메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 381-398

Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species

Author keywords

Bioenergetics; Mitochondria; Reactive oxygen species; Redox signaling

Indexed keywords

DIMETHYLMALONATE; HYDROGEN PEROXIDE; HYDROXYL RADICAL; NICOTINAMIDE ADENINE DINUCLEOTIDE; OXIDOREDUCTASE INHIBITOR; OXYGEN; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); SUCCINATE DEHYDROGENASE (UBIQUINONE); SUPEROXIDE; UBIQUINOL CYTOCHROME C REDUCTASE; UNCLASSIFIED DRUG; 5-(6'-TRIPHENYLPHOSPHONIUMHEXYL)-5,6-DIHYDRO-6-PHENYL-3,8-PHENANTHRIDINEDIAMMINE; ADENOSINE TRIPHOSPHATE; MITOB COMPOUND; MITOCHONDRIAL PROTEIN; MITOP COMPOUND; MOLECULAR PROBE; ORGANOPHOSPHORUS COMPOUND; PHENANTHRIDINE DERIVATIVE; PHENOL DERIVATIVE;

EID: 84923868391     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2015.02.001     Document Type: Review
Times cited : (214)

References (147)
  • 1
    • 33745662190 scopus 로고    scopus 로고
    • Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life
    • Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology 2006, 141(2):312-322. http://www.ncbi.nlm.nih.gov/pubmed/16760481, 10.1104/pp.106.077073.
    • (2006) Plant Physiology , vol.141 , Issue.2 , pp. 312-322
    • Halliwell, B.1
  • 2
    • 84885593578 scopus 로고    scopus 로고
    • Atmospheric oxygenation three billion years ago
    • Crowe S.A., Døssing L.N., Beukes N.J., Bau M., Kruger S.J., Frei R., Canfield D.E. Atmospheric oxygenation three billion years ago. Nature 2013, 501(7468):535-538. http://www.ncbi.nlm.nih.gov/pubmed/24067713, 10.1038/nature12426.
    • (2013) Nature , vol.501 , Issue.7468 , pp. 535-538
    • Crowe, S.A.1    Døssing, L.N.2    Beukes, N.J.3    Bau, M.4    Kruger, S.J.5    Frei, R.6    Canfield, D.E.7
  • 3
    • 84871715093 scopus 로고    scopus 로고
    • Insight into the evolution of the iron oxidation pathways
    • Ilbert M., Bonnefoy V. Insight into the evolution of the iron oxidation pathways. Biochimica et Biophysica Acta 2013, 1827(2):161-175. http://www.ncbi.nlm.nih.gov/pubmed/23044392, 10.1016/j.bbabio.2012.10.001.
    • (2013) Biochimica et Biophysica Acta , vol.1827 , Issue.2 , pp. 161-175
    • Ilbert, M.1    Bonnefoy, V.2
  • 4
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochemical Journal 2009, 417(1):1-13. http://www.ncbi.nlm.nih.gov/pubmed/19061483, 10.1042/BJ20081386.
    • (2009) Biochemical Journal , vol.417 , Issue.1 , pp. 1-13
    • Murphy, M.P.1
  • 5
    • 78049474352 scopus 로고    scopus 로고
    • Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
    • Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 2010, 48(12):909-930. http://www.ncbi.nlm.nih.gov/pubmed/20870416, 10.1016/j.plaphy.2010.08.016.
    • (2010) Plant Physiology and Biochemistry , vol.48 , Issue.12 , pp. 909-930
    • Gill, S.S.1    Tuteja, N.2
  • 6
    • 84892575903 scopus 로고    scopus 로고
    • Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions
    • Mailloux R.J., Jin X., Willmore W.G. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biology 2014, 2:123-139. http://www.ncbi.nlm.nih.gov/pubmed/24455476, 10.1016/j.redox.2013.12.011.
    • (2014) Redox Biology , vol.2 , pp. 123-139
    • Mailloux, R.J.1    Jin, X.2    Willmore, W.G.3
  • 8
    • 84899750737 scopus 로고    scopus 로고
    • Bioenergetic constraints on the evolution of complex life
    • Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology 2014, 6(5):a015982. http://www.ncbi.nlm.nih.gov/pubmed/24789818, 10.1101/cshperspect.a015982.
    • (2014) Cold Spring Harbor Perspectives in Biology , vol.6 , Issue.5 , pp. a015982
    • Lane, N.1
  • 9
    • 77952415166 scopus 로고    scopus 로고
    • Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man
    • Wallace D.C. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(Suppl. 2):S8947-S8953. http://www.ncbi.nlm.nih.gov/pubmed/20445102, 10.1073/pnas.0914635107.
    • (2010) Proceedings of the National Academy of Sciences of the United States of America , vol.107 , pp. S8947-S8953
    • Wallace, D.C.1
  • 10
    • 2442543417 scopus 로고    scopus 로고
    • Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport
    • Fernie A.R., Carrari F., Sweetlove L.J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 2004, 7(3):254-261. http://www.ncbi.nlm.nih.gov/pubmed/15134745, 10.1016/j.pbi.2004.03.007.
    • (2004) Current Opinion in Plant Biology , vol.7 , Issue.3 , pp. 254-261
    • Fernie, A.R.1    Carrari, F.2    Sweetlove, L.J.3
  • 11
    • 84988044805 scopus 로고    scopus 로고
    • The energetics of genome complexity
    • Lane N., Martin W. The energetics of genome complexity. Nature 2010, 467(7318):929-934. http://www.ncbi.nlm.nih.gov/pubmed/20962839, 10.1038/nature09486.
    • (2010) Nature , vol.467 , Issue.7318 , pp. 929-934
    • Lane, N.1    Martin, W.2
  • 12
    • 84888133598 scopus 로고    scopus 로고
    • Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
    • Mailloux R.J., McBride S.L., Harper M.E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends in Biochemical Sciences 2013, 38(12):592-602. http://www.ncbi.nlm.nih.gov/pubmed/24120033, 10.1016/j.tibs.2013.09.001.
    • (2013) Trends in Biochemical Sciences , vol.38 , Issue.12 , pp. 592-602
    • Mailloux, R.J.1    McBride, S.L.2    Harper, M.E.3
  • 13
    • 84872676487 scopus 로고    scopus 로고
    • Mitochondria in cardiac hypertrophy and heart failure
    • Rosca M.G., Tandler B., Hoppel C.L. Mitochondria in cardiac hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology 2013, 55:31-41. http://www.ncbi.nlm.nih.gov/pubmed/22982369, 10.1016/j.yjmcc.2012.09.002.
    • (2013) Journal of Molecular and Cellular Cardiology , vol.55 , pp. 31-41
    • Rosca, M.G.1    Tandler, B.2    Hoppel, C.L.3
  • 14
    • 84894165975 scopus 로고    scopus 로고
    • Cardiac mitochondria and reactive oxygen species generation
    • Chen Y.R., Zweier J.L. Cardiac mitochondria and reactive oxygen species generation. Circulation Research 2014, 114(3):524-537. http://www.ncbi.nlm.nih.gov/pubmed/24481843, 10.1161/CIRCRESAHA.114.300559.
    • (2014) Circulation Research , vol.114 , Issue.3 , pp. 524-537
    • Chen, Y.R.1    Zweier, J.L.2
  • 15
    • 79951978630 scopus 로고    scopus 로고
    • Mitochondrial ion circuits
    • Nicholls D.G. Mitochondrial ion circuits. Essays in Biochemistry 2010, 47:25-35. http://www.ncbi.nlm.nih.gov/pubmed/20533898, 10.1042/bse0470025.
    • (2010) Essays in Biochemistry , vol.47 , pp. 25-35
    • Nicholls, D.G.1
  • 18
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. Journal of Biological Chemistry 2012, 287(32):27255-27264. http://www.ncbi.nlm.nih.gov/pubmed/22689576, 10.1074/jbc.M112.374629.
    • (2012) Journal of Biological Chemistry , vol.287 , Issue.32 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 19
    • 33750814320 scopus 로고    scopus 로고
    • Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool
    • Zhang J., Frerman F.E., Kim J.J. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(44):16212-16217. http://www.ncbi.nlm.nih.gov/pubmed/17050691, 10.1073/pnas.0604567103.
    • (2006) Proceedings of the National Academy of Sciences of the United States of America , vol.103 , Issue.44 , pp. 16212-16217
    • Zhang, J.1    Frerman, F.E.2    Kim, J.J.3
  • 21
    • 77955672171 scopus 로고    scopus 로고
    • Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes
    • Lagoutte E., Mimoun S., Andriamihaja M., Chaumontet C., Blachier F., Bouillaud F. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochimica et Biophysica Acta 2010, 1797(8):1500-1511. http://www.ncbi.nlm.nih.gov/pubmed/20398623, 10.1016/j.bbabio.2010.04.004.
    • (2010) Biochimica et Biophysica Acta , vol.1797 , Issue.8 , pp. 1500-1511
    • Lagoutte, E.1    Mimoun, S.2    Andriamihaja, M.3    Chaumontet, C.4    Blachier, F.5    Bouillaud, F.6
  • 23
    • 84923912767 scopus 로고    scopus 로고
    • S-glutathionylation reactions in mitochondrial function and disease
    • Mailloux R.J., Willmore W.G. S-glutathionylation reactions in mitochondrial function and disease. Frontiers in Cell and Developmental Biology 2014, 2:68. http://www.ncbi.nlm.nih.gov/pubmed/25453035, 10.3389/fcell.2014.00068.
    • (2014) Frontiers in Cell and Developmental Biology , vol.2 , pp. 68
    • Mailloux, R.J.1    Willmore, W.G.2
  • 25
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochemical Journal 1972, 128(3):617-630. http://www.ncbi.nlm.nih.gov/pubmed/4404507.
    • (1972) Biochemical Journal , vol.128 , Issue.3 , pp. 617-630
    • Boveris, A.1    Oshino, N.2    Chance, B.3
  • 26
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochemical Journal 1973, 134(3):707-716. http://www.ncbi.nlm.nih.gov/pubmed/4749271.
    • (1973) Biochemical Journal , vol.134 , Issue.3 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 27
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochemical Journal 2011, 435(2):297-312. http://www.ncbi.nlm.nih.gov/pubmed/21726199, 10.1042/BJ20110162.
    • (2011) Biochemical Journal , vol.435 , Issue.2 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 28
    • 84865434841 scopus 로고    scopus 로고
    • Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
    • Mailloux R.J., Harper M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends in Endocrinology and Metabolism 2012, 23(9):451-458. http://www.ncbi.nlm.nih.gov/pubmed/22591987, 10.1016/j.tem.2012.04.004.
    • (2012) Trends in Endocrinology and Metabolism , vol.23 , Issue.9 , pp. 451-458
    • Mailloux, R.J.1    Harper, M.E.2
  • 29
    • 84867869761 scopus 로고    scopus 로고
    • Target-based selection of flavonoids for neurodegenerative disorders
    • Jones Q.R., Warford J., Rupasinghe H.P., Robertson G.S. Target-based selection of flavonoids for neurodegenerative disorders. Trends in Pharmacological Sciences 2012, 33(11):602-610. http://www.ncbi.nlm.nih.gov/pubmed/22980637, 10.1016/j.tips.2012.08.002.
    • (2012) Trends in Pharmacological Sciences , vol.33 , Issue.11 , pp. 602-610
    • Jones, Q.R.1    Warford, J.2    Rupasinghe, H.P.3    Robertson, G.S.4
  • 30
    • 25144476923 scopus 로고    scopus 로고
    • Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
    • Brand M.D., Esteves T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metabolism 2005, 2(2):85-93. http://www.ncbi.nlm.nih.gov/pubmed/16098826, 10.1016/j.cmet.2005.06.002.
    • (2005) Cell Metabolism , vol.2 , Issue.2 , pp. 85-93
    • Brand, M.D.1    Esteves, T.C.2
  • 31
    • 84900534961 scopus 로고    scopus 로고
    • The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling
    • Long Y.C., Tan T.M., Takao I., Tang B.L. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. The American Journal of Physiology - Endocrinology and Metabolism 2014, 306(6):E581-E591. http://www.ncbi.nlm.nih.gov/pubmed/24452454, 10.1152/ajpendo.00665.2013.
    • (2014) The American Journal of Physiology - Endocrinology and Metabolism , vol.306 , Issue.6 , pp. E581-E591
    • Long, Y.C.1    Tan, T.M.2    Takao, I.3    Tang, B.L.4
  • 32
    • 80051783174 scopus 로고    scopus 로고
    • Uncoupling proteins and the control of mitochondrial reactive oxygen species production
    • Mailloux R.J., Harper M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radical Biology and Medicine 2011, 51(6):1106-1115. http://www.ncbi.nlm.nih.gov/pubmed/21762777, 10.1016/j.freeradbiomed.2011.06.022.
    • (2011) Free Radical Biology and Medicine , vol.51 , Issue.6 , pp. 1106-1115
    • Mailloux, R.J.1    Harper, M.E.2
  • 33
    • 84856729192 scopus 로고    scopus 로고
    • Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
    • Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxidants and Redox Signaling 2012, 16(6):476-495. http://www.ncbi.nlm.nih.gov/pubmed/21954972, 10.1089/ars.2011.4289.
    • (2012) Antioxidants and Redox Signaling , vol.16 , Issue.6 , pp. 476-495
    • Murphy, M.P.1
  • 34
    • 10344221083 scopus 로고    scopus 로고
    • Complex III releases superoxide to both sides of the inner mitochondrial membrane
    • Muller F.L., Liu Y., Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. Journal of Biological Chemistry 2004, 279(47):49064-49073. http://www.ncbi.nlm.nih.gov/pubmed/15317809, 10.1074/jbc.M407715200.
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.47 , pp. 49064-49073
    • Muller, F.L.1    Liu, Y.2    Van Remmen, H.3
  • 35
    • 79961008706 scopus 로고    scopus 로고
    • Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
    • Treberg J.R., Quinlan C.L., Brand M.D. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). Journal of Biological Chemistry 2011, 286(31):27103-27110. http://www.ncbi.nlm.nih.gov/pubmed/21659507, 10.1074/jbc.M111.252502.
    • (2011) Journal of Biological Chemistry , vol.286 , Issue.31 , pp. 27103-27110
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 36
    • 84867401800 scopus 로고    scopus 로고
    • Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters
    • Quinlan C.L., Treberg J.R., Perevoshchikova I.V., Orr A.L., Brand M.D. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radical Biology and Medicine 2012, 53(9):1807-1817. http://www.ncbi.nlm.nih.gov/pubmed/22940066, 10.1016/j.freeradbiomed.2012.08.015.
    • (2012) Free Radical Biology and Medicine , vol.53 , Issue.9 , pp. 1807-1817
    • Quinlan, C.L.1    Treberg, J.R.2    Perevoshchikova, I.V.3    Orr, A.L.4    Brand, M.D.5
  • 37
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • Quinlan C.L., Perevoshchikova I.V., Hey-Mogensen M., Orr A.L., Brand M.D. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology 2013, 1:304-312. http://www.ncbi.nlm.nih.gov/pubmed/24024165, 10.1016/j.redox.2013.04.005.
    • (2013) Redox Biology , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 38
    • 4444237412 scopus 로고    scopus 로고
    • 2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation
    • 2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 2004, 203(1-3):69-76. http://www.ncbi.nlm.nih.gov/pubmed/15363583, 10.1016/j.tox.2004.05.020.
    • (2004) Toxicology , vol.203 , Issue.1-3 , pp. 69-76
    • Eghbal, M.A.1    Pennefather, P.S.2    O'Brien, P.J.3
  • 39
    • 84896935583 scopus 로고    scopus 로고
    • The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I
    • Quinlan C.L., Goncalves R.L., Hey-Mogensen M., Yadava N., Bunik V.I., Brand M.D. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. Journal of Biological Chemistry 2014, 289(12):8312-8325. http://www.ncbi.nlm.nih.gov/pubmed/24515115, 10.1074/jbc.M113.545301.
    • (2014) Journal of Biological Chemistry , vol.289 , Issue.12 , pp. 8312-8325
    • Quinlan, C.L.1    Goncalves, R.L.2    Hey-Mogensen, M.3    Yadava, N.4    Bunik, V.I.5    Brand, M.D.6
  • 41
    • 84884593391 scopus 로고    scopus 로고
    • Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates
    • Siebels I., Dröse S. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochimica et Biophysica Acta 2013, 1827(10):1156-1164. http://www.ncbi.nlm.nih.gov/pubmed/23800966, 10.1016/j.bbabio.2013.06.005.
    • (2013) Biochimica et Biophysica Acta , vol.1827 , Issue.10 , pp. 1156-1164
    • Siebels, I.1    Dröse, S.2
  • 43
    • 84871139444 scopus 로고    scopus 로고
    • A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
    • Orr A.L., Quinlan C.L., Perevoshchikova I.V., Brand M.D. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. Journal of Biological Chemistry 2012, 287(51):42921-42935. http://www.ncbi.nlm.nih.gov/pubmed/23124204, 10.1074/jbc.M112.397828.
    • (2012) Journal of Biological Chemistry , vol.287 , Issue.51 , pp. 42921-42935
    • Orr, A.L.1    Quinlan, C.L.2    Perevoshchikova, I.V.3    Brand, M.D.4
  • 44
    • 84878009179 scopus 로고    scopus 로고
    • Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria
    • Perevoshchikova I.V., Quinlan C.L., Orr A.L., Gerencser A.A., Brand M.D. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radical Biology and Medicine 2013, 61:298-309. http://www.ncbi.nlm.nih.gov/pubmed/23583329, 10.1016/j.freeradbiomed.2013.04.006.
    • (2013) Free Radical Biology and Medicine , vol.61 , pp. 298-309
    • Perevoshchikova, I.V.1    Quinlan, C.L.2    Orr, A.L.3    Gerencser, A.A.4    Brand, M.D.5
  • 46
    • 34447638717 scopus 로고    scopus 로고
    • How do enzymes activate oxygen without inactivating themselves?
    • Klinman J.P. How do enzymes activate oxygen without inactivating themselves?. Accounts of Chemical Research 2007, 40(5):325-333. http://www.ncbi.nlm.nih.gov/pubmed/17474709, 10.1021/ar6000507.
    • (2007) Accounts of Chemical Research , vol.40 , Issue.5 , pp. 325-333
    • Klinman, J.P.1
  • 50
    • 0033392347 scopus 로고    scopus 로고
    • Inhibition of alpha-ketoglutarate dehydrogenase due to H2O2-induced oxidative stress in nerve terminals
    • Tretter L., Adam-Vizi V. Inhibition of alpha-ketoglutarate dehydrogenase due to H2O2-induced oxidative stress in nerve terminals. Annals of the New York Academy of Sciences 1999, 893:412-416. http://www.ncbi.nlm.nih.gov/pubmed/10672279, 10.1111/j.1749-6632.1999.tb07867.x.
    • (1999) Annals of the New York Academy of Sciences , vol.893 , pp. 412-416
    • Tretter, L.1    Adam-Vizi, V.2
  • 51
    • 4544359913 scopus 로고    scopus 로고
    • Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species
    • Starkov A.A., Fiskum G., Chinopoulos C., Lorenzo B.J., Browne S.E., Patel M.S., Beal M.F. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. Journal of Neuroscience 2004, 24(36):7779-7788. http://www.ncbi.nlm.nih.gov/pubmed/15356189, 10.1523/JNEUROSCI.1899-04.2004.
    • (2004) Journal of Neuroscience , vol.24 , Issue.36 , pp. 7779-7788
    • Starkov, A.A.1    Fiskum, G.2    Chinopoulos, C.3    Lorenzo, B.J.4    Browne, S.E.5    Patel, M.S.6    Beal, M.F.7
  • 52
    • 84911476354 scopus 로고    scopus 로고
    • Generator-specific targets of mitochondrial reactive oxygen species
    • Bleier L., Wittig I., Heide H., Steger M., Brandt U., Dröse S. Generator-specific targets of mitochondrial reactive oxygen species. Free Radical Biology and Medicine 2015, 78:1-10. http://www.ncbi.nlm.nih.gov/pubmed/25451644, 10.1016/j.freeradbiomed.2014.10.511.
    • (2015) Free Radical Biology and Medicine , vol.78 , pp. 1-10
    • Bleier, L.1    Wittig, I.2    Heide, H.3    Steger, M.4    Brandt, U.5    Dröse, S.6
  • 53
    • 33644552417 scopus 로고    scopus 로고
    • Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology
    • Yu T., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(8):2653-2658. http://www.ncbi.nlm.nih.gov/pubmed/16477035, 10.1073/pnas.0511154103.
    • (2006) Proceedings of the National Academy of Sciences of the United States of America , vol.103 , Issue.8 , pp. 2653-2658
    • Yu, T.1    Robotham, J.L.2    Yoon, Y.3
  • 54
    • 84864024064 scopus 로고    scopus 로고
    • Sealing the mitochondrial respirasome
    • Winge D.R. Sealing the mitochondrial respirasome. Molecular and Cellular Biology 2012, 32(14):2647-2652. http://www.ncbi.nlm.nih.gov/pubmed/22586278, 10.1128/MCB.00573-12.
    • (2012) Molecular and Cellular Biology , vol.32 , Issue.14 , pp. 2647-2652
    • Winge, D.R.1
  • 56
    • 0028108347 scopus 로고
    • Activation of molecular oxygen by flavins and flavoproteins
    • Massey V. Activation of molecular oxygen by flavins and flavoproteins. Journal of Biological Chemistry 1994, 269(36):22459-22462. http://www.ncbi.nlm.nih.gov/pubmed/8077188.
    • (1994) Journal of Biological Chemistry , vol.269 , Issue.36 , pp. 22459-22462
    • Massey, V.1
  • 57
    • 0004854859 scopus 로고
    • Regulation of the citric acid cycle in mammalian systems
    • Williamson J.R., Cooper R.H. Regulation of the citric acid cycle in mammalian systems. FEBS Letters 1980, 117(Suppl.):K73-K85. http://www.ncbi.nlm.nih.gov/pubmed/6998729, 10.1016/0014-5793(80)80572-2.
    • (1980) FEBS Letters , vol.117 , pp. K73-K85
    • Williamson, J.R.1    Cooper, R.H.2
  • 58
    • 0033990449 scopus 로고    scopus 로고
    • The alpha-ketoglutarate dehydrogenase complex in neurodegeneration
    • Gibson G.E., Park L.C., Sheu K.F., Blass J.P., Calingasan N.Y. The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochemistry International 2000, 36(2):97-112. http://www.ncbi.nlm.nih.gov/pubmed/10676873, 10.1016/S0197-0186(99)00114-X.
    • (2000) Neurochemistry International , vol.36 , Issue.2 , pp. 97-112
    • Gibson, G.E.1    Park, L.C.2    Sheu, K.F.3    Blass, J.P.4    Calingasan, N.Y.5
  • 59
    • 84919903447 scopus 로고    scopus 로고
    • The role of pyruvate dehydrogenase complex in cardiovascular diseases
    • Sun W., Liu Q., Leng J., Zheng Y., Li J. The role of pyruvate dehydrogenase complex in cardiovascular diseases. Life Sciences 2015, 121:97-103. 10.1016/j.lfs.2014.11.030.
    • (2015) Life Sciences , vol.121 , pp. 97-103
    • Sun, W.1    Liu, Q.2    Leng, J.3    Zheng, Y.4    Li, J.5
  • 60
    • 0017065294 scopus 로고
    • Selective inactivation of the transacylase components of the 2-oxo acid dehydrogenase multienzyme complexes of Escherichia coli
    • Brown J.P., Perham R.N. Selective inactivation of the transacylase components of the 2-oxo acid dehydrogenase multienzyme complexes of Escherichia coli. Biochemical Journal 1976, 155(2):419-427. http://www.ncbi.nlm.nih.gov/pubmed/180985.
    • (1976) Biochemical Journal , vol.155 , Issue.2 , pp. 419-427
    • Brown, J.P.1    Perham, R.N.2
  • 61
    • 80053379940 scopus 로고    scopus 로고
    • Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase
    • Qi F., Pradhan R.K., Dash R.K., Beard D.A. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase. BMC Biochemistry 2011, 12:53. http://www.ncbi.nlm.nih.gov/pubmed/21943256, 10.1186/1471-2091-12-53.
    • (2011) BMC Biochemistry , vol.12 , pp. 53
    • Qi, F.1    Pradhan, R.K.2    Dash, R.K.3    Beard, D.A.4
  • 62
    • 78650103059 scopus 로고    scopus 로고
    • Alpha-ketoglutarate dehydrogenase: a mitochondrial redox sensor
    • McLain A.L., Szweda P.A., Szweda L.I. Alpha-ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radical Research 2011, 45(1):29-36. http://www.ncbi.nlm.nih.gov/pubmed/21110783, 10.3109/10715762.2010.534163.
    • (2011) Free Radical Research , vol.45 , Issue.1 , pp. 29-36
    • McLain, A.L.1    Szweda, P.A.2    Szweda, L.I.3
  • 63
    • 0030589626 scopus 로고    scopus 로고
    • Reactive oxygen species-mediated inactivation of pyruvate dehydrogenase
    • Tabatabaie T., Potts J.D., Floyd R.A. Reactive oxygen species-mediated inactivation of pyruvate dehydrogenase. Archives of Biochemistry and Biophysics 1996, 336(2):290-296. http://www.ncbi.nlm.nih.gov/pubmed/8954577, 10.1006/abbi.1996.0560.
    • (1996) Archives of Biochemistry and Biophysics , vol.336 , Issue.2 , pp. 290-296
    • Tabatabaie, T.1    Potts, J.D.2    Floyd, R.A.3
  • 64
    • 37849043898 scopus 로고    scopus 로고
    • Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
    • Applegate M.A., Humphries K.M., Szweda L.I. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47(1):473-478. http://www.ncbi.nlm.nih.gov/pubmed/18081316, 10.1021/bi7017464.
    • (2008) Biochemistry , vol.47 , Issue.1 , pp. 473-478
    • Applegate, M.A.1    Humphries, K.M.2    Szweda, L.I.3
  • 65
    • 0019013615 scopus 로고
    • Kinetic analysis of the role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli
    • Ambrose-Griffin M.C., Danson M.J., Griffin W.G., Hale G., Perham R.N. Kinetic analysis of the role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Biochemical Journal 1980, 187(2):393-401. http://www.ncbi.nlm.nih.gov/pubmed/6772160.
    • (1980) Biochemical Journal , vol.187 , Issue.2 , pp. 393-401
    • Ambrose-Griffin, M.C.1    Danson, M.J.2    Griffin, W.G.3    Hale, G.4    Perham, R.N.5
  • 66
    • 0037352431 scopus 로고    scopus 로고
    • Reactive oxygen species are involved in arsenic trioxide inhibition of pyruvate dehydrogenase activity
    • Samikkannu T., Chen C.H., Yih L.H., Wang A.S., Lin S.Y., Chen T.C., Jan K.Y. Reactive oxygen species are involved in arsenic trioxide inhibition of pyruvate dehydrogenase activity. Chemical Research in Toxicology 2003, 16(3):409-414. http://www.ncbi.nlm.nih.gov/pubmed/12641442, 10.1021/tx025615j.
    • (2003) Chemical Research in Toxicology , vol.16 , Issue.3 , pp. 409-414
    • Samikkannu, T.1    Chen, C.H.2    Yih, L.H.3    Wang, A.S.4    Lin, S.Y.5    Chen, T.C.6    Jan, K.Y.7
  • 67
    • 0020524776 scopus 로고
    • Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver
    • Crane D., Häussinger D., Graf P., Sies H. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver. Hoppe-Seyler's Zeitschrift fur Physiologische Chemie 1983, 364(8):977-987. http://www.ncbi.nlm.nih.gov/pubmed/6629333, 10.1515/bchm2.1983.364.2.977.
    • (1983) Hoppe-Seyler's Zeitschrift fur Physiologische Chemie , vol.364 , Issue.8 , pp. 977-987
    • Crane, D.1    Häussinger, D.2    Graf, P.3    Sies, H.4
  • 68
    • 0345146921 scopus 로고    scopus 로고
    • Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status
    • Nulton-Persson A.C., Starke D.W., Mieyal J.J., Szweda L.I. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 2003, 42(14):4235-4242. http://www.ncbi.nlm.nih.gov/pubmed/12680778, 10.1021/bi027370f.
    • (2003) Biochemistry , vol.42 , Issue.14 , pp. 4235-4242
    • Nulton-Persson, A.C.1    Starke, D.W.2    Mieyal, J.J.3    Szweda, L.I.4
  • 69
    • 0023116918 scopus 로고
    • Inactivation of 2-oxoglutarate dehydrogenase in rat liver mitochondria by its substrate and t-butyl hydroperoxide
    • Rokutan K., Kawai K., Asada K. Inactivation of 2-oxoglutarate dehydrogenase in rat liver mitochondria by its substrate and t-butyl hydroperoxide. Journal of Biochemistry 1987, 101(2):415-422. http://www.ncbi.nlm.nih.gov/pubmed/3584093.
    • (1987) Journal of Biochemistry , vol.101 , Issue.2 , pp. 415-422
    • Rokutan, K.1    Kawai, K.2    Asada, K.3
  • 71
    • 67650292926 scopus 로고    scopus 로고
    • Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis
    • Enami S., Hoffmann M.R., Colussi A.J. Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis. The Journal of Physical Chemistry B 2009, 113(28):9356-9358. http://www.ncbi.nlm.nih.gov/pubmed/19537744, 10.1021/jp904316n.
    • (2009) The Journal of Physical Chemistry B , vol.113 , Issue.28 , pp. 9356-9358
    • Enami, S.1    Hoffmann, M.R.2    Colussi, A.J.3
  • 73
    • 0032512411 scopus 로고    scopus 로고
    • Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal
    • Humphries K.M., Yoo Y., Szweda L.I. Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal. Biochemistry 1998, 37(2):552-557. http://www.ncbi.nlm.nih.gov/pubmed/9425076, 10.1021/bi971958i.
    • (1998) Biochemistry , vol.37 , Issue.2 , pp. 552-557
    • Humphries, K.M.1    Yoo, Y.2    Szweda, L.I.3
  • 74
    • 0032506040 scopus 로고    scopus 로고
    • Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal
    • Humphries K.M., Szweda L.I. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 1998, 37(45):15835-15841. http://www.ncbi.nlm.nih.gov/pubmed/9843389, 10.1021/bi981512h.
    • (1998) Biochemistry , vol.37 , Issue.45 , pp. 15835-15841
    • Humphries, K.M.1    Szweda, L.I.2
  • 75
    • 0033535948 scopus 로고    scopus 로고
    • Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase
    • Lucas D.T., Szweda L.I. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(12):6689-6693. http://www.ncbi.nlm.nih.gov/pubmed/10359773, 10.1073/pnas.96.12.6689.
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.12 , pp. 6689-6693
    • Lucas, D.T.1    Szweda, L.I.2
  • 76
    • 64549106959 scopus 로고    scopus 로고
    • Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
    • Gallogly M.M., Starke D.W., Mieyal J.J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxidants and Redox Signaling 2009, 11(5):1059-1081. http://www.ncbi.nlm.nih.gov/pubmed/19119916, 10.1089/ARS.2008.2291.
    • (2009) Antioxidants and Redox Signaling , vol.11 , Issue.5 , pp. 1059-1081
    • Gallogly, M.M.1    Starke, D.W.2    Mieyal, J.J.3
  • 77
    • 84884179149 scopus 로고    scopus 로고
    • Causes and consequences of cysteine S-glutathionylation
    • Grek C.L., Zhang J., Manevich Y., Townsend D.M., Tew K.D. Causes and consequences of cysteine S-glutathionylation. Journal of Biological Chemistry 2013, 288(37):26497-26504. http://www.ncbi.nlm.nih.gov/pubmed/23861399, 10.1074/jbc.R113.461368.
    • (2013) Journal of Biological Chemistry , vol.288 , Issue.37 , pp. 26497-26504
    • Grek, C.L.1    Zhang, J.2    Manevich, Y.3    Townsend, D.M.4    Tew, K.D.5
  • 78
    • 84877035408 scopus 로고    scopus 로고
    • Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification
    • McLain A.L., Cormier P.J., Kinter M., Szweda L.I. Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radical Biology and Medicine 2013, 61:161-169. http://www.ncbi.nlm.nih.gov/pubmed/23567190, 10.1016/j.freeradbiomed.2013.03.020.
    • (2013) Free Radical Biology and Medicine , vol.61 , pp. 161-169
    • McLain, A.L.1    Cormier, P.J.2    Kinter, M.3    Szweda, L.I.4
  • 79
    • 84904722403 scopus 로고    scopus 로고
    • Redox regulation by glutathione needs enzymes
    • Berndt C., Lillig C.H., Flohé L. Redox regulation by glutathione needs enzymes. Frontiers in Pharmacology 2014, 5:168. http://www.ncbi.nlm.nih.gov/pubmed/25100998, 10.3389/fphar.2014.00168.
    • (2014) Frontiers in Pharmacology , vol.5 , pp. 168
    • Berndt, C.1    Lillig, C.H.2    Flohé, L.3
  • 80
    • 84899445690 scopus 로고    scopus 로고
    • The pKa value and accessibility of cysteine residues are key determinants for protein substrate discrimination by glutaredoxin
    • Jensen K.S., Pedersen J.T., Winther J.R., Teilum K. The pKa value and accessibility of cysteine residues are key determinants for protein substrate discrimination by glutaredoxin. Biochemistry 2014, 53(15):2533-2540. http://www.ncbi.nlm.nih.gov/pubmed/24673564, 10.1021/bi4016633.
    • (2014) Biochemistry , vol.53 , Issue.15 , pp. 2533-2540
    • Jensen, K.S.1    Pedersen, J.T.2    Winther, J.R.3    Teilum, K.4
  • 81
    • 84906262276 scopus 로고    scopus 로고
    • DbGSH: a database of S-glutathionylation
    • Chen Y.J., Lu C.T., Lee T.Y., Chen Y.J. dbGSH: a database of S-glutathionylation. BioInformatics 2014, 30(16):2386-2388. http://www.ncbi.nlm.nih.gov/pubmed/24790154, 10.1093/bioinformatics/btu301.
    • (2014) BioInformatics , vol.30 , Issue.16 , pp. 2386-2388
    • Chen, Y.J.1    Lu, C.T.2    Lee, T.Y.3    Chen, Y.J.4
  • 82
    • 59249105149 scopus 로고    scopus 로고
    • S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation
    • Coles S.J., Easton P., Sharrod H., Hutson S.M., Hancock J., Patel V.B., Conway M.E. S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation. Biochemistry 2009, 48(3):645-656. http://www.ncbi.nlm.nih.gov/pubmed/19119849, 10.1021/bi801805h.
    • (2009) Biochemistry , vol.48 , Issue.3 , pp. 645-656
    • Coles, S.J.1    Easton, P.2    Sharrod, H.3    Hutson, S.M.4    Hancock, J.5    Patel, V.B.6    Conway, M.E.7
  • 83
    • 68949148655 scopus 로고    scopus 로고
    • Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology
    • Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. The International Journal of Biochemistry & Cell Biology 2009, 41(10):1837-1845. http://www.ncbi.nlm.nih.gov/pubmed/19467914, 10.1016/j.biocel.2009.03.013.
    • (2009) The International Journal of Biochemistry & Cell Biology , vol.41 , Issue.10 , pp. 1837-1845
    • Gnaiger, E.1
  • 84
    • 33846514704 scopus 로고    scopus 로고
    • Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis
    • Hu C.A., Donald S.P., Yu J., Lin W.W., Liu Z., Steel G., Obie C., Valle D., Phang J.M. Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Molecular and Cellular Biochemistry 2007, 295(1-2):85-92. http://www.ncbi.nlm.nih.gov/pubmed/16874462, 10.1007/s11010-006-9276-6.
    • (2007) Molecular and Cellular Biochemistry , vol.295 , Issue.1-2 , pp. 85-92
    • Hu, C.A.1    Donald, S.P.2    Yu, J.3    Lin, W.W.4    Liu, Z.5    Steel, G.6    Obie, C.7    Valle, D.8    Phang, J.M.9
  • 85
    • 0016750459 scopus 로고
    • Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid
    • Forman H.J., Kennedy J. Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. Journal of Biological Chemistry 1975, 250(11):4322-4326. http://www.ncbi.nlm.nih.gov/pubmed/165196.
    • (1975) Journal of Biological Chemistry , vol.250 , Issue.11 , pp. 4322-4326
    • Forman, H.J.1    Kennedy, J.2
  • 86
    • 84884343209 scopus 로고    scopus 로고
    • ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase
    • Mráček T., Holzerová E., Drahota Z., Kovářová N., Vrbacký M., Ješina P., Houštěk J. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochimica et Biophysica Acta 2014, 1837(1):98-111. http://www.ncbi.nlm.nih.gov/pubmed/23999537, 10.1016/j.bbabio.2013.08.007.
    • (2014) Biochimica et Biophysica Acta , vol.1837 , Issue.1 , pp. 98-111
    • Mráček, T.1    Holzerová, E.2    Drahota, Z.3    Kovářová, N.4    Vrbacký, M.5    Ješina, P.6    Houštěk, J.7
  • 87
    • 0030930366 scopus 로고    scopus 로고
    • A model for p53-induced apoptosis
    • Polyak K., Xia Y., Zweier J.L., Kinzler K.W., Vogelstein B. A model for p53-induced apoptosis. Nature 1997, 389(6648):300-305. http://www.ncbi.nlm.nih.gov/pubmed/9305847, 10.1038/38525.
    • (1997) Nature , vol.389 , Issue.6648 , pp. 300-305
    • Polyak, K.1    Xia, Y.2    Zweier, J.L.3    Kinzler, K.W.4    Vogelstein, B.5
  • 88
    • 0017187807 scopus 로고
    • Biochemical adaptations for flight in the insect
    • Sacktor B. Biochemical adaptations for flight in the insect. Biochemical Society Symposium 1976, 111-131. http://www.ncbi.nlm.nih.gov/pubmed/788715.
    • (1976) Biochemical Society Symposium , pp. 111-131
    • Sacktor, B.1
  • 89
    • 77957224946 scopus 로고    scopus 로고
    • Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide
    • Viola H.M., Hool L.C. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. Journal of Molecular and Cellular Cardiology 2010, 49(5):875-885. http://www.ncbi.nlm.nih.gov/pubmed/20688078, 10.1016/j.yjmcc.2010.07.015.
    • (2010) Journal of Molecular and Cellular Cardiology , vol.49 , Issue.5 , pp. 875-885
    • Viola, H.M.1    Hool, L.C.2
  • 90
    • 84884669583 scopus 로고    scopus 로고
    • Superoxide generation by complex III: From mechanistic rationales to functional consequences
    • Bleier L., Dröse S. Superoxide generation by complex III: From mechanistic rationales to functional consequences. Biochimica et Biophysica Acta 2013, 1827(11-12):1320-1331. http://www.ncbi.nlm.nih.gov/pubmed/23269318, 10.1016/j.bbabio.2012.12.002.
    • (2013) Biochimica et Biophysica Acta , vol.1827 , Issue.11-12 , pp. 1320-1331
    • Bleier, L.1    Dröse, S.2
  • 91
    • 46449118774 scopus 로고    scopus 로고
    • The Q-cycle reviewed: how well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?
    • Crofts A.R., Holland J.T., Victoria D., Kolling D.R., Dikanov S.A., Gilbreth R., Lhee S., Kuras R., Kuras M.G. The Q-cycle reviewed: how well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?. Biochimica et Biophysica Acta 2008, 1777(7-8):1001-1019. http://www.ncbi.nlm.nih.gov/pubmed/18501698, 10.1016/j.bbabio.2008.04.037.
    • (2008) Biochimica et Biophysica Acta , vol.1777 , Issue.7-8 , pp. 1001-1019
    • Crofts, A.R.1    Holland, J.T.2    Victoria, D.3    Kolling, D.R.4    Dikanov, S.A.5    Gilbreth, R.6    Lhee, S.7    Kuras, R.8    Kuras, M.G.9
  • 92
    • 84908213474 scopus 로고    scopus 로고
    • Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
    • Sabharwal S.S., Schumacker P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?. Nature Reviews Cancer 2014, 14(11):709-721. http://www.ncbi.nlm.nih.gov/pubmed/25342630, 10.1038/nrc3803.
    • (2014) Nature Reviews Cancer , vol.14 , Issue.11 , pp. 709-721
    • Sabharwal, S.S.1    Schumacker, P.T.2
  • 93
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters 1997, 416(1):15-18. http://www.ncbi.nlm.nih.gov/pubmed/9369223, 10.1016/S0014-5793(97)01159-9.
    • (1997) FEBS Letters , vol.416 , Issue.1 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 94
    • 50949125411 scopus 로고    scopus 로고
    • The efficiency of cellular energy transduction and its implications for obesity
    • Harper M.E., Green K., Brand M.D. The efficiency of cellular energy transduction and its implications for obesity. Annual Review of Nutrition 2008, 28:13-33. http://www.ncbi.nlm.nih.gov/pubmed/18407744, 10.1146/annurev.nutr.28.061807.155357.
    • (2008) Annual Review of Nutrition , vol.28 , pp. 13-33
    • Harper, M.E.1    Green, K.2    Brand, M.D.3
  • 95
    • 80054051101 scopus 로고    scopus 로고
    • The regulation and physiology of mitochondrial proton leak
    • Divakaruni A.S., Brand M.D. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011, 26(3):192-205. http://www.ncbi.nlm.nih.gov/pubmed/21670165, 10.1152/physiol.00046.2010.
    • (2011) Physiology (Bethesda) , vol.26 , Issue.3 , pp. 192-205
    • Divakaruni, A.S.1    Brand, M.D.2
  • 96
    • 84875439431 scopus 로고    scopus 로고
    • Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
    • Mailloux R.J., Xuan J.Y., Beauchamp B., Jui L., Lou M., Harper M.E. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. Journal of Biological Chemistry 2013, 288(12):8365-8379. http://www.ncbi.nlm.nih.gov/pubmed/23335511, 10.1074/jbc.M112.442905.
    • (2013) Journal of Biological Chemistry , vol.288 , Issue.12 , pp. 8365-8379
    • Mailloux, R.J.1    Xuan, J.Y.2    Beauchamp, B.3    Jui, L.4    Lou, M.5    Harper, M.E.6
  • 97
    • 84869237918 scopus 로고    scopus 로고
    • Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion
    • Mailloux R.J., Fu A., Robson-Doucette C., Allister E.M., Wheeler M.B., Screaton R., Harper M.E. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion. Journal of Biological Chemistry 2012, 287(47):39673-39685. http://www.ncbi.nlm.nih.gov/pubmed/23035124, 10.1074/jbc.M112.393538.
    • (2012) Journal of Biological Chemistry , vol.287 , Issue.47 , pp. 39673-39685
    • Mailloux, R.J.1    Fu, A.2    Robson-Doucette, C.3    Allister, E.M.4    Wheeler, M.B.5    Screaton, R.6    Harper, M.E.7
  • 98
    • 79958735550 scopus 로고    scopus 로고
    • Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
    • Mailloux R.J., Seifert E.L., Bouillaud F., Aguer C., Collins S., Harper M.E. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. Journal of Biological Chemistry 2011, 286(24):21865-21875. http://www.ncbi.nlm.nih.gov/pubmed/21515686, 10.1074/jbc.M111.240242.
    • (2011) Journal of Biological Chemistry , vol.286 , Issue.24 , pp. 21865-21875
    • Mailloux, R.J.1    Seifert, E.L.2    Bouillaud, F.3    Aguer, C.4    Collins, S.5    Harper, M.E.6
  • 99
    • 79959716502 scopus 로고    scopus 로고
    • Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
    • Mailloux R.J., Dumouchel T., Aguer C., deKemp R., Beanlands R., Harper M.E. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochemical Journal 2011, 437(2):301-311. http://www.ncbi.nlm.nih.gov/pubmed/21554247, 10.1042/BJ20110571.
    • (2011) Biochemical Journal , vol.437 , Issue.2 , pp. 301-311
    • Mailloux, R.J.1    Dumouchel, T.2    Aguer, C.3    deKemp, R.4    Beanlands, R.5    Harper, M.E.6
  • 100
    • 35748953472 scopus 로고    scopus 로고
    • Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration
    • Anderson E.J., Yamazaki H., Neufer P.D. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. Journal of Biological Chemistry 2007, 282(43):31257-31266. http://www.ncbi.nlm.nih.gov/pubmed/17761668, 10.1074/jbc.M706129200.
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.43 , pp. 31257-31266
    • Anderson, E.J.1    Yamazaki, H.2    Neufer, P.D.3
  • 101
    • 77952776083 scopus 로고    scopus 로고
    • Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
    • Queiroga C.S., Almeida A.S., Martel C., Brenner C., Alves P.M., Vieira H.L. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. Journal of Biological Chemistry 2010, 285(22):17077-17088. http://www.ncbi.nlm.nih.gov/pubmed/20348099, 10.1074/jbc.M109.065052.
    • (2010) Journal of Biological Chemistry , vol.285 , Issue.22 , pp. 17077-17088
    • Queiroga, C.S.1    Almeida, A.S.2    Martel, C.3    Brenner, C.4    Alves, P.M.5    Vieira, H.L.6
  • 102
    • 67449149911 scopus 로고    scopus 로고
    • Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection
    • Nadtochiy S.M., Baker P.R., Freeman B.A., Brookes P.S. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovascular Research 2009, 82(2):333-340. http://www.ncbi.nlm.nih.gov/pubmed/19050010, 10.1093/cvr/cvn323.
    • (2009) Cardiovascular Research , vol.82 , Issue.2 , pp. 333-340
    • Nadtochiy, S.M.1    Baker, P.R.2    Freeman, B.A.3    Brookes, P.S.4
  • 103
    • 48249083981 scopus 로고    scopus 로고
    • Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential
    • Parker N., Vidal-Puig A., Brand M.D. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Bioscience Reports 2008, 28(2):83-88. http://www.ncbi.nlm.nih.gov/pubmed/18384278, 10.1042/BSR20080002.
    • (2008) Bioscience Reports , vol.28 , Issue.2 , pp. 83-88
    • Parker, N.1    Vidal-Puig, A.2    Brand, M.D.3
  • 104
    • 84902242573 scopus 로고    scopus 로고
    • Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation
    • Dröse S., Brandt U., Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochimica et Biophysica Acta 2014, 1844(8):1344-1354. http://www.ncbi.nlm.nih.gov/pubmed/24561273, 10.1016/j.bbapap.2014.02.006.
    • (2014) Biochimica et Biophysica Acta , vol.1844 , Issue.8 , pp. 1344-1354
    • Dröse, S.1    Brandt, U.2    Wittig, I.3
  • 106
    • 39149138715 scopus 로고    scopus 로고
    • Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis
    • Nagy N., Malik G., Tosaki A., Ho Y.S., Maulik N., Das D.K. Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. Journal of Molecular and Cellular Cardiology 2008, 44(2):252-260. http://www.ncbi.nlm.nih.gov/pubmed/18076901, 10.1016/j.yjmcc.2007.08.021.
    • (2008) Journal of Molecular and Cellular Cardiology , vol.44 , Issue.2 , pp. 252-260
    • Nagy, N.1    Malik, G.2    Tosaki, A.3    Ho, Y.S.4    Maulik, N.5    Das, D.K.6
  • 107
    • 58749103645 scopus 로고    scopus 로고
    • Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2
    • Diotte N.M., Xiong Y., Gao J., Chua B.H., Ho Y.S. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochimica et Biophysica Acta 2009, 1793(2):427-438. http://www.ncbi.nlm.nih.gov/pubmed/19038292, 10.1016/j.bbamcr.2008.10.014.
    • (2009) Biochimica et Biophysica Acta , vol.1793 , Issue.2 , pp. 427-438
    • Diotte, N.M.1    Xiong, Y.2    Gao, J.3    Chua, B.H.4    Ho, Y.S.5
  • 108
    • 68949203453 scopus 로고    scopus 로고
    • A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease
    • Lee D.W., Kaur D., Chinta S.J., Rajagopalan S., Andersen J.K. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease. Antioxidants and Redox Signaling 2009, 11(9):2083-2094. http://www.ncbi.nlm.nih.gov/pubmed/19290777, 10.1089/ARS.2009.2489.
    • (2009) Antioxidants and Redox Signaling , vol.11 , Issue.9 , pp. 2083-2094
    • Lee, D.W.1    Kaur, D.2    Chinta, S.J.3    Rajagopalan, S.4    Andersen, J.K.5
  • 110
    • 67650656563 scopus 로고    scopus 로고
    • New aspects of impaired mitochondrial function in heart failure
    • Rosca M.G., Hoppel C.L. New aspects of impaired mitochondrial function in heart failure. Journal of Bioenergetics and Biomembranes 2009, 41(2):107-112. http://www.ncbi.nlm.nih.gov/pubmed/19347572, 10.1007/s10863-009-9215-9.
    • (2009) Journal of Bioenergetics and Biomembranes , vol.41 , Issue.2 , pp. 107-112
    • Rosca, M.G.1    Hoppel, C.L.2
  • 111
    • 67650697653 scopus 로고    scopus 로고
    • Mitochondria in the human heart
    • Lemieux H., Hoppel C.L. Mitochondria in the human heart. Journal of Bioenergetics and Biomembranes 2009, 41(2):99-106. http://www.ncbi.nlm.nih.gov/pubmed/19353253, 10.1007/s10863-009-9211-0.
    • (2009) Journal of Bioenergetics and Biomembranes , vol.41 , Issue.2 , pp. 99-106
    • Lemieux, H.1    Hoppel, C.L.2
  • 112
    • 84902302491 scopus 로고    scopus 로고
    • Taking diabetes to heart -deregulation of myocardial lipid metabolism in diabetic cardiomyopathy
    • Bayeva M., Sawicki K.T., Ardehali H. Taking diabetes to heart -deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. Journal of the American Heart Association 2013, 2(6):e000433. http://www.ncbi.nlm.nih.gov/pubmed/24275630, 10.1161/JAHA.113.000433.
    • (2013) Journal of the American Heart Association , vol.2 , Issue.6 , pp. e000433
    • Bayeva, M.1    Sawicki, K.T.2    Ardehali, H.3
  • 113
    • 84875698479 scopus 로고    scopus 로고
    • Model animals for the study of oxidative stress from complex II
    • Ishii T., Miyazawa M., Onouchi H., Yasuda K., Hartman P.S., Ishii N. Model animals for the study of oxidative stress from complex II. Biochimica et Biophysica Acta 2013, 1827(5):588-597. http://www.ncbi.nlm.nih.gov/pubmed/23142169, 10.1016/j.bbabio.2012.10.016.
    • (2013) Biochimica et Biophysica Acta , vol.1827 , Issue.5 , pp. 588-597
    • Ishii, T.1    Miyazawa, M.2    Onouchi, H.3    Yasuda, K.4    Hartman, P.S.5    Ishii, N.6
  • 114
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
    • Chen Y.R., Chen C.L., Pfeiffer D.R., Zweier J.L. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. Journal of Biological Chemistry 2007, 282(45):32640-32654. http://www.ncbi.nlm.nih.gov/pubmed/17848555, 10.1074/jbc.M702294200.
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.45 , pp. 32640-32654
    • Chen, Y.R.1    Chen, C.L.2    Pfeiffer, D.R.3    Zweier, J.L.4
  • 115
    • 79960943676 scopus 로고    scopus 로고
    • Succinate receptors in the kidney
    • Deen P.M., Robben J.H. Succinate receptors in the kidney. Journal of the American Society of Nephrology 2011, 22(8):1416-1422. http://www.ncbi.nlm.nih.gov/pubmed/21803970, 10.1681/ASN.2010050481.
    • (2011) Journal of the American Society of Nephrology , vol.22 , Issue.8 , pp. 1416-1422
    • Deen, P.M.1    Robben, J.H.2
  • 116
    • 84865438468 scopus 로고    scopus 로고
    • Mitochondrial oxidative stress and the metabolic syndrome
    • James A.M., Collins Y., Logan A., Murphy M.P. Mitochondrial oxidative stress and the metabolic syndrome. Trends in Endocrinology and Metabolism 2012, 23(9):429-434. http://www.ncbi.nlm.nih.gov/pubmed/22831852, 10.1016/j.tem.2012.06.008.
    • (2012) Trends in Endocrinology and Metabolism , vol.23 , Issue.9 , pp. 429-434
    • James, A.M.1    Collins, Y.2    Logan, A.3    Murphy, M.P.4
  • 117
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens J.F. Mitochondrial formation of reactive oxygen species. Journal of Physiology 2003, 552(2):335-344. http://www.ncbi.nlm.nih.gov/pubmed/14561818, 10.1113/jphysiol.2003.049478.
    • (2003) Journal of Physiology , vol.552 , Issue.2 , pp. 335-344
    • Turrens, J.F.1
  • 118
    • 80053371451 scopus 로고    scopus 로고
    • Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species
    • Kalyanaraman B. Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochemical Society Transactions 2011, 39(5):1221-1225. http://www.ncbi.nlm.nih.gov/pubmed/21936793, 10.1042/BST0391221.
    • (2011) Biochemical Society Transactions , vol.39 , Issue.5 , pp. 1221-1225
    • Kalyanaraman, B.1
  • 120
    • 77950515980 scopus 로고    scopus 로고
    • Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth
    • Zielonka J., Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radical Biology and Medicine 2010, 48(8):983-1001. http://www.ncbi.nlm.nih.gov/pubmed/20116425, 10.1016/j.freeradbiomed.2010.01.028.
    • (2010) Free Radical Biology and Medicine , vol.48 , Issue.8 , pp. 983-1001
    • Zielonka, J.1    Kalyanaraman, B.2
  • 122
    • 0022039170 scopus 로고
    • 2 solubility in aqueous media determined by a kinetic method
    • 2 solubility in aqueous media determined by a kinetic method. Analytical Biochemistry 1985, 145(2):406-418. http://www.ncbi.nlm.nih.gov/pubmed/4014672, 10.1016/0003-2697(85)90381-1.
    • (1985) Analytical Biochemistry , vol.145 , Issue.2 , pp. 406-418
    • Reynafarje, B.1    Costa, L.E.2    Lehninger, A.L.3
  • 123
    • 70349306566 scopus 로고    scopus 로고
    • Direct, real-time monitoring of superoxide generation in isolated mitochondria
    • Henderson J.R., Swalwell H., Boulton S., Manning P., McNeil C.J., Birch-Machin M.A. Direct, real-time monitoring of superoxide generation in isolated mitochondria. Free Radical Research 2009, 43(9):796-802. http://www.ncbi.nlm.nih.gov/pubmed/19562601, 10.1080/10715760903062895.
    • (2009) Free Radical Research , vol.43 , Issue.9 , pp. 796-802
    • Henderson, J.R.1    Swalwell, H.2    Boulton, S.3    Manning, P.4    McNeil, C.J.5    Birch-Machin, M.A.6
  • 124
    • 84923919939 scopus 로고    scopus 로고
    • Impact of hyperpigmentation on superoxide flux and melanoma cell metabolism at mitochondrial complex II
    • Boulton S.J., Birch-Machin M.A. Impact of hyperpigmentation on superoxide flux and melanoma cell metabolism at mitochondrial complex II. FASEB Journal 2015, 29(1):346-353. http://www.ncbi.nlm.nih.gov/pubmed/25351989, 10.1096/fj.14-261982.
    • (2015) FASEB Journal , vol.29 , Issue.1 , pp. 346-353
    • Boulton, S.J.1    Birch-Machin, M.A.2
  • 125
    • 34250648340 scopus 로고    scopus 로고
    • Design of a practical fluorescent probe for superoxide based on protection-deprotection chemistry of fluoresceins with benzenesulfonyl protecting groups
    • Maeda H., Yamamoto K., Kohno I., Hafsi L., Itoh N., Nakagawa S., Kanagawa N., Suzuki K., Uno T. Design of a practical fluorescent probe for superoxide based on protection-deprotection chemistry of fluoresceins with benzenesulfonyl protecting groups. Chemistry 2007, 13(7):1946-1954. http://www.ncbi.nlm.nih.gov/pubmed/17136791, 10.1002/chem.200600522.
    • (2007) Chemistry , vol.13 , Issue.7 , pp. 1946-1954
    • Maeda, H.1    Yamamoto, K.2    Kohno, I.3    Hafsi, L.4    Itoh, N.5    Nakagawa, S.6    Kanagawa, N.7    Suzuki, K.8    Uno, T.9
  • 127
    • 73849102007 scopus 로고    scopus 로고
    • Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury
    • Sheu S.S., Wang W., Cheng H., Dirksen R.T. Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury. Future Cardiology 2008, 4(6):551-554. http://www.ncbi.nlm.nih.gov/pubmed/19649173, 10.2217/14796678.4.6.551.
    • (2008) Future Cardiology , vol.4 , Issue.6 , pp. 551-554
    • Sheu, S.S.1    Wang, W.2    Cheng, H.3    Dirksen, R.T.4
  • 129
    • 77958542380 scopus 로고    scopus 로고
    • Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently
    • Pouvreau S. Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One 2010, 5(9). http://www.ncbi.nlm.nih.gov/pubmed/20927399, 10.1371/journal.pone.0013035.
    • (2010) PLoS One , vol.5 , Issue.9
    • Pouvreau, S.1
  • 131
    • 0242608621 scopus 로고    scopus 로고
    • Pathways of oxidative damage
    • Imlay J.A. Pathways of oxidative damage. Annual Review of Microbiology 2003, 57:395-418. http://www.ncbi.nlm.nih.gov/pubmed/14527285, 10.1146/annurev.micro.57.030502.090938.
    • (2003) Annual Review of Microbiology , vol.57 , pp. 395-418
    • Imlay, J.A.1
  • 133
    • 79960209663 scopus 로고    scopus 로고
    • The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes'
    • Schwarzländer M., Logan D.C., Fricker M.D., Sweetlove L.J. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes'. Biochemical Journal 2011, 437(3):381-387. http://www.ncbi.nlm.nih.gov/pubmed/21631430, 10.1042/BJ20110883.
    • (2011) Biochemical Journal , vol.437 , Issue.3 , pp. 381-387
    • Schwarzländer, M.1    Logan, D.C.2    Fricker, M.D.3    Sweetlove, L.J.4
  • 134
    • 84858204853 scopus 로고    scopus 로고
    • From sulfenylation to sulfhydration: what a thiolate needs to tolerate
    • Finkel T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Science Signalling 2012, 5(215):e10. http://www.ncbi.nlm.nih.gov/pubmed/22416275, 10.1126/scisignal.2002943.
    • (2012) Science Signalling , vol.5 , Issue.215 , pp. e10
    • Finkel, T.1
  • 135
    • 79952023305 scopus 로고    scopus 로고
    • Measurement of mitochondrial ROS production
    • Starkov A.A. Measurement of mitochondrial ROS production. Methods in Molecular Biology 2010, 648:245-255. http://www.ncbi.nlm.nih.gov/pubmed/20700717, 10.1007/978-1-60761-756-3_16.
    • (2010) Methods in Molecular Biology , vol.648 , pp. 245-255
    • Starkov, A.A.1
  • 139
    • 84879481183 scopus 로고    scopus 로고
    • Mitochondrially targeted compounds and their impact on cellular bioenergetics
    • Reily C., Mitchell T., Chacko B.K., Benavides G., Murphy M.P., Darley-Usmar V. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biology 2013, 1(1):86-93. http://www.ncbi.nlm.nih.gov/pubmed/23667828, 10.1016/j.redox.2012.11.009.
    • (2013) Redox Biology , vol.1 , Issue.1 , pp. 86-93
    • Reily, C.1    Mitchell, T.2    Chacko, B.K.3    Benavides, G.4    Murphy, M.P.5    Darley-Usmar, V.6
  • 141
    • 82955227412 scopus 로고    scopus 로고
    • In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis
    • Albrecht S.C., Barata A.G., Grosshans J., Teleman A.A., Dick T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metabolism 2011, 14(6):819-829. http://www.ncbi.nlm.nih.gov/pubmed/22100409, 10.1016/j.cmet.2011.10.010.
    • (2011) Cell Metabolism , vol.14 , Issue.6 , pp. 819-829
    • Albrecht, S.C.1    Barata, A.G.2    Grosshans, J.3    Teleman, A.A.4    Dick, T.P.5
  • 142
    • 0027131771 scopus 로고
    • Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation
    • Claiborne A., Miller H., Parsonage D., Ross R.P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB Journal 1993, 7(15):1483-1490. http://www.ncbi.nlm.nih.gov/pubmed/8262333.
    • (1993) FASEB Journal , vol.7 , Issue.15 , pp. 1483-1490
    • Claiborne, A.1    Miller, H.2    Parsonage, D.3    Ross, R.P.4
  • 143
    • 0032994431 scopus 로고    scopus 로고
    • Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status
    • Aslund F., Zheng M., Beckwith J., Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(11):6161-6165. http://www.ncbi.nlm.nih.gov/pubmed/10339558, 10.1073/pnas.96.11.6161.
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.11 , pp. 6161-6165
    • Aslund, F.1    Zheng, M.2    Beckwith, J.3    Storz, G.4
  • 144
    • 79251603273 scopus 로고    scopus 로고
    • Hydrogen peroxide probes directed to different cellular compartments
    • Malinouski M., Zhou Y., Belousov V.V., Hatfield D.L., Gladyshev V.N. Hydrogen peroxide probes directed to different cellular compartments. PLoS One 2011, 6(1):e14564. http://www.ncbi.nlm.nih.gov/pubmed/21283738, 10.1371/journal.pone.0014564.
    • (2011) PLoS One , vol.6 , Issue.1 , pp. e14564
    • Malinouski, M.1    Zhou, Y.2    Belousov, V.V.3    Hatfield, D.L.4    Gladyshev, V.N.5
  • 146
    • 84855948520 scopus 로고    scopus 로고
    • Dynamic measurements of mitochondrial hydrogen peroxide concentration and glutathione redox state in rat pancreatic beta-cells using ratiometric fluorescent proteins: confounding effects of pH with HyPer but not roGFP1
    • Roma L.P., Duprez J., Takahashi H.K., Gilon P., Wiederkehr A., Jonas J.C. Dynamic measurements of mitochondrial hydrogen peroxide concentration and glutathione redox state in rat pancreatic beta-cells using ratiometric fluorescent proteins: confounding effects of pH with HyPer but not roGFP1. Biochemical Journal 2012, 441(3):971-978. http://www.ncbi.nlm.nih.gov/pubmed/22050124, 10.1042/BJ20111770.
    • (2012) Biochemical Journal , vol.441 , Issue.3 , pp. 971-978
    • Roma, L.P.1    Duprez, J.2    Takahashi, H.K.3    Gilon, P.4    Wiederkehr, A.5    Jonas, J.C.6
  • 147


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.