-
1
-
-
77049308856
-
Aging: a theory based on free radical and radiation chemistry
-
Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11:298-300.
-
(1956)
J. Gerontol.
, vol.11
, pp. 298-300
-
-
Harman, D.1
-
2
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
Balaban R.S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell 2005, 120:483-495.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
3
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
4
-
-
0033921305
-
Evolution of antioxidant defence mechanisms
-
Benzie I.F. Evolution of antioxidant defence mechanisms. Eur. J. Nutr. 2000, 39:53-61.
-
(2000)
Eur. J. Nutr.
, vol.39
, pp. 53-61
-
-
Benzie, I.F.1
-
5
-
-
84872806941
-
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model
-
Kembro J.M., Aon M.A., Winslow R.L., O'Rourke B., Cortassa S. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys. J. 2013, 104:332-343.
-
(2013)
Biophys. J.
, vol.104
, pp. 332-343
-
-
Kembro, J.M.1
Aon, M.A.2
Winslow, R.L.3
O'Rourke, B.4
Cortassa, S.5
-
6
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
7
-
-
84866565340
-
Modulating mitochondrial intracellular location as a redox signal
-
Murphy M.P. Modulating mitochondrial intracellular location as a redox signal. Sci. Signal. 2012, 5:pe39.
-
(2012)
Sci. Signal.
, vol.5
, pp. pe39
-
-
Murphy, M.P.1
-
8
-
-
79851510399
-
The redoxome: proteomic analysis of cellular redox networks
-
Thamsen M., Jakob U. The redoxome: proteomic analysis of cellular redox networks. Curr. Opin. Chem. Biol. 2011, 15:113-119.
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, pp. 113-119
-
-
Thamsen, M.1
Jakob, U.2
-
9
-
-
84897444272
-
2 generation: redox signaling and oxidative stress
-
2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014, 289:8735-8741.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8735-8741
-
-
Sies, H.1
-
11
-
-
84937731185
-
Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks
-
Gould N.S., Evans P., Martinez-Acedo P., Marino S.M., Gladyshev V.N., Carroll K.S., Ischiropoulos H. Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks. Chem. Biol. 2015, 22:965-975.
-
(2015)
Chem. Biol.
, vol.22
, pp. 965-975
-
-
Gould, N.S.1
Evans, P.2
Martinez-Acedo, P.3
Marino, S.M.4
Gladyshev, V.N.5
Carroll, K.S.6
Ischiropoulos, H.7
-
12
-
-
14044257843
-
Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation
-
Shelton M.D., Chock P.B., Mieyal J.J. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid. Redox Signal. 2005, 7:348-366.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 348-366
-
-
Shelton, M.D.1
Chock, P.B.2
Mieyal, J.J.3
-
13
-
-
79953180902
-
Assessing mitochondrial dysfunction in cells
-
Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435:297-312.
-
(2011)
Biochem. J.
, vol.435
, pp. 297-312
-
-
Brand, M.D.1
Nicholls, D.G.2
-
14
-
-
65349123514
-
Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function
-
Stowe D.F., Camara A.K. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox Signal. 2009, 11:1373-1414.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1373-1414
-
-
Stowe, D.F.1
Camara, A.K.2
-
15
-
-
77953873858
-
Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells
-
Forkink M., Smeitink J.A., Brock R., Willems P.H., Koopman W.J. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim. Biophys. Acta 2010, 1797:1034-1044.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1034-1044
-
-
Forkink, M.1
Smeitink, J.A.2
Brock, R.3
Willems, P.H.4
Koopman, W.J.5
-
16
-
-
84864540083
-
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
-
Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012, 287:27255-27264.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 27255-27264
-
-
Quinlan, C.L.1
Orr, A.L.2
Perevoshchikova, I.V.3
Treberg, J.R.4
Ackrell, B.A.5
Brand, M.D.6
-
17
-
-
0030729851
-
High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
-
Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416:15-18.
-
(1997)
FEBS Lett.
, vol.416
, pp. 15-18
-
-
Korshunov, S.S.1
Skulachev, V.P.2
Starkov, A.A.3
-
18
-
-
84923868391
-
Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species
-
Mailloux R.J. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015, 4:381-398.
-
(2015)
Redox Biol.
, vol.4
, pp. 381-398
-
-
Mailloux, R.J.1
-
19
-
-
84896935583
-
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I
-
Quinlan C.L., Goncalves R.L., Hey-Mogensen M., Yadava N., Bunik V.I., Brand M.D. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem. 2014, 289:8312-8325.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8312-8325
-
-
Quinlan, C.L.1
Goncalves, R.L.2
Hey-Mogensen, M.3
Yadava, N.4
Bunik, V.I.5
Brand, M.D.6
-
20
-
-
84911476354
-
Generator-specific targets of mitochondrial reactive oxygen species
-
Bleier L., Wittig I., Heide H., Steger M., Brandt U., Drose S. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic. Biol. Med. 2015, 78:1-10.
-
(2015)
Free Radic. Biol. Med.
, vol.78
, pp. 1-10
-
-
Bleier, L.1
Wittig, I.2
Heide, H.3
Steger, M.4
Brandt, U.5
Drose, S.6
-
21
-
-
63349087445
-
Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation
-
Tahara E.B., Navarete F.D., Kowaltowski A.J. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 2009, 46:1283-1297.
-
(2009)
Free Radic. Biol. Med.
, vol.46
, pp. 1283-1297
-
-
Tahara, E.B.1
Navarete, F.D.2
Kowaltowski, A.J.3
-
22
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
Quinlan C.L., Perevoshchikova I.V., Hey-Mogensen M., Orr A.L., Brand M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013, 1:304-312.
-
(2013)
Redox Biol.
, vol.1
, pp. 304-312
-
-
Quinlan, C.L.1
Perevoshchikova, I.V.2
Hey-Mogensen, M.3
Orr, A.L.4
Brand, M.D.5
-
23
-
-
18244390487
-
Myeloperoxidase: friend and foe
-
Klebanoff S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 2005, 77:598-625.
-
(2005)
J. Leukoc. Biol.
, vol.77
, pp. 598-625
-
-
Klebanoff, S.J.1
-
25
-
-
0026336880
-
Superoxide-dependent reduction of some simple low molecular mass iron complexes
-
Gutteridge J.M. Superoxide-dependent reduction of some simple low molecular mass iron complexes. J. Trace Elem. Electrolytes Health Dis. 1991, 5:271-272.
-
(1991)
J. Trace Elem. Electrolytes Health Dis.
, vol.5
, pp. 271-272
-
-
Gutteridge, J.M.1
-
27
-
-
84927939726
-
Thiol switches in mitochondria: operation and physiological relevance
-
Riemer J., Schwarzlander M., Conrad M., Herrmann J.M. Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 2015, 396:465-482.
-
(2015)
Biol. Chem.
, vol.396
, pp. 465-482
-
-
Riemer, J.1
Schwarzlander, M.2
Conrad, M.3
Herrmann, J.M.4
-
28
-
-
84902242573
-
Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation
-
Drose S., Brandt U., Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim. Biophys. Acta 2014, 1844:1344-1354.
-
(2014)
Biochim. Biophys. Acta
, vol.1844
, pp. 1344-1354
-
-
Drose, S.1
Brandt, U.2
Wittig, I.3
-
29
-
-
84888133598
-
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
-
Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem. Sci. 2013, 38:592-602.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 592-602
-
-
Mailloux, R.J.1
McBride, S.L.2
Harper, M.E.3
-
30
-
-
80052000670
-
Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities
-
Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15:1957-1997.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 1957-1997
-
-
Lubos, E.1
Loscalzo, J.2
Handy, D.E.3
-
31
-
-
79958059617
-
Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
-
Hall A., Nelson K., Poole L.B., Karplus P.A. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 2011, 15:795-815.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 795-815
-
-
Hall, A.1
Nelson, K.2
Poole, L.B.3
Karplus, P.A.4
-
32
-
-
84924119180
-
Are free radicals involved in thiol-based redox signaling?
-
Winterbourn C.C. Are free radicals involved in thiol-based redox signaling?. Free Radic. Biol. Med. 2015, 80:164-170.
-
(2015)
Free Radic. Biol. Med.
, vol.80
, pp. 164-170
-
-
Winterbourn, C.C.1
-
33
-
-
84930945346
-
Differentiating between apparent and actual rates of HO metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of HO concentration
-
Treberg J.R., Munro D., Banh S., Zacharias P., Sotiri E. Differentiating between apparent and actual rates of HO metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of HO concentration. Redox Biol. 2015, 5:216-224.
-
(2015)
Redox Biol.
, vol.5
, pp. 216-224
-
-
Treberg, J.R.1
Munro, D.2
Banh, S.3
Zacharias, P.4
Sotiri, E.5
-
34
-
-
36148995826
-
Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid
-
Nagy P., Ashby M.T. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J. Am. Chem. Soc. 2007, 129:14082-14091.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 14082-14091
-
-
Nagy, P.1
Ashby, M.T.2
-
35
-
-
84892575903
-
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions
-
Mailloux R.J., Jin X., Willmore W.G. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2014, 2:123-139.
-
(2014)
Redox Biol.
, vol.2
, pp. 123-139
-
-
Mailloux, R.J.1
Jin, X.2
Willmore, W.G.3
-
36
-
-
84923920135
-
Protein thiyl radical reactions and product formation: a kinetic simulation
-
Nauser T., Koppenol W.H., Schoneich C. Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radic. Biol. Med. 2015, 80:158-163.
-
(2015)
Free Radic. Biol. Med.
, vol.80
, pp. 158-163
-
-
Nauser, T.1
Koppenol, W.H.2
Schoneich, C.3
-
37
-
-
84923912767
-
S-glutathionylation reactions in mitochondrial function and disease
-
Mailloux R.J., Willmore W.G. S-glutathionylation reactions in mitochondrial function and disease. Front. Cell Dev. Biol. 2014, 2:68.
-
(2014)
Front. Cell Dev. Biol.
, vol.2
, pp. 68
-
-
Mailloux, R.J.1
Willmore, W.G.2
-
38
-
-
64549106959
-
Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
-
Gallogly M.M., Starke D.W., Mieyal J.J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1059-1081
-
-
Gallogly, M.M.1
Starke, D.W.2
Mieyal, J.J.3
-
39
-
-
84864970382
-
Protein thiyl radical mediates S-glutathionylation of complex I
-
Kang P.T., Zhang L., Chen C.L., Chen J., Green K.B., Chen Y.R. Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic. Biol. Med. 2012, 53:962-973.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 962-973
-
-
Kang, P.T.1
Zhang, L.2
Chen, C.L.3
Chen, J.4
Green, K.B.5
Chen, Y.R.6
-
40
-
-
34548163922
-
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
-
Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7:381-391.
-
(2007)
Curr. Opin. Pharmacol.
, vol.7
, pp. 381-391
-
-
Gallogly, M.M.1
Mieyal, J.J.2
-
41
-
-
9144249116
-
Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
-
Beer S.M., Taylor E.R., Brown S.E., Dahm C.C., Costa N.J., Runswick M.J., Murphy M.P. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47939-47951
-
-
Beer, S.M.1
Taylor, E.R.2
Brown, S.E.3
Dahm, C.C.4
Costa, N.J.5
Runswick, M.J.6
Murphy, M.P.7
-
42
-
-
84901445668
-
Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions
-
Mailloux R.J., Xuan J.Y., McBride S., Maharsy W., Thorn S., Holterman C.E., Kennedy C.R., Rippstein P., deKemp R., da Silva J., Nemer M., Lou M., Harper M.E. Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions. J. Biol. Chem. 2014, 289:14812-14828.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 14812-14828
-
-
Mailloux, R.J.1
Xuan, J.Y.2
McBride, S.3
Maharsy, W.4
Thorn, S.5
Holterman, C.E.6
Kennedy, C.R.7
Rippstein, P.8
deKemp, R.9
da Silva, J.10
Nemer, M.11
Lou, M.12
Harper, M.E.13
-
43
-
-
79954430645
-
Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange
-
Qi W., Cowan J.A. Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. Chem. Commun. 2011, 47:4989-4991.
-
(2011)
Chem. Commun.
, vol.47
, pp. 4989-4991
-
-
Qi, W.1
Cowan, J.A.2
-
44
-
-
66149108787
-
Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria
-
Mitra S., Elliott S.J. Oxidative disassembly of the [2Fe-2S] cluster of human Grx2 and redox regulation in the mitochondria. Biochemistry 2009, 48:3813-3815.
-
(2009)
Biochemistry
, vol.48
, pp. 3813-3815
-
-
Mitra, S.1
Elliott, S.J.2
-
45
-
-
33845443999
-
How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2?
-
Berndt C., Hudemann C., Hanschmann E.M., Axelsson R., Holmgren A., Lillig C.H. How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2?. Antioxid. Redox Signal. 2007, 9:151-157.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, pp. 151-157
-
-
Berndt, C.1
Hudemann, C.2
Hanschmann, E.M.3
Axelsson, R.4
Holmgren, A.5
Lillig, C.H.6
-
46
-
-
84888418691
-
Aging-dependent changes in rat heart mitochondrial glutaredoxins - implications for redox regulation
-
Gao X.H., Qanungo S., Pai H.V., Starke D.W., Steller K.M., Fujioka H., Lesnefsky E.J., Kerner J., Rosca M.G., Hoppel C.L., Mieyal J.J. Aging-dependent changes in rat heart mitochondrial glutaredoxins - implications for redox regulation. Redox Biol. 2013, 1:586-598.
-
(2013)
Redox Biol.
, vol.1
, pp. 586-598
-
-
Gao, X.H.1
Qanungo, S.2
Pai, H.V.3
Starke, D.W.4
Steller, K.M.5
Fujioka, H.6
Lesnefsky, E.J.7
Kerner, J.8
Rosca, M.G.9
Hoppel, C.L.10
Mieyal, J.J.11
-
47
-
-
84929493080
-
GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity
-
Chen Y.J., Lu C.T., Huang K.Y., Wu H.Y., Lee T.Y. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One 2015, 10:e0118752.
-
(2015)
PLoS One
, vol.10
, pp. e0118752
-
-
Chen, Y.J.1
Lu, C.T.2
Huang, K.Y.3
Wu, H.Y.4
Lee, T.Y.5
-
48
-
-
22044444687
-
Glutathionylation of mitochondrial proteins
-
Hurd T.R., Costa N.J., Dahm C.C., Beer S.M., Brown S.E., Filipovska A., Murphy M.P. Glutathionylation of mitochondrial proteins. Antioxid. Redox Signal. 2005, 7:999-1010.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 999-1010
-
-
Hurd, T.R.1
Costa, N.J.2
Dahm, C.C.3
Beer, S.M.4
Brown, S.E.5
Filipovska, A.6
Murphy, M.P.7
-
49
-
-
73449124480
-
Mitochondrial glutathione, a key survival antioxidant
-
Mari M., Morales A., Colell A., Garcia-Ruiz C., Fernandez-Checa J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. 2009, 11:2685-2700.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 2685-2700
-
-
Mari, M.1
Morales, A.2
Colell, A.3
Garcia-Ruiz, C.4
Fernandez-Checa, J.C.5
-
50
-
-
84935104408
-
Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver
-
McGarry D.J., Chen W., Chakravarty P., Lamont D.J., Wolf C.R., Henderson C.J. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver. Biochem. J. 2015, 469(1).
-
(2015)
Biochem. J.
, vol.469
, Issue.1
-
-
McGarry, D.J.1
Chen, W.2
Chakravarty, P.3
Lamont, D.J.4
Wolf, C.R.5
Henderson, C.J.6
-
51
-
-
84920982875
-
Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space
-
Kojer K., Peleh V., Calabrese G., Herrmann J.M., Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol. Biol. Cell 2015, 26:195-204.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 195-204
-
-
Kojer, K.1
Peleh, V.2
Calabrese, G.3
Herrmann, J.M.4
Riemer, J.5
-
52
-
-
36349016509
-
Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
-
Chen Y.R., Chen C.L., Pfeiffer D.R., Zweier J.L. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32640-32654
-
-
Chen, Y.R.1
Chen, C.L.2
Pfeiffer, D.R.3
Zweier, J.L.4
-
53
-
-
77952776083
-
Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
-
Queiroga C.S., Almeida A.S., Martel C., Brenner C., Alves P.M., Vieira H.L. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J. Biol. Chem. 2010, 285:17077-17088.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17077-17088
-
-
Queiroga, C.S.1
Almeida, A.S.2
Martel, C.3
Brenner, C.4
Alves, P.M.5
Vieira, H.L.6
-
54
-
-
81155123702
-
Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
-
Nguyen T.T., Stevens M.V., Kohr M., Steenbergen C., Sack M.N., Murphy E. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J. Biol. Chem. 2011, 286:40184-40192.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 40184-40192
-
-
Nguyen, T.T.1
Stevens, M.V.2
Kohr, M.3
Steenbergen, C.4
Sack, M.N.5
Murphy, E.6
-
55
-
-
84892369382
-
How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo
-
Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014, 66:24-35.
-
(2014)
Free Radic. Biol. Med.
, vol.66
, pp. 24-35
-
-
Forman, H.J.1
Davies, K.J.2
Ursini, F.3
-
56
-
-
84919754886
-
Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-)
-
Kang P.T., Chen C.L., Chen Y.R. Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-). Free Radic. Biol. Med. 2015, 79:56-68.
-
(2015)
Free Radic. Biol. Med.
, vol.79
, pp. 56-68
-
-
Kang, P.T.1
Chen, C.L.2
Chen, Y.R.3
-
57
-
-
0035854785
-
Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms
-
Lundberg M., Johansson C., Chandra J., Enoksson M., Jacobsson G., Ljung J., Johansson M., Holmgren A. Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J. Biol. Chem. 2001, 276:26269-26275.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 26269-26275
-
-
Lundberg, M.1
Johansson, C.2
Chandra, J.3
Enoksson, M.4
Jacobsson, G.5
Ljung, J.6
Johansson, M.7
Holmgren, A.8
-
58
-
-
0035839505
-
Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2
-
Gladyshev V.N., Liu A., Novoselov S.V., Krysan K., Sun Q.A., Kryukov V.M., Kryukov G.V., Lou M.F. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J. Biol. Chem. 2001, 276:30374-30380.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30374-30380
-
-
Gladyshev, V.N.1
Liu, A.2
Novoselov, S.V.3
Krysan, K.4
Sun, Q.A.5
Kryukov, V.M.6
Kryukov, G.V.7
Lou, M.F.8
-
59
-
-
84949545879
-
The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function
-
Kramer P.A., Duan J., Qian W.J., Marcinek D.J. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front. Physiol. 2015, 6:347.
-
(2015)
Front. Physiol.
, vol.6
, pp. 347
-
-
Kramer, P.A.1
Duan, J.2
Qian, W.J.3
Marcinek, D.J.4
-
60
-
-
84875439431
-
Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
-
Mailloux R.J., Xuan J.Y., Beauchamp B., Jui L., Lou M., Harper M.E. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J. Biol. Chem. 2013, 288:8365-8379.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 8365-8379
-
-
Mailloux, R.J.1
Xuan, J.Y.2
Beauchamp, B.3
Jui, L.4
Lou, M.5
Harper, M.E.6
-
61
-
-
84924310257
-
Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock
-
Muoio D.M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2014, 159:1253-1262.
-
(2014)
Cell
, vol.159
, pp. 1253-1262
-
-
Muoio, D.M.1
-
62
-
-
84883146515
-
Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation
-
Giangregorio N., Palmieri F., Indiveri C. Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim. Biophys. Acta 2013, 1830:5299-5304.
-
(2013)
Biochim. Biophys. Acta
, vol.1830
, pp. 5299-5304
-
-
Giangregorio, N.1
Palmieri, F.2
Indiveri, C.3
-
63
-
-
84973468696
-
Glutathionyl systems and metabolic dysfunction in obesity
-
Picklo M.J., Long E.K., Vomhof-DeKrey E.E. Glutathionyl systems and metabolic dysfunction in obesity. Nutr. Rev. 2015, 73:858-868.
-
(2015)
Nutr. Rev.
, vol.73
, pp. 858-868
-
-
Picklo, M.J.1
Long, E.K.2
Vomhof-DeKrey, E.E.3
-
65
-
-
84934909312
-
Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit
-
Fisher-Wellman K.H., Lin C.T., Ryan T.E., Reese L.R., Gilliam L.A., Cathey B.L., Lark D.S., Smith C.D., Muoio D.M., Neufer P.D. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Biochem. J. 2015, 467:271-280.
-
(2015)
Biochem. J.
, vol.467
, pp. 271-280
-
-
Fisher-Wellman, K.H.1
Lin, C.T.2
Ryan, T.E.3
Reese, L.R.4
Gilliam, L.A.5
Cathey, B.L.6
Lark, D.S.7
Smith, C.D.8
Muoio, D.M.9
Neufer, P.D.10
-
66
-
-
37849043898
-
Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
-
Applegate M.A., Humphries K.M., Szweda L.I. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
-
(2008)
Biochemistry
, vol.47
, pp. 473-478
-
-
Applegate, M.A.1
Humphries, K.M.2
Szweda, L.I.3
-
67
-
-
54049146740
-
Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
-
Hurd T.R., Requejo R., Filipovska A., Brown S., Prime T.A., Robinson A.J., Fearnley I.M., Murphy M.P. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24801-24815
-
-
Hurd, T.R.1
Requejo, R.2
Filipovska, A.3
Brown, S.4
Prime, T.A.5
Robinson, A.J.6
Fearnley, I.M.7
Murphy, M.P.8
-
68
-
-
84919797503
-
Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice
-
Wu H., Yu Y., David L., Ho Y.S., Lou M.F. Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice. J. Biol. Chem. 2014, 289:36125-36139.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 36125-36139
-
-
Wu, H.1
Yu, Y.2
David, L.3
Ho, Y.S.4
Lou, M.F.5
-
69
-
-
84867716087
-
Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease
-
Garcia-Garcia A., Zavala-Flores L., Rodriguez-Rocha H., Franco R. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. Antioxid. Redox Signal. 2012, 17:1764-1784.
-
(2012)
Antioxid. Redox Signal.
, vol.17
, pp. 1764-1784
-
-
Garcia-Garcia, A.1
Zavala-Flores, L.2
Rodriguez-Rocha, H.3
Franco, R.4
-
70
-
-
84884593391
-
Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates
-
Siebels I., Drose S. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim. Biophys. Acta 2013, 1827:1156-1164.
-
(2013)
Biochim. Biophys. Acta
, vol.1827
, pp. 1156-1164
-
-
Siebels, I.1
Drose, S.2
-
71
-
-
84865434841
-
Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
-
Mailloux R.J., Harper M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 2012, 23:451-458.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 451-458
-
-
Mailloux, R.J.1
Harper, M.E.2
-
72
-
-
79958735550
-
Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
-
Mailloux R.J., Seifert E.L., Bouillaud F., Aguer C., Collins S., Harper M.E. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2011, 286:21865-21875.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21865-21875
-
-
Mailloux, R.J.1
Seifert, E.L.2
Bouillaud, F.3
Aguer, C.4
Collins, S.5
Harper, M.E.6
-
73
-
-
84869237918
-
Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion
-
Mailloux R.J., Fu A., Robson-Doucette C., Allister E.M., Wheeler M.B., Screaton R., Harper M.E. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion. J. Biol. Chem. 2012, 287:39673-39685.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39673-39685
-
-
Mailloux, R.J.1
Fu, A.2
Robson-Doucette, C.3
Allister, E.M.4
Wheeler, M.B.5
Screaton, R.6
Harper, M.E.7
-
74
-
-
84938751663
-
Redox homeostasis and mitochondrial dynamics
-
Willems P.H., Rossignol R., Dieteren C.E., Murphy M.P., Koopman W.J. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015, 22:207-218.
-
(2015)
Cell Metab.
, vol.22
, pp. 207-218
-
-
Willems, P.H.1
Rossignol, R.2
Dieteren, C.E.3
Murphy, M.P.4
Koopman, W.J.5
-
75
-
-
84867032955
-
The intracellular redox state is a core determinant of mitochondrial fusion
-
Shutt T., Geoffrion M., Milne R., McBride H.M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012, 13:909-915.
-
(2012)
EMBO Rep.
, vol.13
, pp. 909-915
-
-
Shutt, T.1
Geoffrion, M.2
Milne, R.3
McBride, H.M.4
|