-
1
-
-
0037336295
-
Quality control in the endoplasmic reticulum
-
Ellgaard L, Helenius A., Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003;4(3):181–191.• This is a comprehensive review of protein folding and processing in the ER.
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, Issue.3
, pp. 181-191
-
-
Ellgaard, L.1
Helenius, A.2
-
2
-
-
84865245211
-
Unfolded protein response
-
Cao SS, Kaufman RJ. Unfolded protein response. Curr Biol. 2012;22(16):R622–R626.
-
(2012)
Curr Biol
, vol.22
, Issue.16
, pp. R622-R626
-
-
Cao, S.S.1
Kaufman, R.J.2
-
3
-
-
84874438834
-
The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress
-
Jager R, Bertrand MJ, Gorman AM, et al. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell. 2012;104(5):259–270.
-
(2012)
Biol Cell
, vol.104
, Issue.5
, pp. 259-270
-
-
Jager, R.1
Bertrand, M.J.2
Gorman, A.M.3
-
4
-
-
84856111924
-
The unfolded protein response: controlling cell fate decisions under ER stress and beyond
-
Hetz C. The unfolded protein response:controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, Issue.2
, pp. 89-102
-
-
Hetz, C.1
-
5
-
-
82255173966
-
The unfolded protein response: from stress pathway to homeostatic regulation
-
Walter P, Ron D. The unfolded protein response:from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–1086.•• This article provides a review of the fundamental basis of the UPR and management of ER homeostasis.
-
(2011)
Science
, vol.334
, Issue.6059
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
6
-
-
0033782015
-
Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response
-
Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326–332.
-
(2000)
Nat Cell Biol
, vol.2
, Issue.6
, pp. 326-332
-
-
Bertolotti, A.1
Zhang, Y.2
Hendershot, L.M.3
-
7
-
-
84870735655
-
Endoplasmic reticulum stress sensing in the unfolded protein response
-
Gardner BM, Pincus D, Gotthardt K, et al. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol. 2013;5(3):a013169.
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
, Issue.3
, pp. a013169
-
-
Gardner, B.M.1
Pincus, D.2
Gotthardt, K.3
-
8
-
-
0033590451
-
Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
-
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271–274.• This is an original article on the isolation and characterization of PERK.
-
(1999)
Nature
, vol.397
, Issue.6716
, pp. 271-274
-
-
Harding, H.P.1
Zhang, Y.2
Ron, D.3
-
9
-
-
0031755020
-
Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control
-
Shi Y, Vattem KM, Sood R, et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol. 1998;18(12):7499–7509.• This article was the first report identifying PERK.
-
(1998)
Mol Cell Biol
, vol.18
, Issue.12
, pp. 7499-7509
-
-
Shi, Y.1
Vattem, K.M.2
Sood, R.3
-
10
-
-
0034163483
-
Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress
-
Sood R, Porter AC, Ma K, et al. Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J. 2000;346(Pt 2):281–293.
-
(2000)
Biochem J
, vol.346
, pp. 281-293
-
-
Sood, R.1
Porter, A.C.2
Ma, K.3
-
11
-
-
0034811443
-
Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry
-
Ma Y, Lu Y, Zeng H, et al. Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(18):1693–1700.
-
(2001)
Rapid Commun Mass Spectrom
, vol.15
, Issue.18
, pp. 1693-1700
-
-
Ma, Y.1
Lu, Y.2
Zeng, H.3
-
12
-
-
38049141415
-
Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation
-
Su Q, Wang S, Gao HQ, et al. Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J Biol Chem. 2008;283(1):469–475.
-
(2008)
J Biol Chem
, vol.283
, Issue.1
, pp. 469-475
-
-
Su, Q.1
Wang, S.2
Gao, H.Q.3
-
13
-
-
30944458057
-
Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK
-
Marciniak SJ, Garcia-Bonilla L, Hu J, et al. Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. J Cell Biol. 2006;172(2):201–209.
-
(2006)
J Cell Biol
, vol.172
, Issue.2
, pp. 201-209
-
-
Marciniak, S.J.1
Garcia-Bonilla, L.2
Hu, J.3
-
14
-
-
0037011917
-
IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
-
Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–96.
-
(2002)
Nature
, vol.415
, Issue.6867
, pp. 92-96
-
-
Calfon, M.1
Zeng, H.2
Urano, F.3
-
15
-
-
33749233991
-
The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response
-
Zhou J, Liu CY, Back SH, et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci U S A. 2006;103(39):14343–14348.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.39
, pp. 14343-14348
-
-
Zhou, J.1
Liu, C.Y.2
Back, S.H.3
-
16
-
-
0032509216
-
Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors
-
Yoshida H, Haze K, Yanagi H, et al. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273(50):33741–33749.
-
(1998)
J Biol Chem
, vol.273
, Issue.50
, pp. 33741-33749
-
-
Yoshida, H.1
Haze, K.2
Yanagi, H.3
-
17
-
-
0034282912
-
Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response
-
Wang Y, Shen J, Arenzana N, et al. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem. 2000;275(35):27013–27020.
-
(2000)
J Biol Chem
, vol.275
, Issue.35
, pp. 27013-27020
-
-
Wang, Y.1
Shen, J.2
Arenzana, N.3
-
18
-
-
0036091476
-
The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas
-
Zhang P, McGrath B, Li S, et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002;22(11):3864–3874.
-
(2002)
Mol Cell Biol
, vol.22
, Issue.11
, pp. 3864-3874
-
-
Zhang, P.1
McGrath, B.2
Li, S.3
-
19
-
-
33751430251
-
PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis
-
Zhang W, Feng D, Li Y, et al. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 2006;4(6):491–497.
-
(2006)
Cell Metab
, vol.4
, Issue.6
, pp. 491-497
-
-
Zhang, W.1
Feng, D.2
Li, Y.3
-
20
-
-
0034968330
-
−/- mice reveals a role for translational control in secretory cell survival
-
−/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7(6):1153–1163.
-
(2001)
Mol Cell
, vol.7
, Issue.6
, pp. 1153-1163
-
-
Harding, H.P.1
Zeng, H.2
Zhang, Y.3
-
21
-
-
36048996065
-
PERK eIF2 alpha kinase is required to regulate the viability of the exocrine pancreas in mice
-
Iida K, Li Y, McGrath BC, et al. PERK eIF2 alpha kinase is required to regulate the viability of the exocrine pancreas in mice. BMC Cell Biol. 2007;8:38.
-
(2007)
BMC Cell Biol
, vol.8
, pp. 38
-
-
Iida, K.1
Li, Y.2
McGrath, B.C.3
-
22
-
-
77955383087
-
PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway
-
Gupta S, McGrath B, Cavener DR. PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway. Diabetes. 2010;59(8):1937–1947.
-
(2010)
Diabetes
, vol.59
, Issue.8
, pp. 1937-1947
-
-
Gupta, S.1
McGrath, B.2
Cavener, D.R.3
-
23
-
-
78650278223
-
PERK in beta cell biology and insulin biogenesis
-
Cavener DR, Gupta S, McGrath BC. PERK in beta cell biology and insulin biogenesis. Trends Endocrinol Metab. 2010;21(12):714–721.•• This is an excellent review of PERK-dependent β-cell biology.
-
(2010)
Trends Endocrinol Metab
, vol.21
, Issue.12
, pp. 714-721
-
-
Cavener, D.R.1
Gupta, S.2
McGrath, B.C.3
-
24
-
-
84871759394
-
Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK
-
Harding HP, Zyryanova AF, Ron D. Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J Biol Chem. 2012;287(53):44338–44344.
-
(2012)
J Biol Chem
, vol.287
, Issue.53
, pp. 44338-44344
-
-
Harding, H.P.1
Zyryanova, A.F.2
Ron, D.3
-
25
-
-
84950111776
-
Type I interferons mediate pancreatic toxicities of PERK inhibition
-
Yu Q, Zhao B, Gui J, et al. Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc Natl Acad Sci U S A. 2015;112(50):15420–15425.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, Issue.50
, pp. 15420-15425
-
-
Yu, Q.1
Zhao, B.2
Gui, J.3
-
26
-
-
0035313059
-
IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death
-
Suk K, Kim S, Kim YH, et al. IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes:a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J Immunol. 2001;166(7):4481–4489.
-
(2001)
J Immunol
, vol.166
, Issue.7
, pp. 4481-4489
-
-
Suk, K.1
Kim, S.2
Kim, Y.H.3
-
27
-
-
22344435167
-
Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma
-
Lin W, Harding HP, Ron D, et al. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol. 2005;169(4):603–612.
-
(2005)
J Cell Biol
, vol.169
, Issue.4
, pp. 603-612
-
-
Lin, W.1
Harding, H.P.2
Ron, D.3
-
28
-
-
0034425698
-
EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome
-
Delepine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet. 2000;25(4):406–409.
-
(2000)
Nat Genet
, vol.25
, Issue.4
, pp. 406-409
-
-
Delepine, M.1
Nicolino, M.2
Barrett, T.3
-
29
-
-
3042696843
-
Wolcott-Rallison Syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity
-
Senee V, Vattem KM, Delepine M, et al. Wolcott-Rallison Syndrome:clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes. 2004;53(7):1876–1883.
-
(2004)
Diabetes
, vol.53
, Issue.7
, pp. 1876-1883
-
-
Senee, V.1
Vattem, K.M.2
Delepine, M.3
-
30
-
-
78049402866
-
Wolcott-Rallison syndrome
-
Julier C, Nicolino M. Wolcott-Rallison syndrome. Orphanet J Rare Dis. 2010;5:29.•• This review provides background and summarizes collective data on cases of WRS, the human condition characterized by inactivating PERK mutations.
-
(2010)
Orphanet J Rare Dis
, vol.5
, pp. 29
-
-
Julier, C.1
Nicolino, M.2
-
31
-
-
84938517319
-
Early neurodegeneration in the brain of a child without functional PKR-like endoplasmic reticulum kinase
-
Bruch J, Kurz C, Vasiljevic A, et al. Early neurodegeneration in the brain of a child without functional PKR-like endoplasmic reticulum kinase. J Neuropathol Exp Neurol. 2015;74(8):850–857.
-
(2015)
J Neuropathol Exp Neurol
, vol.74
, Issue.8
, pp. 850-857
-
-
Bruch, J.1
Kurz, C.2
Vasiljevic, A.3
-
32
-
-
84863086454
-
Brain-specific disruption of the eIF2alpha kinase PERK decreases ATF4 expression and impairs behavioral flexibility
-
Trinh MA, Kaphzan H, Wek RC, et al. Brain-specific disruption of the eIF2alpha kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep. 2012;1(6):676–688.
-
(2012)
Cell Rep
, vol.1
, Issue.6
, pp. 676-688
-
-
Trinh, M.A.1
Kaphzan, H.2
Wek, R.C.3
-
33
-
-
35848935017
-
Translational control and the unfolded protein response
-
Wek RC, Cavener DR. Translational control and the unfolded protein response. Antioxid Redox Signal. 2007;9(12):2357–2371.
-
(2007)
Antioxid Redox Signal
, vol.9
, Issue.12
, pp. 2357-2371
-
-
Wek, R.C.1
Cavener, D.R.2
-
34
-
-
84863900963
-
New insights into translational regulation in the endoplasmic reticulum unfolded protein response
-
Pavitt GD, Ron D. New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol. 2012;4:6.
-
(2012)
Cold Spring Harb Perspect Biol
, vol.4
, pp. 6
-
-
Pavitt, G.D.1
Ron, D.2
-
35
-
-
0036856008
-
Translational control in the endoplasmic reticulum stress response
-
Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest. 2002;110(10):1383–1388.
-
(2002)
J Clin Invest
, vol.110
, Issue.10
, pp. 1383-1388
-
-
Ron, D.1
-
36
-
-
0035787914
-
Translational regulation in the cellular response to biosynthetic load on the endoplasmic reticulum
-
Harding HP, Novoa I, Bertolotti A, et al. Translational regulation in the cellular response to biosynthetic load on the endoplasmic reticulum. Cold Spring Harb Symp Quant Biol. 2001;66:499–508.
-
(2001)
Cold Spring Harb Symp Quant Biol
, vol.66
, pp. 499-508
-
-
Harding, H.P.1
Novoa, I.2
Bertolotti, A.3
-
37
-
-
0033634654
-
Regulated translation initiation controls stress-induced gene expression in mammalian cells
-
Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–1108.
-
(2000)
Mol Cell
, vol.6
, Issue.5
, pp. 1099-1108
-
-
Harding, H.P.1
Novoa, I.2
Zhang, Y.3
-
38
-
-
84969377017
-
eIF2B: recent structural and functional insights into a key regulator of translation
-
Wortham NC, Proud CG. eIF2B:recent structural and functional insights into a key regulator of translation. Biochem Soc Trans. 2015;43(6):1234–1240.
-
(2015)
Biochem Soc Trans
, vol.43
, Issue.6
, pp. 1234-1240
-
-
Wortham, N.C.1
Proud, C.G.2
-
39
-
-
0028263821
-
Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation
-
Ramaiah KV, Davies MV, Chen JJ, et al. Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation. Mol Cell Biol. 1994;14(7):4546–4553.
-
(1994)
Mol Cell Biol
, vol.14
, Issue.7
, pp. 4546-4553
-
-
Ramaiah, K.V.1
Davies, M.V.2
Chen, J.J.3
-
40
-
-
78649375395
-
Translational regulation of gene expression during conditions of cell stress
-
Spriggs KA, Bushell M, Willis AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010;40(2):228–237.
-
(2010)
Mol Cell
, vol.40
, Issue.2
, pp. 228-237
-
-
Spriggs, K.A.1
Bushell, M.2
Willis, A.E.3
-
41
-
-
4344648874
-
Activating transcription factor 4 is translationally regulated by hypoxic stress
-
Blais JD, Filipenko V, Bi M, et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol. 2004;24(17):7469–7482.
-
(2004)
Mol Cell Biol
, vol.24
, Issue.17
, pp. 7469-7482
-
-
Blais, J.D.1
Filipenko, V.2
Bi, M.3
-
42
-
-
3843117589
-
Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
-
Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004;101(31):11269–11274.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.31
, pp. 11269-11274
-
-
Vattem, K.M.1
Wek, R.C.2
-
43
-
-
84956597493
-
Translation from the 5ʹ untranslated region shapes the integrated stress response
-
Starck SR, Tsai JC, Chen K, et al. Translation from the 5ʹ untranslated region shapes the integrated stress response. Science. 2016;351(6272):aad3867.
-
(2016)
Science
, vol.351
, Issue.6272
, pp. aad3867
-
-
Starck, S.R.1
Tsai, J.C.2
Chen, K.3
-
44
-
-
17144417669
-
TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death
-
Ohoka N, Yoshii S, Hattori T, et al. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 2005;24(6):1243–1255.
-
(2005)
EMBO J
, vol.24
, Issue.6
, pp. 1243-1255
-
-
Ohoka, N.1
Yoshii, S.2
Hattori, T.3
-
45
-
-
43549125786
-
ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo
-
Lange PS, Chavez JC, Pinto JT, et al. ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med. 2008;205(5):1227–1242.• This article studies the stress-dependent knock out of ATF4 in neurons and evaluates corresponding changes in gene expression.
-
(2008)
J Exp Med
, vol.205
, Issue.5
, pp. 1227-1242
-
-
Lange, P.S.1
Chavez, J.C.2
Pinto, J.T.3
-
46
-
-
0037416211
-
Stress-induced gene expression requires programmed recovery from translational repression
-
Novoa I, Zhang Y, Zeng H, et al. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 2003;22(5):1180–1187.
-
(2003)
EMBO J
, vol.22
, Issue.5
, pp. 1180-1187
-
-
Novoa, I.1
Zhang, Y.2
Zeng, H.3
-
47
-
-
84884353774
-
The eIF2alpha kinases: their structures and functions
-
Donnelly N, Gorman AM, Gupta S, et al. The eIF2alpha kinases:their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–3511.
-
(2013)
Cell Mol Life Sci
, vol.70
, Issue.19
, pp. 3493-3511
-
-
Donnelly, N.1
Gorman, A.M.2
Gupta, S.3
-
48
-
-
33749492425
-
Endoplasmic reticulum stress signaling in disease
-
Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev. 2006;86(4):1133–1149.• This article reviews potential therapeutic uses of PERK inhibitors.
-
(2006)
Physiol Rev
, vol.86
, Issue.4
, pp. 1133-1149
-
-
Marciniak, S.J.1
Ron, D.2
-
49
-
-
33644858343
-
The unfolded protein response: a stress signaling pathway critical for health and disease
-
Zhang K, Kaufman RJ. The unfolded protein response:a stress signaling pathway critical for health and disease. Neurology. 2006;66(2 Suppl 1):S102–S109.• This article reviews potential therapeutic uses of PERK inhibitors.
-
(2006)
Neurology
, vol.66
, pp. S102-S109
-
-
Zhang, K.1
Kaufman, R.J.2
-
50
-
-
84931349200
-
Multiple mechanisms of unfolded protein response-induced cell death
-
Hiramatsu N, Chiang WC, Kurt TD, et al. Multiple mechanisms of unfolded protein response-induced cell death. Am J Pathol. 2015;185(7):1800–1808.
-
(2015)
Am J Pathol
, vol.185
, Issue.7
, pp. 1800-1808
-
-
Hiramatsu, N.1
Chiang, W.C.2
Kurt, T.D.3
-
51
-
-
84921403151
-
Druggable sensors of the unfolded protein response
-
Maly DJ, Papa FR. Druggable sensors of the unfolded protein response. Nat Chem Biol. 2014;10(11):892–901.
-
(2014)
Nat Chem Biol
, vol.10
, Issue.11
, pp. 892-901
-
-
Maly, D.J.1
Papa, F.R.2
-
52
-
-
84877578475
-
ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
-
Han J, Back SH, Hur J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15(5):481–490.
-
(2013)
Nat Cell Biol
, vol.15
, Issue.5
, pp. 481-490
-
-
Han, J.1
Back, S.H.2
Hur, J.3
-
53
-
-
0842285401
-
Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2
-
Lu PD, Jousse C, Marciniak SJ, et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 2004;23(1):169–179.
-
(2004)
EMBO J
, vol.23
, Issue.1
, pp. 169-179
-
-
Lu, P.D.1
Jousse, C.2
Marciniak, S.J.3
-
54
-
-
84906898010
-
Impaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice
-
Lin Y, Pang X, Huang G, et al. Impaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice. J Neurosci. 2014;34(36):12182–12191.
-
(2014)
J Neurosci
, vol.34
, Issue.36
, pp. 12182-12191
-
-
Lin, Y.1
Pang, X.2
Huang, G.3
-
55
-
-
44849124523
-
Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival
-
Ranganathan AC, Ojha S, Kourtidis A, et al. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res. 2008;68(9):3260–3268.
-
(2008)
Cancer Res
, vol.68
, Issue.9
, pp. 3260-3268
-
-
Ranganathan, A.C.1
Ojha, S.2
Kourtidis, A.3
-
56
-
-
84855767695
-
Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling
-
Stockwell SR, Platt G, Barrie SE, et al. Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PLoS One. 2012;7(1):e28568.
-
(2012)
PLoS One
, vol.7
, Issue.1
, pp. e28568
-
-
Stockwell, S.R.1
Platt, G.2
Barrie, S.E.3
-
57
-
-
84925004646
-
Identification and characterization of PERK activators by phenotypic screening and their effects on NRF2 activation
-
Xie W, Pariollaud M, Wixted WE, et al. Identification and characterization of PERK activators by phenotypic screening and their effects on NRF2 activation. PLoS One. 2015;10(3):e0119738.
-
(2015)
PLoS One
, vol.10
, Issue.3
, pp. e0119738
-
-
Xie, W.1
Pariollaud, M.2
Wixted, W.E.3
-
58
-
-
85003787367
-
DZNE. PERK activator for the treatment of neurodegenerative diseases patent
-
Deutsches Zentrum fuer Neurodegenerative Erkrankungen e.V. DZNE. PERK activator for the treatment of neurodegenerative diseases patent. WO2016024010. 2016.
-
(2016)
WO2016024010
-
-
-
59
-
-
84908344184
-
Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis
-
Wang L, Popko B, Tixier E, et al. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis. 2014;71:317–324.
-
(2014)
Neurobiol Dis
, vol.71
, pp. 317-324
-
-
Wang, L.1
Popko, B.2
Tixier, E.3
-
60
-
-
84960480352
-
Harnessing the integrated stress response for the treatment of multiple sclerosis
-
Way SW, Popko B. Harnessing the integrated stress response for the treatment of multiple sclerosis. Lancet Neurol. 2016;15(4):434–443.
-
(2016)
Lancet Neurol
, vol.15
, Issue.4
, pp. 434-443
-
-
Way, S.W.1
Popko, B.2
-
61
-
-
44349185449
-
Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions
-
Tribouillard-Tanvier D, Beringue V, Desban N, et al. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One. 2008;3(4):e1981.
-
(2008)
PLoS One
, vol.3
, Issue.4
, pp. e1981
-
-
Tribouillard-Tanvier, D.1
Beringue, V.2
Desban, N.3
-
62
-
-
84942615942
-
Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS
-
Vieira FG, Ping Q, Moreno AJ, et al. Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS. PLoS One. 2015;10(8):e0135570.
-
(2015)
PLoS One
, vol.10
, Issue.8
, pp. e0135570
-
-
Vieira, F.G.1
Ping, Q.2
Moreno, A.J.3
-
63
-
-
27144458505
-
ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth
-
Bi M, Naczki C, Koritzinsky M, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 2005;24(19):3470–3481.
-
(2005)
EMBO J
, vol.24
, Issue.19
, pp. 3470-3481
-
-
Bi, M.1
Naczki, C.2
Koritzinsky, M.3
-
64
-
-
84866905708
-
Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)
-
Axten JM, Medina JR, Feng Y, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55(16):7193–7207.•• An account of the medicinal chemistry optimization leading to the discovery of GSK2606414.
-
(2012)
J Med Chem
, vol.55
, Issue.16
, pp. 7193-7207
-
-
Axten, J.M.1
Medina, J.R.2
Feng, Y.3
-
65
-
-
84885447174
-
Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development
-
Axten JM, Romeril SP, Shu A, et al. Discovery of GSK2656157:an optimized PERK inhibitor selected for preclinical development. ACS Med Chem Lett. 2013;4(10):964–968.•• An account of the medicinal chemistry optimization leading to the discovery of GSK2656157.
-
(2013)
ACS Med Chem Lett
, vol.4
, Issue.10
, pp. 964-968
-
-
Axten, J.M.1
Romeril, S.P.2
Shu, A.3
-
66
-
-
80054758767
-
Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response
-
Fribley AM, Cruz PG, Miller JR, et al. Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. J Biomol Screen. 2011;16(8):825–835.
-
(2011)
J Biomol Screen
, vol.16
, Issue.8
, pp. 825-835
-
-
Fribley, A.M.1
Cruz, P.G.2
Miller, J.R.3
-
67
-
-
78349294950
-
Structural determinants of PERK inhibitor potency and selectivity
-
Wang H, Blais J, Ron D, et al. Structural determinants of PERK inhibitor potency and selectivity. Chem Biol Drug Des. 2010;76(6):480–495.
-
(2010)
Chem Biol Drug Des
, vol.76
, Issue.6
, pp. 480-495
-
-
Wang, H.1
Blais, J.2
Ron, D.3
-
68
-
-
84922778869
-
Discovery of 1H-pyrazol-3(2H)-ones as potent and selective inhibitors of protein kinase R-like endoplasmic reticulum kinase (PERK)
-
Feb
-
Smith AL, Andrews KL, Beckmann H, et al. Discovery of 1H-pyrazol-3(2H)-ones as potent and selective inhibitors of protein kinase R-like endoplasmic reticulum kinase (PERK). J Med Chem. 2015 Feb 12;58(3):1426–1441.• This article describes 1H-pyrazol-3(2H)-ones as another series of PERK inhibitors with anti-angiogenic activity from Amgen, and discloses a more selective analog of GSK2606414.
-
(2015)
J Med Chem
, vol.58
, Issue.3
, pp. 1426-1441
-
-
Smith, A.L.1
Andrews, K.L.2
Beckmann, H.3
-
69
-
-
84920760344
-
Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress: a PERK for hepatocellular carcinoma therapy
-
Vandewynckel YP, Laukens D, Bogaerts E, et al. Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress:a PERK for hepatocellular carcinoma therapy. Hepatol Int. 2015;9(1):93–104.
-
(2015)
Hepatol Int
, vol.9
, Issue.1
, pp. 93-104
-
-
Vandewynckel, Y.P.1
Laukens, D.2
Bogaerts, E.3
-
70
-
-
10344222124
-
The role of the unfolded protein response in tumour development: friend or foe?
-
Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development:friend or foe? Nat Rev Cancer. 2004;4(12):966–977.
-
(2004)
Nat Rev Cancer
, vol.4
, Issue.12
, pp. 966-977
-
-
Ma, Y.1
Hendershot, L.M.2
-
71
-
-
84923181354
-
Molecular pathways: the PERKs and pitfalls of targeting the unfolded protein response in cancer
-
Maas NL, Diehl JA. Molecular pathways:the PERKs and pitfalls of targeting the unfolded protein response in cancer. Clin Cancer Res. 2015;21(4):675–679.
-
(2015)
Clin Cancer Res
, vol.21
, Issue.4
, pp. 675-679
-
-
Maas, N.L.1
Diehl, J.A.2
-
72
-
-
84960805544
-
Tumor progression and the different faces of the PERK kinase
-
Pytel D, Majsterek I, Diehl JA. Tumor progression and the different faces of the PERK kinase. Oncogene. 2016;35(10):1207–1215.
-
(2016)
Oncogene
, vol.35
, Issue.10
, pp. 1207-1215
-
-
Pytel, D.1
Majsterek, I.2
Diehl, J.A.3
-
73
-
-
84885463900
-
Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice
-
Moreno JA, Halliday M, Molloy C, et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med. 2013;5(206):206ra138.•• This landmark paper demonstrated that a PERK inhibitor was neuroprotective and preserved behavior in a mouse model of prion-mediated neurodegeneration.
-
(2013)
Sci Transl Med
, vol.5
, Issue.206
, pp. 206ra138
-
-
Moreno, J.A.1
Halliday, M.2
Molloy, C.3
-
74
-
-
84895822652
-
Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models
-
Kim HJ, Raphael AR, LaDow ES, et al. Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet. 2014;46(2):152–160.
-
(2014)
Nat Genet
, vol.46
, Issue.2
, pp. 152-160
-
-
Kim, H.J.1
Raphael, A.R.2
LaDow, E.S.3
-
75
-
-
84906852572
-
The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress
-
van der Harg JM, Nolle A, Zwart R, et al. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress. Cell Death Dis. 2014;5:e1393.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1393
-
-
van der Harg, J.M.1
Nolle, A.2
Zwart, R.3
-
76
-
-
84945181747
-
PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia
-
Radford H, Moreno JA, Verity N, et al. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015;130(5):633–642.• This article reported efficacy of GSK2606414 in a dementia model, and showed that small molecule PERK inhibition can decrease tau phosphorylation.
-
(2015)
Acta Neuropathol
, vol.130
, Issue.5
, pp. 633-642
-
-
Radford, H.1
Moreno, J.A.2
Verity, N.3
-
77
-
-
84878333056
-
Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation
-
Abisambra JF, Jinwal UK, Blair LJ, et al. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci. 2013;33(22):9498–9507.
-
(2013)
J Neurosci
, vol.33
, Issue.22
, pp. 9498-9507
-
-
Abisambra, J.F.1
Jinwal, U.K.2
Blair, L.J.3
-
78
-
-
84858000638
-
The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies
-
Nijholt DA, van Haastert ES, Rozemuller AJ, et al. The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol. 2012;226(5):693–702.
-
(2012)
J Pathol
, vol.226
, Issue.5
, pp. 693-702
-
-
Nijholt, D.A.1
van Haastert, E.S.2
Rozemuller, A.J.3
-
79
-
-
84939618554
-
Unfolded protein response is activated in Lewy body dementias
-
Baek J-H, Whitfield D, Howlett D, et al. Unfolded protein response is activated in Lewy body dementias. Neuropathol Appl Neurobiol. 2016;42:352–365.
-
(2016)
Neuropathol Appl Neurobiol
, vol.42
, pp. 352-365
-
-
Baek, J.-H.1
Whitfield, D.2
Howlett, D.3
-
80
-
-
85048240730
-
The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease
-
Stutzbach LD, Xie SX, Naj AC, et al. The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:31.• This article reveals genetic evidence of PERK activation in PSP.
-
(2013)
Acta Neuropathol Commun
, vol.1
, pp. 31
-
-
Stutzbach, L.D.1
Xie, S.X.2
Naj, A.C.3
-
81
-
-
65349093893
-
The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus
-
Hoozemans JJ, van Haastert ES, Nijholt DA, et al. The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol. 2009;174(4):1241–1251.
-
(2009)
Am J Pathol
, vol.174
, Issue.4
, pp. 1241-1251
-
-
Hoozemans, J.J.1
van Haastert, E.S.2
Nijholt, D.A.3
-
84
-
-
24344489466
-
The unfolded protein response is activated in Alzheimer’s disease
-
Hoozemans JJ, Veerhuis R, van Haastert ES, et al. The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. 2005;110(2):165–172.
-
(2005)
Acta Neuropathol
, vol.110
, Issue.2
, pp. 165-172
-
-
Hoozemans, J.J.1
Veerhuis, R.2
van Haastert, E.S.3
-
85
-
-
43649100018
-
Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis
-
Atkin JD, Farg MA, Walker AK, et al. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis. 2008;30(3):400–407.
-
(2008)
Neurobiol Dis
, vol.30
, Issue.3
, pp. 400-407
-
-
Atkin, J.D.1
Farg, M.A.2
Walker, A.K.3
-
86
-
-
84939562716
-
The unfolded protein response in neurodegenerative diseases: a neuropathological perspective
-
Scheper W, Hoozemans JJ. The unfolded protein response in neurodegenerative diseases:a neuropathological perspective. Acta Neuropathol. 2015;130(3):315–331.•• An excellent review of the human evidence of PERK activation in neurodegenerative disease.
-
(2015)
Acta Neuropathol
, vol.130
, Issue.3
, pp. 315-331
-
-
Scheper, W.1
Hoozemans, J.J.2
-
87
-
-
31444449462
-
Role of the unfolded protein response in cell death
-
Kim R, Emi M, Tanabe K, et al. Role of the unfolded protein response in cell death. Apoptosis. 2006;11(1):5–13.
-
(2006)
Apoptosis
, vol.11
, Issue.1
, pp. 5-13
-
-
Kim, R.1
Emi, M.2
Tanabe, K.3
-
88
-
-
33845465578
-
Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress
-
Blais JD, Addison CL, Edge R, et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol. 2006;26(24):9517–9532.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.24
, pp. 9517-9532
-
-
Blais, J.D.1
Addison, C.L.2
Edge, R.3
-
89
-
-
84906712846
-
The impact of the endoplasmic reticulum protein-folding environment on cancer development
-
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14(9):581–597.•• This article provides comprehensive background and in depth perspective on ER stress and tumorigenesis.
-
(2014)
Nat Rev Cancer
, vol.14
, Issue.9
, pp. 581-597
-
-
Wang, M.1
Kaufman, R.J.2
-
90
-
-
84867562151
-
The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway
-
Wang Y, Alam GN, Ning Y, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res. 2012;72(20):5396–5406.
-
(2012)
Cancer Res
, vol.72
, Issue.20
, pp. 5396-5406
-
-
Wang, Y.1
Alam, G.N.2
Ning, Y.3
-
91
-
-
84931570190
-
Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling
-
Carrara M, Prischi F, Nowak PR, et al. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling. EMBO J. 2015;34(11):1589–1600.
-
(2015)
EMBO J
, vol.34
, Issue.11
, pp. 1589-1600
-
-
Carrara, M.1
Prischi, F.2
Nowak, P.R.3
-
92
-
-
85003806101
-
Preparation of substituted indoline derivatives as PKR-like ER kinase inhibitors patent
-
GlaxoSmithKline LLC. Preparation of substituted indoline derivatives as PKR-like ER kinase inhibitors patent. WO2011119663. 2011.•• This patent discloses a novel series of indoline derivatives as the first potent and selective inhibitors of PERK.
-
(2011)
WO2011119663
-
-
-
93
-
-
84875235453
-
Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity
-
Atkins C, Liu Q, Minthorn E, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013;73(6):1993–2002.•• This article contains the full biological characterization of GSK2656157, including in vivo efficacy and pharmacodynamics.
-
(2013)
Cancer Res
, vol.73
, Issue.6
, pp. 1993-2002
-
-
Atkins, C.1
Liu, Q.2
Minthorn, E.3
-
94
-
-
85003806097
-
Preparation of phenylpyrrolidinone derivatives for use as PERK inhibitors patent
-
GlaxoSmithKline Intellectual Property No.2 Limited. Preparation of phenylpyrrolidinone derivatives for use as PERK inhibitors patent. WO2015136463. 2015.
-
(2015)
WO2015136463
-
-
-
95
-
-
85004186011
-
Preparation of isoxazolo-quinazolines as modulators of protein kinase activity for treatment of proliferative disorders patent
-
Nerviano Medical Sciences S.r.l. Preparation of isoxazolo-quinazolines as modulators of protein kinase activity for treatment of proliferative disorders patent. WO2012013557. 2012.
-
(2012)
WO2012013557
-
-
-
96
-
-
85004114015
-
Preparation of novel N-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)-4-quinazolinamine and N-(2,3-dihydro-1H-indol-5-yl)-4-quinazolinamine derivatives as PERK inhibitors patent
-
Janssen Pharmaceutica NV. Preparation of novel N-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)-4-quinazolinamine and N-(2,3-dihydro-1H-indol-5-yl)-4-quinazolinamine derivatives as PERK inhibitors patent. WO2014161808. 2014.•• This patent discloses aminoquinazoline-substituted indolines as potent and selective PERK inhibitors.
-
(2014)
WO2014161808
-
-
-
97
-
-
84870732594
-
Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation
-
Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol. 2012;4(12):a013177.• This article gives a holistic view of the physiological basis for UPR evolution and development.
-
(2012)
Cold Spring Harb Perspect Biol
, vol.4
, Issue.12
, pp. a013177
-
-
Ron, D.1
Harding, H.P.2
-
98
-
-
84929237684
-
Review: modulating the unfolded protein response to prevent neurodegeneration and enhance memory
-
Halliday M, Mallucci GR. Review:modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathol Appl Neurobiol. 2015;41(4):414–427.•• This is an excellent review of current data supporting the targeting of the UPR and PERK as an approach to treat neurodegenerative diseases.
-
(2015)
Neuropathol Appl Neurobiol
, vol.41
, Issue.4
, pp. 414-427
-
-
Halliday, M.1
Mallucci, G.R.2
-
99
-
-
84862620376
-
Cell biology. A unifying role for prions in neurodegenerative diseases
-
Prusiner SB. Cell biology. A unifying role for prions in neurodegenerative diseases. Science. 2012;336(6088):1511–1513.•• This paper proposes a general theory that neurodegenerative diseases may have a common prion-independent mechanism of pathogenesis.
-
(2012)
Science
, vol.336
, Issue.6088
, pp. 1511-1513
-
-
Prusiner, S.B.1
-
100
-
-
84988811921
-
Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity
-
Halliday M, Radford H, Sekine Y, et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 2015;6:e1672.• This study demonstrated that pharmacological restoration of protein synthesis at a pathway node downstream of PERK was efficacious in a model of prion diseases.
-
(2015)
Cell Death Dis
, vol.6
, pp. e1672
-
-
Halliday, M.1
Radford, H.2
Sekine, Y.3
-
101
-
-
84881530677
-
Pharmacological brake-release of mRNA translation enhances cognitive memory
-
Sidrauski C, Acosta-Alvear D, Khoutorsky A, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife. 2013;2:e00498.
-
(2013)
Elife
, vol.2
, pp. e00498
-
-
Sidrauski, C.1
Acosta-Alvear, D.2
Khoutorsky, A.3
-
102
-
-
84930636316
-
Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound
-
Sekine Y, Zyryanova A, Crespillo-Casado A, et al. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science. 2015;348(6238):1027–1030.
-
(2015)
Science
, vol.348
, Issue.6238
, pp. 1027-1030
-
-
Sekine, Y.1
Zyryanova, A.2
Crespillo-Casado, A.3
-
103
-
-
84928141313
-
Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response
-
Sidrauski C, Tsai JC, Kampmann M, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. Elife. 2015;4:e07314.
-
(2015)
Elife
, vol.4
, pp. e07314
-
-
Sidrauski, C.1
Tsai, J.C.2
Kampmann, M.3
-
104
-
-
84929024009
-
Sleep, plasticity and the pathophysiology of neurodevelopmental disorders: the potential roles of protein synthesis and other cellular processes
-
Picchioni D, Reith RM, Nadel JL, et al. Sleep, plasticity and the pathophysiology of neurodevelopmental disorders:the potential roles of protein synthesis and other cellular processes. Brain Sci. 2014;4(1):150–201.• This article reviews the critical need to maintain protein synthesis for sleep as well as neurological and cognitive function.
-
(2014)
Brain Sci
, vol.4
, Issue.1
, pp. 150-201
-
-
Picchioni, D.1
Reith, R.M.2
Nadel, J.L.3
-
105
-
-
78049485910
-
Diabetes as a disease of endoplasmic reticulum stress
-
Thomas SE, Dalton LE, Daly ML, et al. Diabetes as a disease of endoplasmic reticulum stress. Diabetes Metab Res Rev. 2010;26(8):611–621.
-
(2010)
Diabetes Metab Res Rev
, vol.26
, Issue.8
, pp. 611-621
-
-
Thomas, S.E.1
Dalton, L.E.2
Daly, M.L.3
-
106
-
-
84911455613
-
The unfolded protein response and diabetic retinopathy
-
Ma JH, Wang JJ, Zhang SX. The unfolded protein response and diabetic retinopathy. J Diabetes Res. 2014;2014:160140.
-
(2014)
J Diabetes Res
, vol.2014
, pp. 160140
-
-
Ma, J.H.1
Wang, J.J.2
Zhang, S.X.3
-
107
-
-
84875242776
-
Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains
-
Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A. 2013;110(12):4628–4633.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.12
, pp. 4628-4633
-
-
Volmer, R.1
van der Ploeg, K.2
Ron, D.3
-
108
-
-
84969794080
-
A reevaluation of the role of the unfolded protein response in islet dysfunction: maladaptation or a failure to adapt?
-
Herbert TP, Laybutt DR. A reevaluation of the role of the unfolded protein response in islet dysfunction:maladaptation or a failure to adapt? Diabetes. 2016;65(6):1472–1480.•• This article presents the diverse effects of ER stress on islets with relevance to modulation of PERK.
-
(2016)
Diabetes
, vol.65
, Issue.6
, pp. 1472-1480
-
-
Herbert, T.P.1
Laybutt, D.R.2
-
109
-
-
84954535655
-
A missense mutation in PPP1R15B causes a syndrome including diabetes, short stature, and microcephaly
-
Abdulkarim B, Nicolino M, Igoillo-Esteve M, et al. A missense mutation in PPP1R15B causes a syndrome including diabetes, short stature, and microcephaly. Diabetes. 2015;64(11):3951–3962.
-
(2015)
Diabetes
, vol.64
, Issue.11
, pp. 3951-3962
-
-
Abdulkarim, B.1
Nicolino, M.2
Igoillo-Esteve, M.3
|