-
1
-
-
84902185906
-
Genome engineering with targetable nucleases
-
Carroll D. 2014. Genome engineering with targetable nucleases. Annu Rev Biochem 83: 409–39.
-
(2014)
Annu Rev Biochem
, vol.83
, pp. 409-439
-
-
Carroll, D.1
-
2
-
-
33845604556
-
DNA double-strand break repair: all's well that ends well
-
Wyman C, Kanaar R. 2006. DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40: 363–83.
-
(2006)
Annu Rev Genet
, vol.40
, pp. 363-383
-
-
Wyman, C.1
Kanaar, R.2
-
3
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79: 181–211.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
4
-
-
65549095526
-
Nucleases and helicases take center stage in homologous recombination
-
Mimitou EP, Symington LS. 2009. Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34: 264–72.
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 264-272
-
-
Mimitou, E.P.1
Symington, L.S.2
-
5
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16: 2164–73.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
6
-
-
0029791694
-
Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
-
Boulton SJ, Jackson SP. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15: 5093–103.
-
(1996)
EMBO J
, vol.15
, pp. 5093-5103
-
-
Boulton, S.J.1
Jackson, S.P.2
-
7
-
-
84896717088
-
Is non-homologous end-joining really an inherently error-prone process?
-
Bétermier M, Bertrand P, Lopez BS. 2014. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10: e1004086.
-
(2014)
PLoS Genet
, vol.10
-
-
Bétermier, M.1
Bertrand, P.2
Lopez, B.S.3
-
8
-
-
18944373328
-
Highly efficient endogenous human gene correction using designed zinc-finger nucleases
-
Urnov FD, Miller JC, Lee Y-LL, Beausejour CM, et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: 646–51.
-
(2005)
Nature
, vol.435
, pp. 646-651
-
-
Urnov, F.D.1
Miller, J.C.2
Lee, Y.-L.L.3
Beausejour, C.M.4
-
9
-
-
0037510038
-
Enhancing gene targeting with designed zinc finger nucleases
-
Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.
-
(2003)
Science
, vol.300
, pp. 764
-
-
Bibikova, M.1
Beumer, K.2
Trautman, J.K.3
Carroll, D.4
-
10
-
-
55549138062
-
Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases
-
Redondo P, Prieto J, Muñoz IGG, Alibés A, et al. 2008. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456: 107–11.
-
(2008)
Nature
, vol.456
, pp. 107-111
-
-
Redondo, P.1
Prieto, J.2
Muñoz, I.G.G.3
Alibés, A.4
-
11
-
-
79551491956
-
Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus
-
Muñoz IGG, Prieto J, Subramanian S, Coloma J, et al. 2011. Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39: 729–43.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 729-743
-
-
Muñoz, I.G.G.1
Prieto, J.2
Subramanian, S.3
Coloma, J.4
-
12
-
-
78651240053
-
Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification
-
Stoddard BL. 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19: 7–15.
-
(2011)
Structure
, vol.19
, pp. 7-15
-
-
Stoddard, B.L.1
-
13
-
-
0034923498
-
Design and selection of novel Cys2His2 zinc finger proteins
-
Pabo CO, Peisach E, Grant RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70: 313–40.
-
(2001)
Annu Rev Biochem
, vol.70
, pp. 313-340
-
-
Pabo, C.O.1
Peisach, E.2
Grant, R.A.3
-
15
-
-
34447109864
-
Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells
-
Arnould S, Perez C, Cabaniols J-PP, Smith J, et al. 2007. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371: 49–65.
-
(2007)
J Mol Biol
, vol.371
, pp. 49-65
-
-
Arnould, S.1
Perez, C.2
Cabaniols, J.-P.P.3
Smith, J.4
-
16
-
-
84930618439
-
CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
-
Liang P, Xu Y, Zhang X, Ding C, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6: 363–72.
-
(2015)
Protein Cell
, vol.6
, pp. 363-372
-
-
Liang, P.1
Xu, Y.2
Zhang, X.3
Ding, C.4
-
17
-
-
84928809320
-
Embryo editing sparks epic debate
-
Cyranoski D, Reardon S. 2015. Embryo editing sparks epic debate. Nature 520: 593–4.
-
(2015)
Nature
, vol.520
, pp. 593-594
-
-
Cyranoski, D.1
Reardon, S.2
-
18
-
-
84928775204
-
Don't edit the human germ line
-
Lanphier E, Urnov F, Haecker SE, Werner M, et al. 2015. Don't edit the human germ line. Nature 519: 410–1.
-
(2015)
Nature
, vol.519
, pp. 410-411
-
-
Lanphier, E.1
Urnov, F.2
Haecker, S.E.3
Werner, M.4
-
19
-
-
84928775846
-
Biotechnology. A prudent path forward for genomic engineering and germline gene modification
-
Baltimore D, Berg P, Botchan M, Carroll D, et al. 2015. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348: 36–8.
-
(2015)
Science
, vol.348
, pp. 36-38
-
-
Baltimore, D.1
Berg, P.2
Botchan, M.3
Carroll, D.4
-
20
-
-
84930613203
-
CRISPR, the disruptor
-
Ledford H. 2015. CRISPR, the disruptor. Nature 522: 20–4.
-
(2015)
Nature
, vol.522
, pp. 20-24
-
-
Ledford, H.1
-
21
-
-
77956126894
-
Xanthomonas AvrBs3 family-type III effectors: discovery and function
-
Boch J, Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48: 419–36.
-
(2010)
Annu Rev Phytopathol
, vol.48
, pp. 419-436
-
-
Boch, J.1
Bonas, U.2
-
22
-
-
84857029597
-
The crystal structure of TAL effector PthXo1 bound to its DNA target
-
Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, et al. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716–9.
-
(2012)
Science
, vol.335
, pp. 716-719
-
-
Mak, A.N.1
Bradley, P.2
Cernadas, R.A.3
Bogdanove, A.J.4
-
23
-
-
84857032466
-
Structural basis for sequence-specific recognition of DNA by TAL effectors
-
Deng D, Yan C, Pan X, Mahfouz M, et al. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720–3.
-
(2012)
Science
, vol.335
, pp. 720-723
-
-
Deng, D.1
Yan, C.2
Pan, X.3
Mahfouz, M.4
-
24
-
-
84883588736
-
Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism
-
Stella S, Molina R, Yefimenko I, Prieto J, et al. 2013. Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr D Biol Crystallogr 69: 1707–16.
-
(2013)
Acta Crystallogr D Biol Crystallogr
, vol.69
, pp. 1707-1716
-
-
Stella, S.1
Molina, R.2
Yefimenko, I.3
Prieto, J.4
-
25
-
-
72149110399
-
Breaking the code of DNA binding specificity of TAL-type III effectors
-
Boch J, Scholze H, Schornack S, Landgraf A, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–12.
-
(2009)
Science
, vol.326
, pp. 1509-1512
-
-
Boch, J.1
Scholze, H.2
Schornack, S.3
Landgraf, A.4
-
26
-
-
72149090954
-
A simple cipher governs DNA recognition by TAL effectors
-
Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.
-
(2009)
Science
, vol.326
, pp. 1501
-
-
Moscou, M.J.1
Bogdanove, A.J.2
-
27
-
-
84866879789
-
Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers
-
Briggs AW, Rios X, Chari R, Yang L, et al. 2012. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40: e117.
-
(2012)
Nucleic Acids Res
, vol.40
-
-
Briggs, A.W.1
Rios, X.2
Chari, R.3
Yang, L.4
-
28
-
-
79960064013
-
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
-
Cermak T, Doyle EL, Christian M, Wang L, et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Cermak, T.1
Doyle, E.L.2
Christian, M.3
Wang, L.4
-
29
-
-
84872203111
-
A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes
-
Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, et al. 2013. A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotechnol 31: 76–81.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 76-81
-
-
Schmid-Burgk, J.L.1
Schmidt, T.2
Kaiser, V.3
Höning, K.4
-
30
-
-
84860747716
-
FLASH assembly of TALENs for high-throughput genome editing
-
Reyon D, Tsai SQ, Khayter C, Foden JA, et al. 2012. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30: 460–5.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 460-465
-
-
Reyon, D.1
Tsai, S.Q.2
Khayter, C.3
Foden, J.A.4
-
31
-
-
84885157177
-
Optimization of scarless human stem cell genome editing
-
Yang L, Guell M, Byrne S, Yang JL. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41: 9049–61.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 9049-9061
-
-
Yang, L.1
Guell, M.2
Byrne, S.3
Yang, J.L.4
-
32
-
-
84876389220
-
Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells
-
Holkers M, Maggio I, Liu J, Janssen JM, et al. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41: e63.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Holkers, M.1
Maggio, I.2
Liu, J.3
Janssen, J.M.4
-
33
-
-
84901470151
-
BurrH: a new modular DNA binding protein for genome engineering
-
Juillerat A, Bertonati C, Dubois G, Guyot V, et al. 2014. BurrH: a new modular DNA binding protein for genome engineering. Sci Rep 4: srep03831.
-
(2014)
Sci Rep
, vol.4
, pp. srep03831
-
-
Juillerat, A.1
Bertonati, C.2
Dubois, G.3
Guyot, V.4
-
34
-
-
84891819652
-
TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat −1
-
Doyle EL, Hummel AW, Demorest ZL, Starker CG, et al. 2013. TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat −1. PLoS One 8: e82120.
-
(2013)
PLoS One
, vol.8
-
-
Doyle, E.L.1
Hummel, A.W.2
Demorest, Z.L.3
Starker, C.G.4
-
35
-
-
84866721599
-
Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues
-
Christian ML, Demorest ZL, Starker CG, Osborn MJ, et al. 2012. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One 7: e45383.
-
(2012)
PLoS One
, vol.7
-
-
Christian, M.L.1
Demorest, Z.L.2
Starker, C.G.3
Osborn, M.J.4
-
36
-
-
84903975507
-
BuD, a helix-loop-helix DNA-binding domain for genome modification
-
Stella S, Molina R, López-Méndez B, Juillerat A, et al. 2014. BuD, a helix-loop-helix DNA-binding domain for genome modification. Acta Crystallogr D Biol Crystallogr 70: 2042–52.
-
(2014)
Acta Crystallogr D Biol Crystallogr
, vol.70
, pp. 2042-2052
-
-
Stella, S.1
Molina, R.2
López-Méndez, B.3
Juillerat, A.4
-
37
-
-
78651270582
-
TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain
-
Li T, Huang S, Jiang WZ, Wright D, et al. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39: 359–72.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 359-372
-
-
Li, T.1
Huang, S.2
Jiang, W.Z.3
Wright, D.4
-
38
-
-
78951479577
-
Targeting DNA double-strand breaks with TAL effector nucleases
-
Christian M, Cermak T, Doyle EL, Schmidt C, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757–61.
-
(2010)
Genetics
, vol.186
, pp. 757-761
-
-
Christian, M.1
Cermak, T.2
Doyle, E.L.3
Schmidt, C.4
-
39
-
-
84877782609
-
Compact designer TALENs for efficient genome engineering
-
Beurdeley M, Bietz F, Li J, Thomas S, et al. 2013. Compact designer TALENs for efficient genome engineering. Nat Commun 4: 1762.
-
(2013)
Nat Commun
, vol.4
, pp. 1762
-
-
Beurdeley, M.1
Bietz, F.2
Li, J.3
Thomas, S.4
-
40
-
-
84941041246
-
Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells
-
Lin J, Chen H, Luo L, Lai Y, et al. 2015. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells. Nucleic Acids Res 43: 1112–22.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1112-1122
-
-
Lin, J.1
Chen, H.2
Luo, L.3
Lai, Y.4
-
41
-
-
84902595538
-
The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs
-
Kleinstiver BP, Wang L, Wolfs JM, Kolaczyk T, et al. 2014. The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs. G3 (Bethesda) 4: 1155–65.
-
(2014)
G3 (Bethesda)
, vol.4
, pp. 1155-1165
-
-
Kleinstiver, B.P.1
Wang, L.2
Wolfs, J.M.3
Kolaczyk, T.4
-
42
-
-
79551685675
-
A TALE nuclease architecture for efficient genome editing
-
Miller JC, Tan S, Qiao G, Barlow KA, et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29: 143–8.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 143-148
-
-
Miller, J.C.1
Tan, S.2
Qiao, G.3
Barlow, K.A.4
-
43
-
-
84870579235
-
Chimeric TALE recombinases with programmable DNA sequence specificity
-
Mercer AC, Gaj T, Fuller RP, Barbas CF. 2012. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40: 11163–72.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11163-11172
-
-
Mercer, A.C.1
Gaj, T.2
Fuller, R.P.3
Barbas, C.F.4
-
44
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174–82.
-
(2005)
J Mol Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Soria, E.4
-
45
-
-
34250662138
-
The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats
-
Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 172
-
-
Grissa, I.1
Vergnaud, G.2
Pourcel, C.3
-
46
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–21.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
-
47
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109: E2579–86.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
48
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, et al. 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39: 9275–82.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
-
49
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova E, Jore MM, Datsenko KA, Semenova A, et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108: 10098–103.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
-
50
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–23.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
-
51
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, et al. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233–9.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
-
52
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin C-YY, Gootenberg JS, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–9.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.-Y.Y.3
Gootenberg, J.S.4
-
53
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes
-
Maeder ML, Linder SJ, Cascio VM, Fu Y, et al. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10: 977–9.
-
(2013)
Nat Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
Linder, S.J.2
Cascio, V.M.3
Fu, Y.4
-
54
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert LA, Larson MH, Morsut L, Liu Z, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442–51.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
-
55
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173–83.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
-
56
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10: 973–6.
-
(2013)
Nat Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
Adler, A.F.4
-
57
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479–91.
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
Schnitzbauer, J.4
-
58
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai SQ, Wyvekens N, Khayter C, Foden JA, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32: 569–76.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
-
59
-
-
84929666410
-
Expanding the Biologist's Toolkit with CRISPR-Cas9
-
Sternberg SH, Doudna JA. 2015. Expanding the Biologist's Toolkit with CRISPR-Cas9. Mol Cell 58: 568–74.
-
(2015)
Mol Cell
, vol.58
, pp. 568-574
-
-
Sternberg, S.H.1
Doudna, J.A.2
-
60
-
-
80053039555
-
A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity
-
Mussolino C, Morbitzer R, Lütge F, Dannemann N, et al. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 9283–93.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9283-9293
-
-
Mussolino, C.1
Morbitzer, R.2
Lütge, F.3
Dannemann, N.4
-
61
-
-
84928948209
-
Genome editing technologies: defining a path to clinic
-
Corrigan-Curay J, O'Reilly M, Kohn DB, Cannon PM, et al. 2015. Genome editing technologies: defining a path to clinic. Mol Ther 23: 796–806.
-
(2015)
Mol Ther
, vol.23
, pp. 796-806
-
-
Corrigan-Curay, J.1
O'Reilly, M.2
Kohn, D.B.3
Cannon, P.M.4
-
62
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, Ran FA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31: 827–32.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
-
63
-
-
84864475122
-
TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
-
Doyle EL, Booher NJ, Standage DS, Voytas DF, et al. 2012. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117–22.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. W117-W122
-
-
Doyle, E.L.1
Booher, N.J.2
Standage, D.S.3
Voytas, D.F.4
-
64
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31: 822–6.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
-
65
-
-
84875157258
-
A library of TAL effector nucleases spanning the human genome
-
Kim Y, Kweon J, Kim A, Chon JK, et al. 2013. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31: 251–8.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 251-258
-
-
Kim, Y.1
Kweon, J.2
Kim, A.3
Chon, J.K.4
-
66
-
-
84897954502
-
Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
-
Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, et al. 2014. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11: 429–35.
-
(2014)
Nat Methods
, vol.11
, pp. 429-435
-
-
Guilinger, J.P.1
Pattanayak, V.2
Reyon, D.3
Tsai, S.Q.4
-
67
-
-
80052293623
-
Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection
-
Pattanayak V, Ramirez CL, Joung JK, Liu DR. 2011. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8: 765–70.
-
(2011)
Nat Methods
, vol.8
, pp. 765-770
-
-
Pattanayak, V.1
Ramirez, C.L.2
Joung, J.K.3
Liu, D.R.4
-
68
-
-
84884155038
-
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
Pattanayak V, Lin S, Guilinger JP, Ma E, et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31: 839–43.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
Lin, S.2
Guilinger, J.P.3
Ma, E.4
-
69
-
-
80052766645
-
An unbiased genome-wide analysis of zinc-finger nuclease specificity
-
Gabriel R, Lombardo A, Arens A, Miller JC, et al. 2011. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29: 816–23.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 816-823
-
-
Gabriel, R.1
Lombardo, A.2
Arens, A.3
Miller, J.C.4
-
70
-
-
84925441397
-
Determining the specificities of TALENs, Cas9, and other genome-editing enzymes
-
Pattanayak V, Guilinger JP, Liu DR. 2014. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Meth Enzymol 546: 47–78.
-
(2014)
Meth Enzymol
, vol.546
, pp. 47-78
-
-
Pattanayak, V.1
Guilinger, J.P.2
Liu, D.R.3
-
71
-
-
84923221641
-
Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
-
Wang X, Wang Y, Wu X, Wang J, et al. 2015. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33: 175–8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 175-178
-
-
Wang, X.1
Wang, Y.2
Wu, X.3
Wang, J.4
-
72
-
-
84903138336
-
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
-
Lin Y, Cradick TJ, Brown MT, Deshmukh H, et al. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42: 7473–85.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 7473-7485
-
-
Lin, Y.1
Cradick, T.J.2
Brown, M.T.3
Deshmukh, H.4
-
73
-
-
84896380709
-
A TAL effector repeat architecture for frameshift binding
-
Richter A, Streubel J, Blücher C, Szurek B, et al. 2014. A TAL effector repeat architecture for frameshift binding. Nat Commun 5: 3447.
-
(2014)
Nat Commun
, vol.5
, pp. 3447
-
-
Richter, A.1
Streubel, J.2
Blücher, C.3
Szurek, B.4
-
74
-
-
84903943282
-
Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
-
Smith C, Gore A, Yan W, Abalde-Atristain L, et al. 2014. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15: 12–3.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 12-13
-
-
Smith, C.1
Gore, A.2
Yan, W.3
Abalde-Atristain, L.4
-
75
-
-
84903942097
-
Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones
-
Yao X, Yuan T, Goebl A, Tang S, et al. 2014. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 3: 31–6.
-
(2014)
Cell Stem Cell
, vol.3
, pp. 31-36
-
-
Yao, X.1
Yuan, T.2
Goebl, A.3
Tang, S.4
-
76
-
-
84904010334
-
Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
-
Veres A, Gosis BS, Ding Q, Collins R, et al. 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15: 27–30.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 27-30
-
-
Veres, A.1
Gosis, B.S.2
Ding, Q.3
Collins, R.4
-
77
-
-
84904018481
-
What's changed with genome editing?
-
Tsai SQ, Joung JK. 2014. What's changed with genome editing? Cell Stem Cell 15: 3–4.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 3-4
-
-
Tsai, S.Q.1
Joung, J.K.2
-
78
-
-
84865364870
-
Playing the end game: DNA double-strand break repair pathway choice
-
Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497–510.
-
(2012)
Mol Cell
, vol.47
, pp. 497-510
-
-
Chapman, J.R.1
Taylor, M.R.2
Boulton, S.J.3
-
79
-
-
84872862315
-
High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes
-
Delacôte F, Perez C, Guyot V, Duhamel M, et al. 2013. High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes. PLoS One 8: e53217.
-
(2013)
PLoS One
, vol.8
-
-
Delacôte, F.1
Perez, C.2
Guyot, V.3
Duhamel, M.4
-
80
-
-
84907546073
-
Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage
-
Cencic R, Miura H, Malina A, Robert F, et al. 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9: e109213.
-
(2014)
PLoS One
, vol.9
-
-
Cencic, R.1
Miura, H.2
Malina, A.3
Robert, F.4
-
81
-
-
84903545084
-
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
-
Kuscu C, Arslan S, Singh R, Thorpe J, et al. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32: 677–83.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 677-683
-
-
Kuscu, C.1
Arslan, S.2
Singh, R.3
Thorpe, J.4
-
82
-
-
84902095352
-
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
-
Wu X, Scott D, Kriz A, Chiu A, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32: 670–6.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 670-676
-
-
Wu, X.1
Scott, D.2
Kriz, A.3
Chiu, A.4
-
83
-
-
84886084801
-
Locus-specific editing of histone modifications at endogenous enhancers
-
Mendenhall EM, Williamson KE, Reyon D, Zou JY, et al. 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31: 1133–6.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 1133-1136
-
-
Mendenhall, E.M.1
Williamson, K.E.2
Reyon, D.3
Zou, J.Y.4
-
84
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33: 187–97.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
Liebers, M.4
-
85
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
Frock RL, Hu J, Meyers RM, Ho Y-JJ, et al. 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33: 179–86.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
Hu, J.2
Meyers, R.M.3
Ho, Y.-J.J.4
-
86
-
-
84923846574
-
Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
-
Kim D, Bae S, Park J, Kim E, et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12: 237–43.
-
(2015)
Nat Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
Bae, S.2
Park, J.3
Kim, E.4
-
87
-
-
80053558376
-
Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
-
Chiarle R, Zhang Y, Frock RL, Lewis SM, et al. 2011. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147: 107–19.
-
(2011)
Cell
, vol.147
, pp. 107-119
-
-
Chiarle, R.1
Zhang, Y.2
Frock, R.L.3
Lewis, S.M.4
-
88
-
-
36749052217
-
High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR)
-
Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, et al. 2007. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4: 1051–7.
-
(2007)
Nat Methods
, vol.4
, pp. 1051-1057
-
-
Schmidt, M.1
Schwarzwaelder, K.2
Bartholomae, C.3
Zaoui, K.4
-
90
-
-
84878580410
-
TALEN-based gene correction for epidermolysis bullosa
-
Osborn MJ, Starker CG, McElroy AN, Webber BR, et al. 2013. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 21: 1151–9.
-
(2013)
Mol Ther
, vol.21
, pp. 1151-1159
-
-
Osborn, M.J.1
Starker, C.G.2
McElroy, A.N.3
Webber, B.R.4
-
91
-
-
84928054835
-
Genome editing at the crossroads of delivery, specificity, and fidelity
-
Maggio I, Gonçalves MA. 2015. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 33: 280–91.
-
(2015)
Trends Biotechnol
, vol.33
, pp. 280-291
-
-
Maggio, I.1
Gonçalves, M.A.2
-
92
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–73.
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
|