous amines by isolated neutrophils. Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines. J Biol Chem 1984;259:10404-10413.
    • (1984) J Biol Chem , vol.259 , pp. 10404-10413
    • Grisham, M.B.1    Jefferson, M.M.2    Melton, D.F.3    Thomas, E.L.4
  • 170
    • 5344271785 scopus 로고    scopus 로고
    • Chlorine transfer between glycine, taurine, and histamine: Reaction rates and impact on cellular reactivity
    • Peskin AV, Midwinter RG, Harwood DT, Winterbourn CC. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity. Free Radic Biol Med 2004;37:1622-1630.
    • (2004) Free Radic Biol Med , vol.37 , pp. 1622-1630
    • Peskin, A.V.1    Midwinter, R.G.2    Harwood, D.T.3    Winterbourn, C.C.4
  • 171
    • 0016786370 scopus 로고
    • Selective oxidation of methionine residues in proteins
    • Shechter Y, Burstein Y, Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry 1975;14:4497-4503.
    • (1975) Biochemistry , vol.14 , pp. 4497-4503
    • Shechter, Y.1    Burstein, Y.2    Patchornik, A.3
  • 172
    • 53549122736 scopus 로고    scopus 로고
    • Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines
    • Summers FA, Morgan PE, Davies MJ, Hawkins CL. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Chem Res Toxicol 2008;21:1832-1840.
    • (2008) Chem Res Toxicol , vol.21 , pp. 1832-1840
    • Summers, F.A.1    Morgan, P.E.2    Davies, M.J.3    Hawkins, C.L.4
  • 173
    • 0021152612 scopus 로고
    • Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils
    • Grisham MB, Jefferson MM, Thomas EL. Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils. J Biol Chem 1984;259:6757-6765.
    • (1984) J Biol Chem , vol.259 , pp. 6757-6765
    • Grisham, M.B.1    Jefferson, M.M.2    Thomas, E.L.3
  • 174
    • 0026200339 scopus 로고
    • A spectrophotometric assay for chlorine-containing compounds
    • Chesney JA, Mahoney JR Jr, Eaton JW. A spectrophotometric assay for chlorine-containing compounds. Anal Biochem 1991;196:262-266.
    • (1991) Anal Biochem , vol.196 , pp. 262-266
    • Chesney, J.A.1    Mahoney, J.R.2    Eaton, J.W.3
  • 175
    • 0242321028 scopus 로고    scopus 로고
    • Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione
    • Peskin AV, Winterbourn CC. Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione. Free Radic Biol Med 2003;35:1252-1260.
    • (2003) Free Radic Biol Med , vol.35 , pp. 1252-1260
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 176
    • 18544368511 scopus 로고    scopus 로고
    • Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation
    • Pattison DI, Davies MJ. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochemistry 2005;44:7378-7387.
    • (2005) Biochemistry , vol.44 , pp. 7378-7387
    • Pattison, D.I.1    Davies, M.J.2
  • 180
    • 84871672504 scopus 로고    scopus 로고
    • Antioxidant functions for the hemoglobin beta93 cysteine residue in erythrocytes and in the vascular compartment in vivo
    • Vitturi DA, Sun CW, Harper VM, Thrash-Williams B, Cantu-Medellin N, Chacko BK, et al. Antioxidant functions for the hemoglobin beta93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic Biol Med 2013;55:119-129.
    • (2013) Free Radic Biol Med , vol.55 , pp. 119-129
    • Vitturi, D.A.1    Sun, C.W.2    Harper, V.M.3    Thrash-Williams, B.4    Cantu-Medellin, N.5    Chacko, B.K.6
  • 181
    • 84865657393 scopus 로고    scopus 로고
    • Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid
    • Stacey MM, Cuddihy SL, Hampton MB, Winterbourn CC. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid. Arch Biochem Biophys 2012;527: 45-54.
    • (2012) Arch Biochem Biophys , vol.527 , pp. 45-54
    • Stacey, M.M.1    Cuddihy, S.L.2    Hampton, M.B.3    Winterbourn, C.C.4
  • 182
    • 79952447228 scopus 로고    scopus 로고
    • Inhibition of tubulin polymerization by hypochlorous acid and chloramines
    • Landino LM, Hagedorn TD, Kim SB, Hogan KM. Inhibition of tubulin polymerization by hypochlorous acid and chloramines. Free Radic Biol Med 2011;50:1000-1008.
    • (2011) Free Radic Biol Med , vol.50 , pp. 1000-1008
    • Landino, L.M.1    Hagedorn, T.D.2    Kim, S.B.3    Hogan, K.M.4
  • 183
    • 14344251523 scopus 로고    scopus 로고
    • Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution
    • Luo D, Smith SW, Anderson BD. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J Pharm Sci 2005;94:304-316.
    • (2005) J Pharm Sci , vol.94 , pp. 304-316
    • Luo, D.1    Smith, S.W.2    Anderson, B.D.3
  • 184
    • 67650292926 scopus 로고    scopus 로고
    • Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis
    • Enami S, Hoffmann MR, Colussi AJ. Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis. J Phys Chem B 2009;113:9356-9358.
    • (2009) J Phys Chem B , vol.113 , pp. 9356-9358
    • Enami, S.1    Hoffmann, M.R.2    Colussi, A.J.3
  • 186
    • 84907551980 scopus 로고    scopus 로고
    • Protein S-glutathionylation: From current basics to targeted modifications
    • Popov D. Protein S-glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem 2014;120:123-130.
    • (2014) Arch Physiol Biochem , vol.120 , pp. 123-130
    • Popov, D.1
  • 187
    • 84894436598 scopus 로고    scopus 로고
    • Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from mycobacterium tuberculosis
    • Hugo M, Van Laer K, Reyes AM, Vertommen D, Messens J, Radi R, Trujillo M. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis. J Biol Chem 2014;289: 5228-5239.
    • (2014) J Biol Chem , vol.289 , pp. 5228-5239
    • Hugo, M.1    Van Laer, K.2    Reyes, A.M.3    Vertommen, D.4    Messens, J.5    Radi, R.6    Trujillo, M.7
  • 188
    • 84930753344 scopus 로고    scopus 로고
    • The corynebacterium glutamicum mycothiol peroxidase is a reactive oxygen species-scavenging enzyme that shows promiscuity in thiol redox control
    • Pedre B, Van Molle I, Villadangos AF, Wahni K, Vertommen D, Turell L, et al. The Corynebacterium glutamicum mycothiol peroxidase is a reactive oxygen species-scavenging enzyme that shows promiscuity in thiol redox control. Mol Microbiol 2015;96:1176-1191.
    • (2015) Mol Microbiol , vol.96 , pp. 1176-1191
    • Pedre, B.1    Van Molle, I.2    Villadangos, A.F.3    Wahni, K.4    Vertommen, D.5    Turell, L.6
  • 189
    • 84892907873 scopus 로고    scopus 로고
    • Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in corynebacterium glutamicum under hypochlorite stress
    • Chi BK, Busche T, Van Laer K, Basell K, Becher D, Clermont L, et al. Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in corynebacterium glutamicum under hypochlorite stress. Antioxid Redox Signal 2014;20:589-605.
    • (2014) Antioxid Redox Signal , vol.20 , pp. 589-605
    • Chi, B.K.1    Busche, T.2    Van Laer, K.3    Basell, K.4    Becher, D.5    Clermont, L.6
  • 190
    • 84877886960 scopus 로고    scopus 로고
    • Hyperoxidation of peroxiredoxins 2 and 3: Rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
    • Peskin AV, Dickerhof N, Poynton RA, Paton LN, Pace PE, Hampton MB, Winterbourn CC. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J Biol Chem 2013;288:14170-14177.
    • (2013) J Biol Chem , vol.288 , pp. 14170-14177
    • Peskin, A.V.1    Dickerhof, N.2    Poynton, R.A.3    Paton, L.N.4    Pace, P.E.5    Hampton, M.B.6    Winterbourn, C.C.7
  • 193
    • 38749094500 scopus 로고    scopus 로고
    • The catalytic mechanism of peroxiredoxins
    • Poole LB. The catalytic mechanism of peroxiredoxins. Subcell Biochem 2007;44:61-81.
    • (2007) Subcell Biochem , vol.44 , pp. 61-81
    • Poole, L.B.1
  • 194
    • 0027131771 scopus 로고
    • Proteinsulfenic acid stabilization and function in enzyme catalysis and gene regulation
    • Claiborne A, Miller H, Parsonage D, Ross RP. Proteinsulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 1993;7:1483-1490.
    • (1993) FASEB J , vol.7 , pp. 1483-1490
    • Claiborne, A.1    Miller, H.2    Parsonage, D.3    Ross, R.P.4
  • 195
    • 3843064487 scopus 로고    scopus 로고
    • The sulfinic acid switch in proteins
    • Jacob C, Holme AL, Fry FH. The sulfinic acid switch in proteins. Org Biomol Chem 2004;2:1953-1956.
    • (2004) Org Biomol Chem , vol.2 , pp. 1953-1956
    • Jacob, C.1    Holme, A.L.2    Fry, F.H.3
  • 196
    • 10944237769 scopus 로고    scopus 로고
    • Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
    • Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 2004;279:50994-51001.
    • (2004) J Biol Chem , vol.279 , pp. 50994-51001
    • Chang, T.S.1    Jeong, W.2    Woo, H.A.3    Lee, S.M.4    Park, S.5    Rhee, S.G.6
  • 197
    • 33645074141 scopus 로고    scopus 로고
    • Molecular and functional characterization of sulfiredoxin homologs from higher plants
    • Liu XP, Liu XY, Zhang J, Xia ZL, Liu X, Qin HJ, Wang DW. Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell Res 2006;16:287-296.
    • (2006) Cell Res , vol.16 , pp. 287-296
    • Liu, X.P.1    Liu, X.Y.2    Zhang, J.3    Xia, Z.L.4    Liu, X.5    Qin, H.J.6    Wang, D.W.7
  • 198
    • 0035798684 scopus 로고    scopus 로고
    • Hypochlorous acid oxygenates the cysteine switch domain of promatrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase
    • Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of promatrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001;276: 41279-41287.
    • (2001) J Biol Chem , vol.276 , pp. 41279-41287
    • Fu, X.1    Kassim, S.Y.2    Parks, W.C.3    Heinecke, J.W.4
  • 199
    • 0036249836 scopus 로고    scopus 로고
    • Irreversible thiol oxidation in carbonic anhydrase III: Protection by S-glutathiolation and detection in aging rats
    • Mallis RJ, Hamann MJ, Zhao W, Zhang T, Hendrich S, Thomas JA. Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats. Biol Chem 2002;383:649-662.
    • (2002) Biol Chem , vol.383 , pp. 649-662
    • Mallis, R.J.1    Hamann, M.J.2    Zhao, W.3    Zhang, T.4    Hendrich, S.5    Thomas, J.A.6
  • 200
    • 0031820996 scopus 로고    scopus 로고
    • Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates
    • Prutz WA. Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. Arch Biochem Biophys 1998;349: 183-191.
    • (1998) Arch Biochem Biophys , vol.349 , pp. 183-191
    • Prutz, W.A.1
  • 201
    • 0015930040 scopus 로고
    • The formation of a protein sulfenamide during the inactivation of the acyl phosphatase activity of oxidized glyceraldehyde-3-phosphate dehydrogenase by benzylamine
    • Allison WS, Benitez LV, Johnson CL. The formation of a protein sulfenamide during the inactivation of the acyl phosphatase activity of oxidized glyceraldehyde-3-phosphate dehydrogenase by benzylamine. Biochem Biophys Res Commun 1973;52:1403-1409.
    • (1973) Biochem Biophys Res Commun , vol.52 , pp. 1403-1409
    • Allison, W.S.1    Benitez, L.V.2    Johnson, C.L.3
  • 203
    • 9944235916 scopus 로고    scopus 로고
    • The role of cysteine residues as redoxsensitive regulatory switches
    • Barford D. The role of cysteine residues as redoxsensitive regulatory switches. Curr Opin Struct Biol 2004;14:679-686.
    • (2004) Curr Opin Struct Biol , vol.14 , pp. 679-686
    • Barford, D.1
  • 205
    • 34547399134 scopus 로고    scopus 로고
    • A complex thiolate switch regulates the bacillus subtilis organic peroxide sensor OhrR
    • Lee JW, Soonsanga S, Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 2007;104:8743-8748.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 8743-8748
    • Lee, J.W.1    Soonsanga, S.2    Helmann, J.D.3
  • 207
    • 84926371613 scopus 로고    scopus 로고
    • Protein topology determines cysteine oxidation fate: The case of sulfenyl amide formation among protein families
    • Defelipe LA, Lanzarotti E, Gauto D, Marti MA, Turjanski AG. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families. PLoS Comput Biol 2015;11:e1004051.
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004051
    • Defelipe, L.A.1    Lanzarotti, E.2    Gauto, D.3    Marti, M.A.4    Turjanski, A.G.5
  • 208
    • 84942030735 scopus 로고    scopus 로고
    • Does the transcription factor NemR use a regulatory sulfenamide bond to sense bleach?
    • Gray MJ, Li Y, Leichert LI, Xu Z, Jakob U. Does the transcription factor NemR use a regulatory sulfenamide bond to sense bleach? Antioxid Redox Signal 2015;23: 747-754.
    • (2015) Antioxid Redox Signal , vol.23 , pp. 747-754
    • Gray, M.J.1    Li, Y.2    Leichert, L.I.3    Xu, Z.4    Jakob, U.5
  • 209
    • 35948954266 scopus 로고    scopus 로고
    • Reactive sulfur species: Kinetics and mechanisms of the reaction of cysteine thiosulfinate ester with cysteine to give cysteine sulfenic acid
    • Nagy P, Lemma K, Ashby MT. Reactive sulfur species: kinetics and mechanisms of the reaction of cysteine thiosulfinate ester with cysteine to give cysteine sulfenic acid. J Org Chem 2007;72:8838-8846.
    • (2007) J Org Chem , vol.72 , pp. 8838-8846
    • Nagy, P.1    Lemma, K.2    Ashby, M.T.3
  • 211
    • 35148881746 scopus 로고    scopus 로고
    • Reactive sulfur species: Kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester
    • Nagy P, Ashby MT. Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester. Chem Res Toxicol 2007;20:1364-1372.
    • (2007) Chem Res Toxicol , vol.20 , pp. 1364-1372
    • Nagy, P.1    Ashby, M.T.2
  • 212
    • 84890120403 scopus 로고    scopus 로고
    • Sulfenic acid chemistry, detection and cellular lifetime
    • Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 2014;1840: 847-875.
    • (2014) Biochim Biophys Acta , vol.1840 , pp. 847-875
    • Gupta, V.1    Carroll, K.S.2
  • 213
    • 84942703781 scopus 로고
    • Mechanism of the antioxidant action of dialkyl sulfoxides
    • Koelewijn P, Berger H. Mechanism of the antioxidant action of dialkyl sulfoxides. Recueil Trav Chim Pays-Bas 1972;91:1275-1286.
    • (1972) Recueil Trav Chim Pays-Bas , vol.91 , pp. 1275-1286
    • Koelewijn, P.1    Berger, H.2
  • 214
    • 84860735634 scopus 로고    scopus 로고
    • The reaction of sulfenic acids with peroxyl radicals: Insights into the radical-trapping antioxidant activity of plant-derived thiosulfinates
    • Amorati R, Lynett PT, Valgimigli L, Pratt DA. The reaction of sulfenic acids with peroxyl radicals: insights into the radical-trapping antioxidant activity of plant-derived thiosulfinates. Chemistry 2012;18:6370-6379.
    • (2012) Chemistry , vol.18 , pp. 6370-6379
    • Amorati, R.1    Lynett, P.T.2    Valgimigli, L.3    Pratt, D.A.4
  • 215
    • 79957861205 scopus 로고    scopus 로고
    • Garlic: Source of the ultimate antioxidant-sulfenic acid
    • Vaidya V, Ingold KU, Pratt DA. Garlic: source of the ultimate antioxidant-sulfenic acid. Angew Chem 2009;121:163-166.
    • (2009) Angew Chem , vol.121 , pp. 163-166
    • Vaidya, V.1    Ingold, K.U.2    Pratt, D.A.3
  • 216
    • 0033796250 scopus 로고    scopus 로고
    • Mitochondrial free radical generation, oxidative stress, and aging
    • Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000;29:222-230.
    • (2000) Free Radic Biol Med , vol.29 , pp. 222-230
    • Cadenas, E.1    Davies, K.J.2
  • 217
    • 84867367131 scopus 로고    scopus 로고
    • Detection of reactive oxygen species derived from the family of NOX NADPH oxidases
    • Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 2012;53:1903-1918.
    • (2012) Free Radic Biol Med , vol.53 , pp. 1903-1918
    • Maghzal, G.J.1    Krause, K.H.2    Stocker, R.3    Jaquet, V.4
  • 218
    • 0015987510 scopus 로고
    • The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase
    • Williams DM, Lee GR, Cartwright GE. The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase. J Clin Invest 1974;53:665-667.
    • (1974) J Clin Invest , vol.53 , pp. 665-667
    • Williams, D.M.1    Lee, G.R.2    Cartwright, G.E.3
  • 219
    • 0346788873 scopus 로고    scopus 로고
    • Kinetics of superoxide scavenging by glutathione: An evaluation of its role in the removal of mitochondrial superoxide
    • Jones CM, Lawrence A, Wardman P, Burkitt MJ. Kinetics of superoxide scavenging by glutathione: an evaluation of its role in the removal of mitochondrial superoxide. Biochem Soc Trans 2003;31:1337-1339.
    • (2003) Biochem Soc Trans , vol.31 , pp. 1337-1339
    • Jones, C.M.1    Lawrence, A.2    Wardman, P.3    Burkitt, M.J.4
  • 220
    • 33846362170 scopus 로고    scopus 로고
    • Voltammetric investigation of the interactions between superoxide ion and some sulfur amino acids
    • Feroci G, Fini A. Voltammetric investigation of the interactions between superoxide ion and some sulfur amino acids. Inorganica Chimica Acta 2006:1023-1031.
    • (2006) Inorganica Chimica Acta , pp. 1023-1031
    • Feroci, G.1    Fini, A.2
  • 221
    • 0032865515 scopus 로고    scopus 로고
    • Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
    • Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 1999;27:322-328.
    • (1999) Free Radic Biol Med , vol.27 , pp. 322-328
    • Winterbourn, C.C.1    Metodiewa, D.2
  • 222
    • 38149053960 scopus 로고    scopus 로고
    • Mechanism of thiol oxidation by the superoxide radical
    • Cardey B, Foley S, Enescu M. Mechanism of thiol oxidation by the superoxide radical. J Phys Chem A 2007;111:13046-13052.
    • (2007) J Phys Chem A , vol.111 , pp. 13046-13052
    • Cardey, B.1    Foley, S.2    Enescu, M.3
  • 223
    • 67650072766 scopus 로고    scopus 로고
    • Cysteine oxidation by the superoxide radical: A theoretical study
    • Cardey B, Enescu M. Cysteine oxidation by the superoxide radical: a theoretical study. Chemphyschem 2009;10:1642-1648.
    • (2009) Chemphyschem , vol.10 , pp. 1642-1648
    • Cardey, B.1    Enescu, M.2
  • 224
    • 0030024499 scopus 로고    scopus 로고
    • Determination of rate constants of the reactions of thiols with superoxide radical by electron paramagnetic resonance: Critical remarks on spectrophotometric approaches
    • Dikalov S, Khramtsov V, Zimmer G. Determination of rate constants of the reactions of thiols with superoxide radical by electron paramagnetic resonance: critical remarks on spectrophotometric approaches. Arch Biochem Biophys 1996;326:207-218.
    • (1996) Arch Biochem Biophys , vol.326 , pp. 207-218
    • Dikalov, S.1    Khramtsov, V.2    Zimmer, G.3
  • 225
    • 0033521019 scopus 로고    scopus 로고
    • Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B
    • Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 1999;274:34543-34546.
    • (1999) J Biol Chem , vol.274 , pp. 34543-34546
    • Barrett, W.C.1    DeGnore, J.P.2    Keng, Y.F.3    Zhang, Z.Y.4    Yim, M.B.5    Chock, P.B.6
  • 226
    • 80051698652 scopus 로고    scopus 로고
    • Superoxide induces endothelial nitric-oxide synthase protein thiyl radical formation, a novel mechanism regulating eNOS function and coupling
    • Chen CA, Lin CH, Druhan LJ, Wang TY, Chen YR, Zweier JL. Superoxide induces endothelial nitric-oxide synthase protein thiyl radical formation, a novel mechanism regulating eNOS function and coupling. J Biol Chem 2011;286:29098-29107.
    • (2011) J Biol Chem , vol.286 , pp. 29098-29107
    • Chen, C.A.1    Lin, C.H.2    Druhan, L.J.3    Wang, T.Y.4    Chen, Y.R.5    Zweier, J.L.6
  • 227
    • 79951941737 scopus 로고    scopus 로고
    • Tryparedoxin peroxidases from trypanosoma cruzi: High efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite
    • Pineyro MD, Arcari T, Robello C, Radi R, Trujillo M. Tryparedoxin peroxidases from Trypanosoma cruzi: high efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite. Arch Biochem Biophys 2011;507:287-295.
    • (2011) Arch Biochem Biophys , vol.507 , pp. 287-295
    • Pineyro, M.D.1    Arcari, T.2    Robello, C.3    Radi, R.4    Trujillo, M.5
  • 228
    • 33845917628 scopus 로고    scopus 로고
    • Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics
    • Ogusucu R, Rettori D, Munhoz DC, Netto LE, Augusto O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic Biol Med 2007;42:326-334.
    • (2007) Free Radic Biol Med , vol.42 , pp. 326-334
    • Ogusucu, R.1    Rettori, D.2    Munhoz, D.C.3    Netto, L.E.4    Augusto, O.5
  • 229
    • 0034648827 scopus 로고    scopus 로고
    • Peroxynitrite reductase activity of bacterial peroxiredoxins
    • Bryk R, Griffin P, Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 2000;407:211-215.
    • (2000) Nature , vol.407 , pp. 211-215
    • Bryk, R.1    Griffin, P.2    Nathan, C.3
  • 230
    • 77950870461 scopus 로고    scopus 로고
    • Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of treponema pallidum
    • Parsonage D, Desrosiers DC, Hazlett KR, Sun Y, Nelson KJ, Cox DL, et al. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc Natl Acad Sci USA 2010;107:6240-6245.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 6240-6245
    • Parsonage, D.1    Desrosiers, D.C.2    Hazlett, K.R.3    Sun, Y.4    Nelson, K.J.5    Cox, D.L.6
  • 232
    • 80052731725 scopus 로고    scopus 로고
    • Kinetic studies of peroxiredoxin 6 from arenicola marina: Rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide
    • Loumaye E, Ferrer-Sueta G, Alvarez B, Rees JF, Clippe A, Knoops B, et al. Kinetic studies of peroxiredoxin 6 from Arenicola marina: rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide. Arch Biochem Biophys 2011;514:1-7.
    • (2011) Arch Biochem Biophys , vol.514 , pp. 1-7
    • Loumaye, E.1    Ferrer-Sueta, G.2    Alvarez, B.3    Rees, J.F.4    Clippe, A.5    Knoops, B.6
  • 233
    • 79953242071 scopus 로고    scopus 로고
    • Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: From quantification to kinetics
    • Toledo JC Jr, Audi R, Ogusucu R, Monteiro G, Netto LE, Augusto O. Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics. Free Radic Biol Med 2011;50:1032-1038.
    • (2011) Free Radic Biol Med , vol.50 , pp. 1032-1038
    • Toledo, J.C.1    Audi, R.2    Ogusucu, R.3    Monteiro, G.4    Netto, L.E.5    Augusto, O.6
  • 234
    • 77952396492 scopus 로고    scopus 로고
    • Structural and biochemical characterization of peroxiredoxin qbeta from xylella fastidiosa: Catalytic mechanism and high reactivity
    • Horta BB, de Oliveira MA, Discola KF, Cussiol JR, Netto LE. Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity. J Biol Chem 2010;285:16051-16065.
    • (2010) J Biol Chem , vol.285 , pp. 16051-16065
    • Horta, B.B.1    De Oliveira, M.A.2    Discola, K.F.3    Cussiol, J.R.4    Netto, L.E.5
  • 235
    • 80054771975 scopus 로고    scopus 로고
    • Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin
    • Reeves SA, Parsonage D, Nelson KJ, Poole LB. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry 2011;50:8970-8981.
    • (2011) Biochemistry , vol.50 , pp. 8970-8981
    • Reeves, S.A.1    Parsonage, D.2    Nelson, K.J.3    Poole, L.B.4
  • 236
  • 237
    • 0037646517 scopus 로고    scopus 로고
    • Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61
    • Baker LM, Poole LB. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J Biol Chem 2003;278:9203-9211.
    • (2003) J Biol Chem , vol.278 , pp. 9203-9211
    • Baker, L.M.1    Poole, L.B.2
  • 238
    • 84856936339 scopus 로고    scopus 로고
    • Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: Kinetics, catalytic mechanism and oxidative inactivation
    • Selles B, Hugo M, Trujillo M, Srivastava V, Wingsle G, Jacquot JP, et al. Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation. Biochem J 2012;442:369-380.
    • (2012) Biochem J , vol.442 , pp. 369-380
    • Selles, B.1    Hugo, M.2    Trujillo, M.3    Srivastava, V.4    Wingsle, G.5    Jacquot, J.P.6
  • 239
    • 0037470229 scopus 로고    scopus 로고
    • A second class of peroxidases linked to the trypanothione metabolism
    • Hillebrand H, Schmidt A, Krauth-Siegel RL. A second class of peroxidases linked to the trypanothione metabolism. J Biol Chem 2003;278:6809-6815.
    • (2003) J Biol Chem , vol.278 , pp. 6809-6815
    • Hillebrand, H.1    Schmidt, A.2    Krauth-Siegel, R.L.3
  • 240
    • 84887465759 scopus 로고    scopus 로고
    • Glutathione peroxidase 7 utilizes hydrogen peroxide generated by ero1alpha to promote oxidative protein folding
    • Wang L, Zhang L, Niu Y, Sitia R, Wang CC. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1alpha to promote oxidative protein folding. Antioxid Redox Signal 2014;20:545-556.
    • (2014) Antioxid Redox Signal , vol.20 , pp. 545-556
    • Wang, L.1    Zhang, L.2    Niu, Y.3    Sitia, R.4    Wang, C.C.5
  • 241
    • 0033568723 scopus 로고    scopus 로고
    • Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite
    • Takakura K, Beckman JS, MacMillan-Crow LA, Crow JP. Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch Biochem Biophys 1999;369:197-207.
    • (1999) Arch Biochem Biophys , vol.369 , pp. 197-207
    • Takakura, K.1    Beckman, J.S.2    MacMillan-Crow, L.A.3    Crow, J.P.4
  • 242
    • 0032554611 scopus 로고    scopus 로고
    • Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation
    • Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998;37:5633-5642.
    • (1998) Biochemistry , vol.37 , pp. 5633-5642
    • Denu, J.M.1    Tanner, K.G.2
  • 243
    • 0041323072 scopus 로고    scopus 로고
    • Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction
    • Sohn J, Rudolph J. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry 2003;42:10060-10070.
    • (2003) Biochemistry , vol.42 , pp. 10060-10070
    • Sohn, J.1    Rudolph, J.2
  • 244
    • 33745994277 scopus 로고    scopus 로고
    • The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin
    • Trujillo M, Mauri P, Benazzi L, Comini M, De Palma A, Flohe L, et al. The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin. J Biol Chem 2006;281:20555-20566.
    • (2006) J Biol Chem , vol.281 , pp. 20555-20566
    • Trujillo, M.1    Mauri, P.2    Benazzi, L.3    Comini, M.4    De Palma, A.5    Flohe, L.6
  • 245
    • 0032496422 scopus 로고    scopus 로고
    • Rapid and irreversible inhibition of creatine kinase by peroxynitrite
    • Konorev EA, Hogg N, Kalyanaraman B. Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett 1998;427:171-174.
    • (1998) FEBS Lett , vol.427 , pp. 171-174
    • Konorev, E.A.1    Hogg, N.2    Kalyanaraman, B.3
  • 246
    • 80054855849 scopus 로고    scopus 로고
    • Hydrogen peroxide targets the cysteine at the active site and irreversibly inactivates creatine kinase
    • Li C, Sun S, Park D, Jeong HO, Chung HY, Liu XX, Zhou HM. Hydrogen peroxide targets the cysteine at the active site and irreversibly inactivates creatine kinase. Int J Biol Macromol 2011;49:910-916.
    • (2011) Int J Biol Macromol , vol.49 , pp. 910-916
    • Li, C.1    Sun, S.2    Park, D.3    Jeong, H.O.4    Chung, H.Y.5    Liu, X.X.6    Zhou, H.M.7
  • 247
    • 0032411442 scopus 로고    scopus 로고
    • Kinetic study of the reaction of glutathione peroxidase with peroxynitrite
    • Briviba K, Kissner R, Koppenol WH, Sies H. Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chem Res Toxicol 1998;11:1398-1401.
    • (1998) Chem Res Toxicol , vol.11 , pp. 1398-1401
    • Briviba, K.1    Kissner, R.2    Koppenol, W.H.3    Sies, H.4
  • 248
    • 0030938584 scopus 로고    scopus 로고
    • Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage
    • Szabo C, Ferrer-Sueta G, Zingarelli B, Southan GJ, Salzman AL, Radi R. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. J Biol Chem 1997;272:9030-9036.
    • (1997) J Biol Chem , vol.272 , pp. 9030-9036
    • Szabo, C.1    Ferrer-Sueta, G.2    Zingarelli, B.3    Southan, G.J.4    Salzman, A.L.5    Radi, R.6
  • 249
    • 4544264011 scopus 로고    scopus 로고
    • Trypanosoma brucei and trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols
    • Trujillo M, Budde H, Pineyro MD, Stehr M, Robello C, Flohe L, Radi R. Trypanosoma brucei and trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols. J Biol Chem 2004;279:34175-34182.
    • (2004) J Biol Chem , vol.279 , pp. 34175-34182
    • Trujillo, M.1    Budde, H.2    Pineyro, M.D.3    Stehr, M.4    Robello, C.5    Flohe, L.6    Radi, R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.