-
1
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007 CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712. (doi:10.1126/science.1138140)
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
2
-
-
34248400310
-
A guild of 45 CRISPR-associated (Cas protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
-
Haft DH, Selengut J, Mongodin EF, Nelson KE. 2005 A guild of 45 CRISPR-associated Cas protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60. (doi:10.1371/journal.pcbi.0010060)
-
(2005)
Plos Comput. Biol
, vol.1
-
-
Haft, D.H.1
Selengut, J.2
Mongodin, E.F.3
Nelson, K.E.4
-
3
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006 A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 1, 7. (doi:10.1186/1745-6150-1-7)
-
(2006)
Biol. Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
4
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005 Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174-182. (doi:10.1007/s00239-004-0046-3)
-
(2005)
J. Mol. Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
5
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS et al. 2015 An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722-736. (doi:10.1038/nrmicro3569)
-
(2015)
Nat. Rev. Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
6
-
-
79956157571
-
Evolution and classification of the CRISPR-Cas systems
-
Makarova KS et al. 2011 Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467-477. (doi:10.1038/nrmicro2577)
-
(2011)
Nat. Rev. Microbiol
, vol.9
, pp. 467-477
-
-
Makarova, K.S.1
-
7
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
-
Shmakov S et al. 2015 Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell. 60, 385-397. (doi:10.1016/j.molcel.2015.10.008)
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
-
8
-
-
84870718176
-
Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information
-
Fineran PC, Charpentier E. 2012 Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434, 202-209. (doi:10.1016/j.virol.2012.10.003)
-
(2012)
Virology
, vol.434
, pp. 202-209
-
-
Fineran, P.C.1
Charpentier, E.2
-
9
-
-
84942079449
-
The CRISPR-Cas immune system: Biology, mechanisms and applications
-
Rath D, Amlinger L, Rath A, Lundgren M. 2015 The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117, 119-128. (doi:10.1016/j.biochi.2015.03.025)
-
(2015)
Biochimie
, vol.117
, pp. 119-128
-
-
Rath, D.1
Amlinger, L.2
Rath, A.3
Lundgren, M.4
-
10
-
-
84902010986
-
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
-
Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. 2014 Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528-534. (doi:10.1038/nsmb.2820)
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 528-534
-
-
Nunez, J.K.1
Kranzusch, P.J.2
Noeske, J.3
Wright, A.V.4
Davies, C.W.5
Doudna, J.A.6
-
11
-
-
84924664059
-
Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
-
Nunez JK, Lee ASY, Engelman A, Doudna JA. 2015 Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193-198. (doi:10.1038/nature14237)
-
(2015)
Nature
, vol.519
, pp. 193-198
-
-
Nunez, J.K.1
Lee, A.2
Engelman, A.3
Doudna, J.A.4
-
12
-
-
84941907747
-
Ntrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
-
Rollie C, Schneider S, Brinkmann AS, Bolt EL, White MF. 2015 Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 4, e08716. (doi:10.7554/eLife.08716)
-
(2015)
eLife
, vol.4
, pp. 08716
-
-
Rollie, C.1
Schneider, S.2
Brinkmann, A.S.3
Bolt, E.L.4
White, M.F.5
-
13
-
-
84904019733
-
Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system
-
Arslan Z, Hermanns V, Wurm R, Wagner R, Pul U. 2014 Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res. 42, 7884-7893. (doi:10.1093/nar/gku510)
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 7884-7893
-
-
Arslan, Z.1
Hermanns, V.2
Wurm, R.3
Wagner, R.4
Pul, U.5
-
14
-
-
78651083184
-
A dual function of the CRISPRCas system in bacterial antivirus immunity and DNA repair
-
Babu M et al. 2011 A dual function of the CRISPRCas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 79, 484-502. (doi:10.1111/j.1365-2958.2010.07465.x)
-
(2011)
Mol. Microbiol
, vol.79
, pp. 484-502
-
-
Babu, M.1
-
15
-
-
66349134987
-
Structural basis for DNase activity of a conserved protein implicated in CRISPRmediated genome defense
-
Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA. 2009 Structural basis for DNase activity of a conserved protein implicated in CRISPRmediated genome defense. Structure 17, 904-912. (doi:10.1016/j.str.2009.03.019)
-
(2009)
Structure
, vol.17
, pp. 904-912
-
-
Wiedenheft, B.1
Zhou, K.2
Jinek, M.3
Coyle, S.M.4
Ma, W.5
Doudna, J.A.6
-
16
-
-
49649120271
-
A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats
-
Beloglazova N et al. 2008 A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20 361-20 371. (doi:10.1074/jbc.M803225200)
-
(2008)
J. Biol. Chem. 283
, vol.361
, Issue.371
, pp. 20
-
-
Beloglazova, N.1
-
17
-
-
84861639567
-
Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
-
Yosef I, Goren MG, Qimron U. 2012 Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569-5576. (doi:10.1093/nar/gks216)
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
Goren, M.G.2
Qimron, U.3
-
18
-
-
84922978235
-
Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus
-
Wei Y, Chesne MT, Terns RM, Terns MP. 2015 Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res. 43, 1749-1758. (doi:10.1093/nar/gku1407)
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1749-1758
-
-
Wei, Y.1
Chesne, M.T.2
Terns, R.M.3
Terns, M.P.4
-
19
-
-
84895823059
-
Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
-
Li M, Wang R, Zhao D, Xiang H. 2014 Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 42, 2483-2492. (doi:10.1093/nar/gkt1154)
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2483-2492
-
-
Li, M.1
Wang, R.2
Zhao, D.3
Xiang, H.4
-
20
-
-
84964556762
-
Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery
-
Vorontsova D et al. 2015 Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res. 43, 10848-10860. (doi:10.1093/nar/gkv1261)
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 10848-10860
-
-
Vorontsova, D.1
-
21
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR-Cas adaptation
-
Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA. 2015 Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199-202. (doi:10.1038/nature14245)
-
(2015)
Nature
, vol.519
, pp. 199-202
-
-
Heler, R.1
Samai, P.2
Modell, J.W.3
Weiner, C.4
Goldberg, G.W.5
Bikard, D.6
Marraffini, L.A.7
-
22
-
-
84922998282
-
Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation
-
Wei Y, Terns RM, Terns MP. 2015 Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev. 29, 356-361. (doi:10.1101/gad.257550.114)
-
(2015)
Genes Dev
, vol.29
, pp. 356-361
-
-
Wei, Y.1
Terns, R.M.2
Terns, M.P.3
-
23
-
-
84959419241
-
Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
-
Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, Lambowitz AM, Fire AZ. 2016 Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, paad4234. (doi:10.1126/science.aad4234)
-
(2016)
Science
, vol.351
, pp. 4234
-
-
Silas, S.1
Mohr, G.2
Sidote, D.J.3
Markham, L.M.4
Sanchez-Amat, A.5
Bhaya, D.6
Lambowitz, A.M.7
Fire, A.Z.8
-
24
-
-
84860433123
-
CRISPR interference directs strand specific spacer acquisition
-
Swarts DC, Mosterd C, van Passel MW, Brouns SJ. 2012 CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888. (doi:10.1371/journal.pone.0035888)
-
(2012)
Plos ONE
, vol.7
-
-
Swarts, D.C.1
Mosterd, C.2
Van Passel, M.W.3
Brouns, S.J.4
-
25
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. 2012 Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945. (doi:10.1038/ncomms1937)
-
(2012)
Nat. Commun
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
26
-
-
38949123143
-
Phage response to CRISPRencoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. 2008 Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390-1400. (doi:10.1128/JB.01412-07)
-
(2008)
J. Bacteriol
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
27
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009 Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740. (doi:10.1099/mic.0.023960-0)
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Almendros, C.4
-
28
-
-
84964862130
-
The CRISPR-associated DNAcleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. 2016 The CRISPR-associated DNAcleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521. (doi:10.1038/nature17945)
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovič, M.3
Le Rhun, A.4
Charpentier, E.5
-
29
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system
-
Zetsche B et al. 2015 Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163, 759-771. (doi:10.1016/j.cell.2015.09.038)
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
30
-
-
84905594146
-
Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer
-
Richter C, Dy RL, McKenzie RE, Watson BNJ, Taylor C, Chang JT, McNeil MB, Staals RHJ, Fineran PC. 2014 Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 42, 8516-8526. (doi:10.1093/nar/gku527)
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 8516-8526
-
-
Richter, C.1
Dy, R.L.2
McKenzie, R.E.3
Watson, B.4
Taylor, C.5
Chang, J.T.6
McNeil, M.B.7
Staals, R.8
Fineran, P.C.9
-
31
-
-
84899087750
-
Degenerate target sites mediate rapid primed CRISPR adaptation
-
Fineran PC, Gerritzen MJH, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum SAFT, Staals RHJ, Brouns SJJ. 2014 Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl Acad. Sci. USA 111, E1629-E1638. (doi:10.1073/pnas.1400071111)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E1629-E1638
-
-
Fineran, P.C.1
Gerritzen, M.2
Suarez-Diez, M.3
Kunne, T.4
Boekhorst, J.5
Van Hijum, S.6
Staals, R.7
Brouns, S.J.J.8
-
32
-
-
84946562795
-
Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system
-
Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC. 2015 Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163, 854-865. (doi:10.1016/j.cell.2015.10.003)
-
(2015)
Cell
, vol.163
, pp. 854-865
-
-
Redding, S.1
Sternberg, S.H.2
Marshall, M.3
Gibb, B.4
Bhat, P.5
Guegler, C.K.6
Wiedenheft, B.7
Doudna, J.A.8
Greene, E.C.9
-
33
-
-
58049191229
-
Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
-
Carte J, Wang R, Li H, Terns RM, Terns MP. 2008 Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489-3496. (doi:10.1101/gad.1742908)
-
(2008)
Genes Dev
, vol.22
, pp. 3489-3496
-
-
Carte, J.1
Wang, R.2
Li, H.3
Terns, R.M.4
Terns, M.P.5
-
34
-
-
77956498326
-
Sequence-and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010 Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355-1358. (doi:10.1126/science.1192272)
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
35
-
-
84867678349
-
Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases
-
Garside EL, Schellenberg MJ, Gesner EM, Bonanno JB, Sauder JM, Burley SK, Almo SC, Mehta G, MacMillan AM. 2012 Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. RNA 18, 2020-2028. (doi:10.1261/rna.033100.112)
-
(2012)
RNA
, vol.18
, pp. 2020-2028
-
-
Garside, E.L.1
Schellenberg, M.J.2
Gesner, E.M.3
Bonanno, J.B.4
Sauder, J.M.5
Burley, S.K.6
Almo, S.C.7
Mehta, G.8
Macmillan, A.M.9
-
36
-
-
84865704094
-
Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system
-
Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A. 2012 Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20, 1574-1584. (doi:10.1016/j.str.2012.06.016)
-
(2012)
Structure
, vol.20
, pp. 1574-1584
-
-
Nam, K.H.1
Haitjema, C.2
Liu, X.3
Ding, F.4
Wang, H.5
Delisa, M.P.6
Ke, A.7
-
37
-
-
84868111481
-
Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis
-
Richter H, Zoephel J, Schermuly J, Maticzka D, Backofen R, Randau L. 2012 Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res. 40, 9887-9896. (doi:10.1093/nar/gks737)
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9887-9896
-
-
Richter, H.1
Zoephel, J.2
Schermuly, J.3
Maticzka, D.4
Backofen, R.5
Randau, L.6
-
38
-
-
79958825675
-
An RNAinduced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3
-
Sashital DG, Jinek M, Doudna JA. 2011 An RNAinduced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 18, 680-687. (doi:10.1038/nsmb.2043)
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 680-687
-
-
Sashital, D.G.1
Jinek, M.2
Doudna, J.A.3
-
39
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. 2009 RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956. (doi:10.1016/j.cell.2009.07.040)
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
Wells, L.6
Terns, R.M.7
Terns, M.P.8
-
40
-
-
84855475577
-
Mature clustered, regularly interspaced, short palindromic repeats RNA (CrRNA length is measured by a ruler mechanism anchored at the precursor processing site
-
Hatoum-Aslan A, Maniv I, Marraffini LA. 2011 Mature clustered, regularly interspaced, short palindromic repeats RNA crRNA length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl Acad. Sci. USA 108, 21218-21222. (doi:10.1073/pnas.1112832108)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 21218-21222
-
-
Hatoum-Aslan, A.1
Maniv, I.2
Marraffini, L.A.3
-
41
-
-
84942746261
-
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
-
Charpentier E, Richter H, van der Oost J, White MF. 2015 Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39, 428-441. (doi:10.1093/femsre/fuv023)
-
(2015)
FEMS Microbiol. Rev
, vol.39
, pp. 428-441
-
-
Charpentier, E.1
Richter, H.2
Van Der Oost, J.3
White, M.F.4
-
42
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011 CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607. (doi:10.1038/nature09886)
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
43
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ. 2013 Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488-503. (doi:10.1016/j.molcel.2013.05.001)
-
(2013)
Mol. Cell
, vol.50
, pp. 488-503
-
-
Zhang, Y.1
Heidrich, N.2
Ampattu, B.J.3
Gunderson, C.W.4
Seifert, H.S.5
Schoen, C.6
Vogel, J.7
Sontheimer, E.J.8
-
44
-
-
80755187812
-
CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation
-
Bhaya D, Davison M, Barrangou R. 2011 CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273-297. (doi:10.1146/annurevgenet-110410-132430)
-
(2011)
Annu. Rev. Genet
, vol.45
, pp. 273-297
-
-
Bhaya, D.1
Davison, M.2
Barrangou, R.3
-
45
-
-
84865070369
-
A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012 A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. (doi:10.1126/science.1225829)
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
46
-
-
77249170201
-
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat
-
Marraffini LA, Sontheimer EJ. 2010 CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181-190. (doi:10.1038/nrg2749)
-
(2010)
Rev. Genet
, vol.11
, pp. 181-190
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
47
-
-
79551694059
-
Interaction of the Cas6 riboendonuclease with CRISPR RNAs: Recognition and cleavage
-
Wang R, Preamplume G, Terns MP, Terns RM, Li H. 2011 Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19, 257-264. (doi:10.1016/j.str.2010.11.014)
-
(2011)
Structure
, vol.19
, pp. 257-264
-
-
Wang, R.1
Preamplume, G.2
Terns, M.P.3
Terns, R.M.4
Li, H.5
-
48
-
-
84868125172
-
Cascade-mediated binding and bending of negatively supercoiled DNA
-
Westra ER, Nilges B, van Erp PB, van der Oost J, Dame RT, Brouns SJ. 2012 Cascade-mediated binding and bending of negatively supercoiled DNA. RNA Biol. 9, 1134-1138. (doi:10.4161/rna.21410)
-
(2012)
RNA Biol
, vol.9
, pp. 1134-1138
-
-
Westra, E.R.1
Nilges, B.2
Van Erp, P.B.3
Van Der Oost, J.4
Dame, R.T.5
Brouns, S.J.6
-
49
-
-
84856778250
-
Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
-
Zhang J et al. 2012 Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell. 45, 303-313. (doi:10.1016/j.molcel.2011.12.013)
-
(2012)
Mol. Cell
, vol.45
, pp. 303-313
-
-
Zhang, J.1
-
50
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013 RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233-239. (doi:10.1038/nbt.2508)
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
51
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR RNA is governed by a seed sequence
-
Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJJ, Severinov K. 2011 Interference by clustered regularly interspaced short palindromic repeat CRISPR RNA is governed by a seed sequence. Proc. Natl Acad. Sci. USA 108, 10098-10103. (doi:10.1073/pnas.1104144108)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
Wanner, B.6
Van Der Oost, J.7
Brouns, S.8
Severinov, K.9
-
52
-
-
84884687531
-
Type I-E CRISPR-Cas systems discriminate target from nontarget DNA through base pairing-independent PAM recognition
-
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, Brouns SJ. 2013 Type I-E CRISPR-Cas systems discriminate target from nontarget DNA through base pairing-independent PAM recognition. PLoS Genet. 9, e1003742. (doi:10.1371/journal.pgen.1003742)
-
(2013)
Plos Genet
, vol.9
-
-
Westra, E.R.1
Semenova, E.2
Datsenko, K.A.3
Jackson, R.N.4
Wiedenheft, B.5
Severinov, K.6
Brouns, S.J.7
-
53
-
-
75749118174
-
Self versus nonself discrimination during CRISPR RNA-directed immunity
-
Marraffini LA, Sontheimer EJ. 2010 Self versus nonself discrimination during CRISPR RNA-directed immunity. Nature 463, 568-571. (doi:10.1038/nature08703)
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
54
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ et al. 2008 Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964. (doi:10.1126/science.1159689)
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
-
55
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra ER et al. 2012 CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell. 46, 595-605. (doi:10.1016/j.molcel.2012.03.018)
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
-
56
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini LA, Sontheimer EJ. 2008 CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845. (doi:10.1126/science.1165771)
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
57
-
-
84874195392
-
A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
-
Deng L, Garrett RA, Shah SA, Peng X, She Q. 2013 A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87, 1088-1099. (doi:10.1111/mmi.12152)
-
(2013)
Mol. Microbiol
, vol.87
, pp. 1088-1099
-
-
Deng, L.1
Garrett, R.A.2
Shah, S.A.3
Peng, X.4
She, Q.5
-
58
-
-
84908456823
-
Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
-
Goldberg GW, Jiang W, Bikard D, Marraffini LA. 2014 Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514, 633-637. (doi:10.1038/nature13637)
-
(2014)
Nature
, vol.514
, pp. 633-637
-
-
Goldberg, G.W.1
Jiang, W.2
Bikard, D.3
Marraffini, L.A.4
-
59
-
-
84930085853
-
Cotranscriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
-
Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. 2015 Cotranscriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164-1174. (doi:10.1016/j.cell.2015.04.027)
-
(2015)
Cell
, vol.161
, pp. 1164-1174
-
-
Samai, P.1
Pyenson, N.2
Jiang, W.3
Goldberg, G.W.4
Hatoum-Aslan, A.5
Marraffini, L.A.6
-
60
-
-
84912066885
-
RNA targeting by the type IIIA CRISPR-Cas Csm complex of Thermus thermophilus. Mol
-
Staals RHJ et al. 2014 RNA targeting by the type IIIA CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell 56, 518-530. (doi:10.1016/j.molcel.2014.10.005)
-
(2014)
Cell
, vol.56
, pp. 518-530
-
-
Staals, R.1
-
61
-
-
84912096635
-
Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol
-
Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas Cˇ, Nwokeoji AO, Dickman MJ, Horvath P, Siksnys V. 2014 Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol. Cell. 56, 506-517. (doi:10.1016/j.molcel.2014.09.027)
-
(2014)
Cell
, vol.56
, pp. 506-517
-
-
Tamulaitis, G.1
Kazlauskiene, M.2
Manakova, E.3
Venclovas, C.ˇ.4
Nwokeoji, A.O.5
Dickman, M.J.6
Horvath, P.7
Siksnys, V.8
-
62
-
-
84899048370
-
CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus
-
Zebec Z, Manica A, Zhang J, White MF, Schleper C. 2014 CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res. 42, 5280-5288. (doi:10.1093/nar/gku161)
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 5280-5288
-
-
Zebec, Z.1
Manica, A.2
Zhang, J.3
White, M.F.4
Schleper, C.5
-
63
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE et al. 2010 The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71. (doi:10.1038/nature09523)
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
-
64
-
-
0016238020
-
Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus
-
Nordströ m K, Forsgren A. 1974 Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus. J. Virol. 14, 198-202.
-
(1974)
J. Virol
, vol.14
, pp. 198-202
-
-
Nordströ M, K.1
Forsgren, A.2
-
65
-
-
0037085991
-
Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage
-
Liu M et al. 2002 Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091-2094. (doi:10.1126/science.1067467)
-
(2002)
Science
, vol.295
, pp. 2091-2094
-
-
Liu, M.1
-
66
-
-
27144475363
-
The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection
-
Zaleski P, Wojciechowski M, Piekarowicz A. 2005 The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. Microbiology 151, 3361-3369. (doi:10.1099/mic.0.28184-0)
-
(2005)
Microbiology
, vol.151
, pp. 3361-3369
-
-
Zaleski, P.1
Wojciechowski, M.2
Piekarowicz, A.3
-
67
-
-
0028293888
-
Superinfection exclusion by T-even-type coliphages
-
Lu M-J, Henning U. 1994 Superinfection exclusion by T-even-type coliphages. Trends Microbiol. 2, 137-139. (doi:10.1016/0966-842X9490601-7)
-
(1994)
Trends Microbiol
, vol.2
, pp. 137-139
-
-
Lu, M.-J.1
Henning, U.2
-
68
-
-
33744910623
-
The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis
-
Sun X, Gö hler A, Heller KJ, Neve H. 2006 The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology 350, 146-157. (doi:10.1016/j.virol.2006.03.001)
-
(2006)
Virology
, vol.350
, pp. 146-157
-
-
Sun, X.1
Gö Hler, A.2
Heller, K.J.3
Neve, H.4
-
69
-
-
17044403057
-
Type II restriction endonucleases: Structure and mechanism
-
Pingoud A, Fuxreiter M, Pingoud V, Wende W. 2005 Type II restriction endonucleases: structure and mechanism. Cell Mol. Life Sci. 62, 685-707. (doi:10.1007/s00018-004-4513-1)
-
(2005)
Cell Mol. Life Sci
, vol.62
, pp. 685-707
-
-
Pingoud, A.1
Fuxreiter, M.2
Pingoud, V.3
Wende, W.4
-
71
-
-
0026566361
-
The Rex system of bacteriophage lambda: Tolerance and altruistic cell death
-
Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L. 1992 The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev. 6, 497-510. (doi:10.1101/gad.6.3.497)
-
(1992)
Genes Dev
, vol.6
, pp. 497-510
-
-
Parma, D.H.1
Snyder, M.2
Sobolevski, S.3
Nawroz, M.4
Brody, E.5
Gold, L.6
-
72
-
-
0034725704
-
The major head protein of bacteriophage T4 binds specifically to elongation factor Tu
-
Bingham R, Ekunwe SI, Falk S, Snyder L, Kleanthous C. 2000 The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. J. Biol. Chem. 275, 23219-23226. (doi:10.1074/jbc.M002546200)
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23219-23226
-
-
Bingham, R.1
Ekunwe, S.I.2
Falk, S.3
Snyder, L.4
Kleanthous, C.5
-
73
-
-
0030008368
-
An Escherichia coli chromosomal ‘addiction module’ regulated by guanosine [corrected] 30,50-bispyrophosphate: A model for programmed bacterial cell death
-
Aizenman E, Engelberg-Kulka H, Glaser G. 1996 An Escherichia coli chromosomal ‘addiction module’ regulated by guanosine [corrected] 30,50-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl Acad. Sci. USA 93, 6059-6063. (doi:10.1073/pnas.93.12.6059)
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 6059-6063
-
-
Aizenman, E.1
Engelberg-Kulka, H.2
Glaser, G.3
-
74
-
-
58849150431
-
The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair
-
Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC. 2009 The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894-899. (doi:10.1073/pnas.0808832106)
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 894-899
-
-
Fineran, P.C.1
Blower, T.R.2
Foulds, I.J.3
Humphreys, D.P.4
Lilley, K.S.5
Salmond, G.P.C.6
-
75
-
-
84921283583
-
BREX is a novel phage resistance system widespread in microbial genomes
-
Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R. 2015 BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169-183. (doi:10.15252/embj.201489455)
-
(2015)
EMBO J
, vol.34
, pp. 169-183
-
-
Goldfarb, T.1
Sberro, H.2
Weinstock, E.3
Cohen, O.4
Doron, S.5
Charpak-Amikam, Y.6
Afik, S.7
Ofir, G.8
Sorek, R.9
-
76
-
-
84896316351
-
DNA-guided DNA interference by a prokaryotic Argonaute
-
Swarts DC et al. 2014 DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258-261. (doi:10.1038/nature12971)
-
(2014)
Nature
, vol.507
, pp. 258-261
-
-
Swarts, D.C.1
-
77
-
-
84963516380
-
A bacterial Argonaute with noncanonical guide RNA specificity
-
Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. 2016 A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl Acad. Sci. USA 113, 4057-4062. (doi:10.1073/pnas.1524385113)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 4057-4062
-
-
Kaya, E.1
Doxzen, K.W.2
Knoll, K.R.3
Wilson, R.C.4
Strutt, S.C.5
Kranzusch, P.J.6
Doudna, J.A.7
-
78
-
-
84883752794
-
Bacterial Argonaute samples the transcriptome to identify foreign DNA
-
Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. 2013 Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51, 594-605. (doi:10.1016/j.molcel.2013.08.014)
-
(2013)
Mol. Cell
, vol.51
, pp. 594-605
-
-
Olovnikov, I.1
Chan, K.2
Sachidanandam, R.3
Newman, D.K.4
Aravin, A.A.5
-
79
-
-
84964433283
-
The diversity-generating benefits of a prokaryotic adaptive immune system
-
van Houte S et al. 2016 The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385-388. (doi:10.1038/nature17436)
-
(2016)
Nature
, vol.532
, pp. 385-388
-
-
Van Houte, S.1
-
80
-
-
84872607723
-
Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
-
Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 2013 Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429-432. (doi:10.1038/nature11723)
-
(2013)
Nature
, vol.493
, pp. 429-432
-
-
Bondy-Denomy, J.1
Pawluk, A.2
Maxwell, K.L.3
Davidson, A.R.4
-
81
-
-
84899866053
-
A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa
-
Pawluk A, Bondy-Denomy J, Cheung VHW, Maxwell KL, Davidson AR. 2014 A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5, e00896-14. (doi:10.1128/mBio.00896-14)
-
(2014)
Mbio
, vol.5
, pp. e00896-e00914
-
-
Pawluk, A.1
Bondy-Denomy, J.2
Cheung, V.3
Maxwell, K.L.4
Davidson, A.R.5
-
82
-
-
84943188033
-
Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins
-
Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. 2015 Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526, 136-139. (doi:10.1038/nature15254)
-
(2015)
Nature
, vol.526
, pp. 136-139
-
-
Bondy-Denomy, J.1
Garcia, B.2
Strum, S.3
Du, M.4
Rollins, M.F.5
Hidalgo-Reyes, Y.6
Wiedenheft, B.7
Maxwell, K.L.8
Davidson, A.R.9
-
83
-
-
84874388110
-
A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity
-
Seed KD, Lazinski DW, Calderwood SB, Camilli A. 2013 A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489-491. (doi:10.1038/nature11927)
-
(2013)
Nature
, vol.494
, pp. 489-491
-
-
Seed, K.D.1
Lazinski, D.W.2
Calderwood, S.B.3
Camilli, A.4
-
84
-
-
84862527578
-
How RecBCD enzyme and Chi promote DNA break repair and recombination: A molecular biologist’s view
-
Smith GR. 2012 How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist’s view. Microbiol. Mol. Biol. Rev. 76, 217-228. (doi:10.1128/MMBR.05026-11)
-
(2012)
Microbiol. Mol. Biol. Rev
, vol.76
, pp. 217-228
-
-
Smith, G.R.1
-
85
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R. 2015 CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505-510. (doi:10.1038/nature14302)
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
Goren, M.G.2
Yosef, I.3
Auster, O.4
Manor, M.5
Amitai, G.6
Edgar, R.7
Qimron, U.8
Sorek, R.9
-
86
-
-
84961952607
-
Different genome stability proteins underpin primed and naı¨ve adaptation in E. Coli CRISPR-Cas immunity
-
Ivančić-Baće I, Cass SD, Wearne SJ, Bolt EL. 2015 Different genome stability proteins underpin primed and naı¨ve adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res. 43, 10821-10830. (doi:10.1093/nar/gkv1213)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10821-10830
-
-
Ivančić-Baće, I.1
Cass, S.D.2
Wearne, S.J.3
Bolt, E.L.4
-
87
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. 2013 A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254-257. (doi:10.1038/nature12048)
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.-L.4
Weiss, D.S.5
-
88
-
-
84872618158
-
A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome
-
Louwen R et al. 2013 A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 32, 207-226. (doi:10.1007/s10096-012-1733-4)
-
(2013)
Eur. J. Clin. Microbiol. Infect. Dis
, vol.32
, pp. 207-226
-
-
Louwen, R.1
-
89
-
-
84880074536
-
The CRISPRassociated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae
-
Gunderson FF, Cianciotto NP. 2013 The CRISPRassociated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio 4, e00074-13. (doi:10.1128/mBio.00074-13)
-
(2013)
Mbio
, vol.4
, pp. e00074-e00113
-
-
Gunderson, F.F.1
Cianciotto, N.P.2
-
90
-
-
33847371621
-
Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets
-
Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. 2007 Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 35, 962-974. (doi:10.1093/nar/gkl1096)
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 962-974
-
-
Mandin, P.1
Repoila, F.2
Vergassola, M.3
Geissmann, T.4
Cossart, P.5
-
91
-
-
0023424436
-
Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions
-
Kroos L, Kaiser D. 1987 Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Amp. Dev. 1, 840-854. (doi:10.1101/gad.1.8.840)
-
(1987)
Genes Amp. Dev
, vol.1
, pp. 840-854
-
-
Kroos, L.1
Kaiser, D.2
-
92
-
-
0027374702
-
DevRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus
-
Thö ny-Meyer L, Kaiser D. 1993 devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175, 7450-7462.
-
(1993)
J. Bacteriol
, vol.175
, pp. 7450-7462
-
-
Thö Ny-Meyer, L.1
Kaiser, D.2
-
93
-
-
34248331654
-
Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats
-
Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L. 2007 Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J. Bacteriol. 189, 3738-3750. (doi:10.1128/JB.00187-07)
-
(2007)
J. Bacteriol
, vol.189
, pp. 3738-3750
-
-
Viswanathan, P.1
Murphy, K.2
Julien, B.3
Garza, A.G.4
Kroos, L.5
-
94
-
-
84909991725
-
A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production
-
Wallace RA, Black WP, Yang X, Yang Z. 2014 A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production. J. Bacteriol. 196, 4036-4043. (doi:10.1128/JB.02035-14)
-
(2014)
J. Bacteriol
, vol.196
, pp. 4036-4043
-
-
Wallace, R.A.1
Black, W.P.2
Yang, X.3
Yang, Z.4
-
95
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
Vercoe RB et al. 2013 Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454. (doi:10.1371/journal.pgen.1003454)
-
(2013)
Plos Genet
, vol.9
-
-
Vercoe, R.B.1
-
96
-
-
33645313846
-
Chromosome evolution in the Thermotogales: Large-scale inversions and strain diversification of CRISPR sequences
-
De Boy RT, Mongodin EF, Emerson JB, Nelson KE. 2006 Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J. Bacteriol. 188, 2364-2374. (doi:10.1128/JB.188.7.2364-2374.2006)
-
(2006)
J. Bacteriol
, vol.188
, pp. 2364-2374
-
-
De Boy, R.T.1
Mongodin, E.F.2
Emerson, J.B.3
Nelson, K.E.4
-
97
-
-
77955085897
-
Self-targeting by CRISPR: Gene regulation or autoimmunity?
-
Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. 2010 Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335-340. (doi:10.1016/j.tig.2010.05.008)
-
(2010)
Trends Genet
, vol.26
, pp. 335-340
-
-
Stern, A.1
Keren, L.2
Wurtzel, O.3
Amitai, G.4
Sorek, R.5
-
98
-
-
0027724480
-
Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol
-
Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD. 1993 Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10, 1057-1065. (doi:10.1111/j.1365-2958.1993.tb00976.x)
-
(1993)
Microbiol
, vol.10
, pp. 1057-1065
-
-
Groenen, P.M.1
Bunschoten, A.E.2
Van Soolingen, D.3
Van Embden, J.D.4
-
99
-
-
0030911908
-
Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology
-
Kamerbeek J et al. 1997 Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35, 907-914.
-
(1997)
J. Clin. Microbiol
, vol.35
, pp. 907-914
-
-
Kamerbeek, J.1
-
100
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. 2005 CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663. (doi:10.1099/mic.0.27437-0)
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
101
-
-
50349083723
-
Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats
-
Cui Y et al. 2008 Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE 3, e2652. (doi:10.1371/journal.pone.0002652)
-
(2008)
Plos ONE
, vol.3
-
-
Cui, Y.1
-
102
-
-
79960084127
-
Subtyping Salmonella enterica serovar Enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs
-
Liu F, Kariyawasam S, Jayarao BM, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG. 2011 Subtyping Salmonella enterica serovar Enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats CRISPRs. Appl. Environ. Microbiol. 77, 4520-4526. (doi:10.1128/AEM.00468-11)
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 4520-4526
-
-
Liu, F.1
Kariyawasam, S.2
Jayarao, B.M.3
Barrangou, R.4
Gerner-Smidt, P.5
Ribot, E.M.6
Knabel, S.J.7
Dudley, E.G.8
-
103
-
-
79953205601
-
Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica
-
Liu F, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG. 2011 Novel virulence gene and clustered regularly interspaced short palindromic repeat CRISPR multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl. Environ. Microbiol. 77, 1946-1956. (doi:10.1128/AEM.02625-10)
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 1946-1956
-
-
Liu, F.1
Barrangou, R.2
Gerner-Smidt, P.3
Ribot, E.M.4
Knabel, S.J.5
Dudley, E.G.6
-
104
-
-
67349134525
-
Novel macroarray-based method of Corynebacterium diphtheriae genotyping: Evaluation in a field study in Belarus
-
Mokrousov I, Vyazovaya A, Kolodkina V, Limeschenko E, Titov L, Narvskaya O. 2009 Novel macroarray-based method of Corynebacterium diphtheriae genotyping: evaluation in a field study in Belarus. Eur. J. Clin. Microbiol. Infect. Dis. 28, 701-703. (doi:10.1007/s10096-008-0674-4)
-
(2009)
Eur. J. Clin. Microbiol. Infect. Dis
, vol.28
, pp. 701-703
-
-
Mokrousov, I.1
Vyazovaya, A.2
Kolodkina, V.3
Limeschenko, E.4
Titov, L.5
Narvskaya, O.6
-
105
-
-
34547405296
-
Corynebacterium diphtheriae spoligotyping based on combined use of two
-
Mokrousov I, Limeschenko E, Vyazovaya A, Narvskaya O. 2007 Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol. J. 2, 901-906. (doi:10.1002/biot.200700035)
-
(2007)
CRISPR Loci. Biotechnol. J
, vol.2
, pp. 901-906
-
-
Mokrousov, I.1
Limeschenko, E.2
Vyazovaya, A.3
Narvskaya, O.4
-
106
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. 2014 Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146-1150. (doi:10.1038/nbt.3043)
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
Euler, C.W.2
Jiang, W.3
Nussenzweig, P.M.4
Goldberg, G.W.5
Duportet, X.6
Fischetti, V.A.7
Marraffini, L.A.8
-
107
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNAguided nucleases. Nat
-
Citorik RJ, Mimee M, Lu TK. 2014 Sequence-specific antimicrobials using efficiently delivered RNAguided nucleases. Nat. Biotechnol. 32, 1141-1145. (doi:10.1038/nbt.3011)
-
(2014)
Biotechnol
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
108
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
-
Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. 2014 Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5, e00928-13. (doi:10.1128/mBio.00928-13)
-
(2014)
Mbio
, vol.5
, pp. e00928-e009143
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, C.L.6
-
109
-
-
84931291929
-
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria
-
Yosef I, Manor M, Kiro R, Qimron U. 2015 Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267-7272. (doi:10.1073/pnas.1500107112)
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 7267-7272
-
-
Yosef, I.1
Manor, M.2
Kiro, R.3
Qimron, U.4
-
110
-
-
84973473524
-
Advances in therapeutic CRISPR/Cas9 genome editing
-
Savić N, Schwank G. 2016 Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168, 15-21. (doi:10.1016/j.trsl.2015.09.008)
-
(2016)
Transl. Res
, vol.168
, pp. 15-21
-
-
Savić, N.1
Schwank, G.2
-
111
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 2010 Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646. (doi:10.1038/nrg2842)
-
(2010)
Nat. Rev. Genet
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
Zhang, H.S.4
Gregory, P.D.5
-
112
-
-
84871519181
-
TALENs: A widely applicable technology for targeted genome editing
-
Joung JK, Sander JD. 2012 TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49-55. (doi:10.1038/nrm3486)
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 49-55
-
-
Joung, J.K.1
Sander, J.D.2
-
113
-
-
0842287698
-
DNA double-strand break repair by homologous recombination
-
Dudás A, Chovanec M
-
Dudás A, Chovanec M. 2004 DNA double-strand break repair by homologous recombination. Mutat. Res. 566, 131-167. (doi:10.1016/j.mrrev.2003.07.001)
-
(2004)
Mutat. Res
, vol.566
, pp. 131-167
-
-
-
114
-
-
0036336673
-
DNA double-strand break repair by homologous recombination
-
van den Bosch M, Lohman PHM, Pastink A. 2002 DNA double-strand break repair by homologous recombination. Biol. Chem. 383, 873-892.
-
(2002)
Biol. Chem
, vol.383
, pp. 873-892
-
-
Van Den Bosch, M.1
Lohman, P.2
Pastink, A.3
-
115
-
-
0035954273
-
Non-homologous end joining as a mechanism of DNA repair
-
Barnes DE. 2001 Non-homologous end joining as a mechanism of DNA repair. Curr. Biol. 11, R455-R457. (doi:10.1016/S0960-98220100279-2)
-
(2001)
Curr. Biol
, vol.11
, pp. R455-R457
-
-
Barnes, D.E.1
-
116
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013 RNA-guided human genome engineering via Cas9. Science 339, 823-826. (doi:10.1126/science.1232033)
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
Dicarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
117
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L et al. 2013 Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. (doi:10.1126/science.1231143)
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
118
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013 Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183. (doi:10.1016/j.cell.2013.02.022)
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
119
-
-
84886993480
-
CRISPR interference (CRISPRi for sequence-specific control of gene expression
-
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013 CRISPR interference CRISPRi for sequence-specific control of gene expression. Nat. Protoc. 8, 2180-2196. (doi:10.1038/nprot.2013.132)
-
(2013)
Nat. Protoc
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
Gilbert, L.A.2
Wang, X.3
Lim, W.A.4
Weissman, J.S.5
Qi, L.S.6
-
120
-
-
84884907424
-
CRISPR RNA—guided activation of endogenous human genes
-
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 2013 CRISPR RNA—guided activation of endogenous human genes. Nat. Methods 10, 977-979. (doi:10.1038/nmeth.2598)
-
(2013)
Nat. Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
Linder, S.J.2
Cascio, V.M.3
Fu, Y.4
Ho, Q.H.5
Joung, J.K.6
-
121
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert LA et al. 2013 CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451. (doi:10.1016/j.cell.2013.06.044)
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
-
122
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013 Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429-7437. (doi:10.1093/nar/gkt520)
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
123
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. 2015 Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510-517. (doi:10.1038/nbt.3199)
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D’Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
Reddy, T.E.6
Gersbach, C.A.7
-
124
-
-
84949100864
-
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
-
Thakore PI et al. 2015 Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143-1149. (doi:10.1038/nmeth.3630)
-
(2015)
Nat. Methods
, vol.12
, pp. 1143-1149
-
-
Thakore, P.I.1
-
125
-
-
84977839343
-
Next generation prokaryotic engineering: The CRISPR-Cas toolkit
-
Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. 2016 Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 34, 575-587. (doi:10.1016/j.tibtech.2016.02.004)
-
(2016)
Trends Biotechnol
, vol.34
, pp. 575-587
-
-
Mougiakos, I.1
Bosma, E.F.2
De Vos, W.M.3
Van Kranenburg, R.4
Van Der Oost, J.5
-
126
-
-
84941084368
-
Efficient programmable gene silencing by Cascade
-
Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M. 2015 Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 43, 237-246. (doi:10.1093/nar/gku1257)
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 237-246
-
-
Rath, D.1
Amlinger, L.2
Hoekzema, M.3
Devulapally, P.R.4
Lundgren, M.5
-
127
-
-
84941084492
-
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
-
Luo ML, Mullis AS, Leenay RT, Beisel CL. 2015 Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674-681. (doi:10.1093/nar/gku971)
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
Mullis, A.S.2
Leenay, R.T.3
Beisel, C.L.4
-
128
-
-
84890033064
-
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
-
Schwank G et al. 2013 Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13, 653-658. (doi:10.1016/j.stem.2013.11.002)
-
(2013)
Cell Stem Cell
, vol.13
, pp. 653-658
-
-
Schwank, G.1
-
129
-
-
84902095353
-
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
-
Yin H et al. 2014 Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551-553. (doi:10.1038/nbt.2884)
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 551-553
-
-
Yin, H.1
-
130
-
-
84905643812
-
RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection
-
Hu W et al. 2014 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl Acad. Sci. USA 111, 11461-11466. (doi:10.1073/pnas.1405186111)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 11461-11466
-
-
Hu, W.1
-
131
-
-
84962726170
-
CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape
-
Wang Z et al. 2016 CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 15, 481-489. (doi:10.1016/j.celrep.2016.03.042)
-
(2016)
Cell Rep
, vol.15
, pp. 481-489
-
-
Wang, Z.1
-
132
-
-
0033012398
-
Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annu
-
Berger EA, Murphy PM, Farber JM. 1999 Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657-700. (doi:10.1146/annurev.immunol.17.1.657)
-
(1999)
Rev. Immunol
, vol.17
, pp. 657-700
-
-
Berger, E.A.1
Murphy, P.M.2
Farber, J.M.3
-
133
-
-
16044373004
-
Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene
-
Samson M et al. 1996 Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722-725. (doi:10.1038/382722a0)
-
(1996)
Nature
, vol.382
, pp. 722-725
-
-
Samson, M.1
-
134
-
-
84903729497
-
Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5D32 mutation confers resistance to HIV infection
-
Ye L et al. 2014 Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5D32 mutation confers resistance to HIV infection. Proc. Natl Acad. Sci. USA 111, 9591-9596. (doi:10.1073/pnas.1407473111)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 9591-9596
-
-
Ye, L.1
-
135
-
-
84925008880
-
Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
-
Chen S et al. 2015 Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246-1260. (doi:10.1016/j.cell.2015.02.038)
-
(2015)
Cell
, vol.160
, pp. 1246-1260
-
-
Chen, S.1
-
136
-
-
84898665052
-
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
-
Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. 2013 Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267-273. (doi:10.1038/nbt.2800)
-
(2013)
Nat. Biotechnol
, vol.32
, pp. 267-273
-
-
Koike-Yusa, H.1
Li, Y.2
Tan, E.-P.3
Velasco-Herrera, M.4
Yusa, K.5
-
137
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem O et al. 2014 Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87. (doi:10.1126/science.1247005)
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
-
138
-
-
84892749369
-
Genetic screens in human cells using the CRISPRCas9 system
-
Wang T, Wei JJ, Sabatini DM, Lander ES. 2014 Genetic screens in human cells using the CRISPRCas9 system. Science 343, 80-84. (doi:10.1126/science.1246981)
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
139
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987 Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.
-
(1987)
J. Bacteriol
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
140
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs have spacers of extrachromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005 Clustered regularly interspaced short palindrome repeats CRISPRs have spacers of extrachromosomal origin. Microbiology 151, 2551-2561. (doi:10.1099/mic.0.28048-0)
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
141
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 2011 The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275-9282. (doi:10.1093/nar/gkr606)
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
142
-
-
77949398275
-
Identification and characterization of E. Coli CRISPR-cas promoters and their silencing by H-NS
-
Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R. 2010 Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol. Microbiol. 75, 1495-1512. (doi:10.1111/j.1365-2958.2010.07073.x)
-
(2010)
Mol. Microbiol
, vol.75
, pp. 1495-1512
-
-
Pul, U.1
Wurm, R.2
Arslan, Z.3
Geissen, R.4
Hofmann, N.5
Wagner, R.6
-
143
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012 CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177-186. (doi:10.1016/j.chom.2012.06.003)
-
(2012)
Cell Host Microbe
, vol.12
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
144
-
-
79952168979
-
Multidrug-resistant enterococci lack CRISPR-cas
-
Palmer KL, Gilmore MS. 2010 Multidrug-resistant enterococci lack CRISPR-cas. mBio 1, e00227-10. (doi:10.1128/mBio.00227-10)
-
(2010)
Mbio
, vol.1
, pp. e00227-e00310
-
-
Palmer, K.L.1
Gilmore, M.S.2
-
145
-
-
84891113073
-
Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens
-
Hatoum-Aslan A, Marraffini LA. 2014 Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr. Opin. Microbiol. 17, 82-90. (doi:10.1016/j.mib.2013.12.001)
-
(2014)
Curr. Opin. Microbiol
, vol.17
, pp. 82-90
-
-
Hatoum-Aslan, A.1
Marraffini, L.A.2
-
146
-
-
84939574199
-
No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales
-
Gophna U, Kristensen DM, Wolf YI, Popa O, Drevet C, Koonin EV. 2015 No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales. ISME J. 9, 2021-2027. (doi:10.1038/ismej.2015.20)
-
(2015)
ISME J
, vol.9
, pp. 2021-2027
-
-
Gophna, U.1
Kristensen, D.M.2
Wolf, Y.I.3
Popa, O.4
Drevet, C.5
Koonin, E.V.6
-
147
-
-
84928658828
-
Parasite exposure drives selective evolution of constitutive versus inducible defense
-
Westra ER et al. 2015 Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043-1049. (doi:10.1016/j.cub.2015.01.065)
-
(2015)
Curr. Biol
, vol.25
, pp. 1043-1049
-
-
Westra, E.R.1
-
148
-
-
84872139964
-
Viral diversity threshold for adaptive immunity in prokaryotes
-
Weinberger AD, Wolf YI, Lobkovsky AE, Gilmore MS, Koonin EV. 2012 Viral diversity threshold for adaptive immunity in prokaryotes. mBio 3, e00456-12. (doi:10.1128/mBio.00456-12)
-
(2012)
Mbio
, vol.3
, pp. e00456-e00512
-
-
Weinberger, A.D.1
Wolf, Y.I.2
Lobkovsky, A.E.3
Gilmore, M.S.4
Koonin, E.V.5
-
149
-
-
84938298616
-
Costs of CRISPR-Casmediated resistance in Streptococcus thermophilus
-
Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. 2015 Costs of CRISPR-Casmediated resistance in Streptococcus thermophilus. Proc. R. Soc. B 282, 20151270. (doi:10.1098/rspb.2015.1270)
-
(2015)
Proc. R. Soc. B
, vol.282
-
-
Vale, P.F.1
Lafforgue, G.2
Gatchitch, F.3
Gardan, R.4
Moineau, S.5
Gandon, S.6
-
150
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014 Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278. (doi:10.1016/j.cell.2014.05.010)
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
151
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013 High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826. (doi:10.1038/nbt.2623)
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
152
-
-
84901843996
-
Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
-
Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-K, Kim H. 2014 Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020-1027. (doi:10.1101/gr.171264.113)
-
(2014)
Genome Res
, vol.24
, pp. 1020-1027
-
-
Ramakrishna, S.1
Kwaku Dad, A.-B.2
Beloor, J.3
Gopalappa, R.4
Lee, S.-K.5
Kim, H.6
-
153
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim S, Kim D, Cho SW, Kim J, Kim J-S. 2014 Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019. (doi:10.1101/gr.171322.113)
-
(2014)
Genome Res
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.-S.5
-
154
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA et al. 2013 Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389. (doi:10.1016/j.cell.2013.08.021)
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
-
155
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014 Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284. (doi:10.1038/nbt.2808)
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
156
-
-
84891710947
-
Analysis of off-target effects of CRISPR/ Cas-derived RNA-guided endonucleases and nickases
-
Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S. 2014 Analysis of off-target effects of CRISPR/ Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141. (doi:10.1101/gr.162339.113)
-
(2014)
Genome Res
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
Kweon, J.4
Kim, H.S.5
Bae, S.6
Kim, J.-S.7
-
157
-
-
84937569497
-
Delivery and specificity of CRISPR/ Cas9 genome editing technologies for human gene therapy
-
Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. 2015 Delivery and specificity of CRISPR/ Cas9 genome editing technologies for human gene therapy. Hum. Gene Ther. 26, 443-451. (doi:10.1089/hum.2015.074)
-
(2015)
Hum. Gene Ther
, vol.26
, pp. 443-451
-
-
Gori, J.L.1
Hsu, P.D.2
Maeder, M.L.3
Shen, S.4
Welstead, G.G.5
Bumcrot, D.6
|