메뉴 건너뛰기




Volumn 8, Issue , 2016, Pages 110-118

Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria

Author keywords

Glutaredoxin; Glutathione; Glutathionylation; Hydrogen peroxide; Mitochondria; Redox signaling

Indexed keywords

GLUTATHIONE; HYDROGEN PEROXIDE; PEROXIREDOXIN; PROTEIN S; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SUPEROXIDE; GLUTATHIONE DISULFIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE;

EID: 84953310609     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2015.12.010     Document Type: Article
Times cited : (111)

References (75)
  • 1
    • 77049308856 scopus 로고
    • Aging: a theory based on free radical and radiation chemistry
    • Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11:298-300.
    • (1956) J. Gerontol. , vol.11 , pp. 298-300
    • Harman, D.1
  • 2
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • Balaban R.S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell 2005, 120:483-495.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1    Nemoto, S.2    Finkel, T.3
  • 3
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
    • (2011) J. Cell Biol. , vol.194 , pp. 7-15
    • Finkel, T.1
  • 4
    • 0033921305 scopus 로고    scopus 로고
    • Evolution of antioxidant defence mechanisms
    • Benzie I.F. Evolution of antioxidant defence mechanisms. Eur. J. Nutr. 2000, 39:53-61.
    • (2000) Eur. J. Nutr. , vol.39 , pp. 53-61
    • Benzie, I.F.1
  • 5
    • 84872806941 scopus 로고    scopus 로고
    • Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model
    • Kembro J.M., Aon M.A., Winslow R.L., O'Rourke B., Cortassa S. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys. J. 2013, 104:332-343.
    • (2013) Biophys. J. , vol.104 , pp. 332-343
    • Kembro, J.M.1    Aon, M.A.2    Winslow, R.L.3    O'Rourke, B.4    Cortassa, S.5
  • 6
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 7
    • 84866565340 scopus 로고    scopus 로고
    • Modulating mitochondrial intracellular location as a redox signal
    • Murphy M.P. Modulating mitochondrial intracellular location as a redox signal. Sci. Signal. 2012, 5:pe39.
    • (2012) Sci. Signal. , vol.5 , pp. pe39
    • Murphy, M.P.1
  • 8
    • 79851510399 scopus 로고    scopus 로고
    • The redoxome: proteomic analysis of cellular redox networks
    • Thamsen M., Jakob U. The redoxome: proteomic analysis of cellular redox networks. Curr. Opin. Chem. Biol. 2011, 15:113-119.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 113-119
    • Thamsen, M.1    Jakob, U.2
  • 9
    • 84897444272 scopus 로고    scopus 로고
    • 2 generation: redox signaling and oxidative stress
    • 2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014, 289:8735-8741.
    • (2014) J. Biol. Chem. , vol.289 , pp. 8735-8741
    • Sies, H.1
  • 11
    • 84937731185 scopus 로고    scopus 로고
    • Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks
    • Gould N.S., Evans P., Martinez-Acedo P., Marino S.M., Gladyshev V.N., Carroll K.S., Ischiropoulos H. Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks. Chem. Biol. 2015, 22:965-975.
    • (2015) Chem. Biol. , vol.22 , pp. 965-975
    • Gould, N.S.1    Evans, P.2    Martinez-Acedo, P.3    Marino, S.M.4    Gladyshev, V.N.5    Carroll, K.S.6    Ischiropoulos, H.7
  • 12
    • 14044257843 scopus 로고    scopus 로고
    • Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation
    • Shelton M.D., Chock P.B., Mieyal J.J. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid. Redox Signal. 2005, 7:348-366.
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 348-366
    • Shelton, M.D.1    Chock, P.B.2    Mieyal, J.J.3
  • 13
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435:297-312.
    • (2011) Biochem. J. , vol.435 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 14
    • 65349123514 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function
    • Stowe D.F., Camara A.K. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox Signal. 2009, 11:1373-1414.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1373-1414
    • Stowe, D.F.1    Camara, A.K.2
  • 15
    • 77953873858 scopus 로고    scopus 로고
    • Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells
    • Forkink M., Smeitink J.A., Brock R., Willems P.H., Koopman W.J. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim. Biophys. Acta 2010, 1797:1034-1044.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1034-1044
    • Forkink, M.1    Smeitink, J.A.2    Brock, R.3    Willems, P.H.4    Koopman, W.J.5
  • 16
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012, 287:27255-27264.
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 17
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416:15-18.
    • (1997) FEBS Lett. , vol.416 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 18
    • 84923868391 scopus 로고    scopus 로고
    • Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species
    • Mailloux R.J. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015, 4:381-398.
    • (2015) Redox Biol. , vol.4 , pp. 381-398
    • Mailloux, R.J.1
  • 19
    • 84896935583 scopus 로고    scopus 로고
    • The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I
    • Quinlan C.L., Goncalves R.L., Hey-Mogensen M., Yadava N., Bunik V.I., Brand M.D. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem. 2014, 289:8312-8325.
    • (2014) J. Biol. Chem. , vol.289 , pp. 8312-8325
    • Quinlan, C.L.1    Goncalves, R.L.2    Hey-Mogensen, M.3    Yadava, N.4    Bunik, V.I.5    Brand, M.D.6
  • 21
    • 63349087445 scopus 로고    scopus 로고
    • Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation
    • Tahara E.B., Navarete F.D., Kowaltowski A.J. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 2009, 46:1283-1297.
    • (2009) Free Radic. Biol. Med. , vol.46 , pp. 1283-1297
    • Tahara, E.B.1    Navarete, F.D.2    Kowaltowski, A.J.3
  • 22
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • Quinlan C.L., Perevoshchikova I.V., Hey-Mogensen M., Orr A.L., Brand M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1:304-312.
    • (2013) Redox Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 23
    • 18244390487 scopus 로고    scopus 로고
    • Myeloperoxidase: friend and foe
    • Klebanoff S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 2005, 77:598-625.
    • (2005) J. Leukoc. Biol. , vol.77 , pp. 598-625
    • Klebanoff, S.J.1
  • 25
    • 0026336880 scopus 로고
    • Superoxide-dependent reduction of some simple low molecular mass iron complexes
    • Gutteridge J.M. Superoxide-dependent reduction of some simple low molecular mass iron complexes. J. Trace Elem. Electrolytes Health Dis. 1991, 5:271-272.
    • (1991) J. Trace Elem. Electrolytes Health Dis. , vol.5 , pp. 271-272
    • Gutteridge, J.M.1
  • 27
    • 84927939726 scopus 로고    scopus 로고
    • Thiol switches in mitochondria: operation and physiological relevance
    • Riemer J., Schwarzlander M., Conrad M., Herrmann J.M. Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 2015, 396:465-482.
    • (2015) Biol. Chem. , vol.396 , pp. 465-482
    • Riemer, J.1    Schwarzlander, M.2    Conrad, M.3    Herrmann, J.M.4
  • 28
    • 84902242573 scopus 로고    scopus 로고
    • Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation
    • Drose S., Brandt U., Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta 2014, 1844:1344-1354.
    • (2014) Biochim. Biophys. Acta , vol.1844 , pp. 1344-1354
    • Drose, S.1    Brandt, U.2    Wittig, I.3
  • 29
    • 84888133598 scopus 로고    scopus 로고
    • Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
    • Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem. Sci. 2013, 38:592-602.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 592-602
    • Mailloux, R.J.1    McBride, S.L.2    Harper, M.E.3
  • 30
    • 80052000670 scopus 로고    scopus 로고
    • Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities
    • Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15:1957-1997.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 1957-1997
    • Lubos, E.1    Loscalzo, J.2    Handy, D.E.3
  • 31
    • 79958059617 scopus 로고    scopus 로고
    • Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
    • Hall A., Nelson K., Poole L.B., Karplus P.A. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 2011, 15:795-815.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 795-815
    • Hall, A.1    Nelson, K.2    Poole, L.B.3    Karplus, P.A.4
  • 32
    • 84924119180 scopus 로고    scopus 로고
    • Are free radicals involved in thiol-based redox signaling?
    • Winterbourn C.C. Are free radicals involved in thiol-based redox signaling?. Free Radic. Biol. Med. 2015, 80:164-170.
    • (2015) Free Radic. Biol. Med. , vol.80 , pp. 164-170
    • Winterbourn, C.C.1
  • 33
    • 84930945346 scopus 로고    scopus 로고
    • Differentiating between apparent and actual rates of HO metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of HO concentration
    • Treberg J.R., Munro D., Banh S., Zacharias P., Sotiri E. Differentiating between apparent and actual rates of HO metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of HO concentration. Redox Biol. 2015, 5:216-224.
    • (2015) Redox Biol. , vol.5 , pp. 216-224
    • Treberg, J.R.1    Munro, D.2    Banh, S.3    Zacharias, P.4    Sotiri, E.5
  • 34
    • 36148995826 scopus 로고    scopus 로고
    • Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid
    • Nagy P., Ashby M.T. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J. Am. Chem. Soc. 2007, 129:14082-14091.
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 14082-14091
    • Nagy, P.1    Ashby, M.T.2
  • 35
    • 84892575903 scopus 로고    scopus 로고
    • Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions
    • Mailloux R.J., Jin X., Willmore W.G. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2014, 2:123-139.
    • (2014) Redox Biol. , vol.2 , pp. 123-139
    • Mailloux, R.J.1    Jin, X.2    Willmore, W.G.3
  • 36
    • 84923920135 scopus 로고    scopus 로고
    • Protein thiyl radical reactions and product formation: a kinetic simulation
    • Nauser T., Koppenol W.H., Schoneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic. Biol. Med. 2015, 80:158-163.
    • (2015) Free Radic. Biol. Med. , vol.80 , pp. 158-163
    • Nauser, T.1    Koppenol, W.H.2    Schoneich, C.3
  • 37
    • 84923912767 scopus 로고    scopus 로고
    • S-glutathionylation reactions in mitochondrial function and disease
    • Mailloux R.J., Willmore W.G. S-glutathionylation reactions in mitochondrial function and disease. Front. Cell Dev. Biol. 2014, 2:68.
    • (2014) Front. Cell Dev. Biol. , vol.2 , pp. 68
    • Mailloux, R.J.1    Willmore, W.G.2
  • 38
    • 64549106959 scopus 로고    scopus 로고
    • Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
    • Gallogly M.M., Starke D.W., Mieyal J.J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1059-1081
    • Gallogly, M.M.1    Starke, D.W.2    Mieyal, J.J.3
  • 40
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7:381-391.
    • (2007) Curr. Opin. Pharmacol. , vol.7 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 41
    • 9144249116 scopus 로고    scopus 로고
    • Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
    • Beer S.M., Taylor E.R., Brown S.E., Dahm C.C., Costa N.J., Runswick M.J., Murphy M.P. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47939-47951
    • Beer, S.M.1    Taylor, E.R.2    Brown, S.E.3    Dahm, C.C.4    Costa, N.J.5    Runswick, M.J.6    Murphy, M.P.7
  • 43
    • 79954430645 scopus 로고    scopus 로고
    • Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange
    • Qi W., Cowan J.A. Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. Chem. Commun. 2011, 47:4989-4991.
    • (2011) Chem. Commun. , vol.47 , pp. 4989-4991
    • Qi, W.1    Cowan, J.A.2
  • 44
    • 66149108787 scopus 로고    scopus 로고
    • Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria
    • Mitra S., Elliott S.J. Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria. Biochemistry 2009, 48:3813-3815.
    • (2009) Biochemistry , vol.48 , pp. 3813-3815
    • Mitra, S.1    Elliott, S.J.2
  • 47
    • 84929493080 scopus 로고    scopus 로고
    • GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity
    • Chen Y.J., Lu C.T., Huang K.Y., Wu H.Y., Lee T.Y. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One 2015, 10:e0118752.
    • (2015) PLoS One , vol.10 , pp. e0118752
    • Chen, Y.J.1    Lu, C.T.2    Huang, K.Y.3    Wu, H.Y.4    Lee, T.Y.5
  • 50
    • 84935104408 scopus 로고    scopus 로고
    • Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver
    • McGarry D.J., Chen W., Chakravarty P., Lamont D.J., Wolf C.R., Henderson C.J. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver. Biochem. J. 2015, 469(1).
    • (2015) Biochem. J. , vol.469 , Issue.1
    • McGarry, D.J.1    Chen, W.2    Chakravarty, P.3    Lamont, D.J.4    Wolf, C.R.5    Henderson, C.J.6
  • 51
    • 84920982875 scopus 로고    scopus 로고
    • Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space
    • Kojer K., Peleh V., Calabrese G., Herrmann J.M., Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol. Biol. Cell 2015, 26:195-204.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 195-204
    • Kojer, K.1    Peleh, V.2    Calabrese, G.3    Herrmann, J.M.4    Riemer, J.5
  • 52
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
    • Chen Y.R., Chen C.L., Pfeiffer D.R., Zweier J.L. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32640-32654
    • Chen, Y.R.1    Chen, C.L.2    Pfeiffer, D.R.3    Zweier, J.L.4
  • 53
    • 77952776083 scopus 로고    scopus 로고
    • Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
    • Queiroga C.S., Almeida A.S., Martel C., Brenner C., Alves P.M., Vieira H.L. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J. Biol. Chem. 2010, 285:17077-17088.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17077-17088
    • Queiroga, C.S.1    Almeida, A.S.2    Martel, C.3    Brenner, C.4    Alves, P.M.5    Vieira, H.L.6
  • 54
    • 81155123702 scopus 로고    scopus 로고
    • Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
    • Nguyen T.T., Stevens M.V., Kohr M., Steenbergen C., Sack M.N., Murphy E. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J. Biol. Chem. 2011, 286:40184-40192.
    • (2011) J. Biol. Chem. , vol.286 , pp. 40184-40192
    • Nguyen, T.T.1    Stevens, M.V.2    Kohr, M.3    Steenbergen, C.4    Sack, M.N.5    Murphy, E.6
  • 55
    • 84892369382 scopus 로고    scopus 로고
    • How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo
    • Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014, 66:24-35.
    • (2014) Free Radic. Biol. Med. , vol.66 , pp. 24-35
    • Forman, H.J.1    Davies, K.J.2    Ursini, F.3
  • 56
    • 84919754886 scopus 로고    scopus 로고
    • Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-)
    • Kang P.T., Chen C.L., Chen Y.R. Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-). Free Radic. Biol. Med. 2015, 79:56-68.
    • (2015) Free Radic. Biol. Med. , vol.79 , pp. 56-68
    • Kang, P.T.1    Chen, C.L.2    Chen, Y.R.3
  • 59
    • 84949545879 scopus 로고    scopus 로고
    • The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function
    • Kramer P.A., Duan J., Qian W.J., Marcinek D.J. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front. Physiol. 2015, 6:347.
    • (2015) Front. Physiol. , vol.6 , pp. 347
    • Kramer, P.A.1    Duan, J.2    Qian, W.J.3    Marcinek, D.J.4
  • 60
    • 84875439431 scopus 로고    scopus 로고
    • Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
    • Mailloux R.J., Xuan J.Y., Beauchamp B., Jui L., Lou M., Harper M.E. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J. Biol. Chem. 2013, 288:8365-8379.
    • (2013) J. Biol. Chem. , vol.288 , pp. 8365-8379
    • Mailloux, R.J.1    Xuan, J.Y.2    Beauchamp, B.3    Jui, L.4    Lou, M.5    Harper, M.E.6
  • 61
    • 84924310257 scopus 로고    scopus 로고
    • Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock
    • Muoio D.M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2014, 159:1253-1262.
    • (2014) Cell , vol.159 , pp. 1253-1262
    • Muoio, D.M.1
  • 62
    • 84883146515 scopus 로고    scopus 로고
    • Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation
    • Giangregorio N., Palmieri F., Indiveri C. Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim. Biophys. Acta 2013, 1830:5299-5304.
    • (2013) Biochim. Biophys. Acta , vol.1830 , pp. 5299-5304
    • Giangregorio, N.1    Palmieri, F.2    Indiveri, C.3
  • 63
    • 84973468696 scopus 로고    scopus 로고
    • Glutathionyl systems and metabolic dysfunction in obesity
    • Picklo M.J., Long E.K., Vomhof-DeKrey E.E. Glutathionyl systems and metabolic dysfunction in obesity. Nutr. Rev. 2015, 73:858-868.
    • (2015) Nutr. Rev. , vol.73 , pp. 858-868
    • Picklo, M.J.1    Long, E.K.2    Vomhof-DeKrey, E.E.3
  • 66
    • 37849043898 scopus 로고    scopus 로고
    • Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
    • Applegate M.A., Humphries K.M., Szweda L.I. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
    • (2008) Biochemistry , vol.47 , pp. 473-478
    • Applegate, M.A.1    Humphries, K.M.2    Szweda, L.I.3
  • 67
    • 54049146740 scopus 로고    scopus 로고
    • Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
    • Hurd T.R., Requejo R., Filipovska A., Brown S., Prime T.A., Robinson A.J., Fearnley I.M., Murphy M.P. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24801-24815
    • Hurd, T.R.1    Requejo, R.2    Filipovska, A.3    Brown, S.4    Prime, T.A.5    Robinson, A.J.6    Fearnley, I.M.7    Murphy, M.P.8
  • 68
    • 84919797503 scopus 로고    scopus 로고
    • Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice
    • Wu H., Yu Y., David L., Ho Y.S., Lou M.F. Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice. J. Biol. Chem. 2014, 289:36125-36139.
    • (2014) J. Biol. Chem. , vol.289 , pp. 36125-36139
    • Wu, H.1    Yu, Y.2    David, L.3    Ho, Y.S.4    Lou, M.F.5
  • 70
    • 84884593391 scopus 로고    scopus 로고
    • Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates
    • Siebels I., Drose S. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim. Biophys. Acta 2013, 1827:1156-1164.
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1156-1164
    • Siebels, I.1    Drose, S.2
  • 71
    • 84865434841 scopus 로고    scopus 로고
    • Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
    • Mailloux R.J., Harper M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 2012, 23:451-458.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 451-458
    • Mailloux, R.J.1    Harper, M.E.2
  • 75
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt T., Geoffrion M., Milne R., McBride H.M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012, 13:909-915.
    • (2012) EMBO Rep. , vol.13 , pp. 909-915
    • Shutt, T.1    Geoffrion, M.2    Milne, R.3    McBride, H.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.