메뉴 건너뛰기




Volumn 38, Issue , 2016, Pages S4-S13

The genome editing revolution: A CRISPR-Cas TALE off-target story

Author keywords

CRISPR Cas9; engineered nucleases; genome editing; specificity; TALE

Indexed keywords

CRISPR ASSOCIATED PROTEIN; DNA; RIBONUCLEOPROTEIN; RNA; TRANSCRIPTION ACTIVATOR LIKE EFFECTOR NUCLEASE; ZINC FINGER PROTEIN;

EID: 84978827308     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201670903     Document Type: Review
Times cited : (48)

References (92)
  • 1
    • 84902185906 scopus 로고    scopus 로고
    • Genome engineering with targetable nucleases
    • Carroll D. 2014. Genome engineering with targetable nucleases. Annu Rev Biochem 83: 409–39.
    • (2014) Annu Rev Biochem , vol.83 , pp. 409-439
    • Carroll, D.1
  • 2
    • 33845604556 scopus 로고    scopus 로고
    • DNA double-strand break repair: all's well that ends well
    • Wyman C, Kanaar R. 2006. DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40: 363–83.
    • (2006) Annu Rev Genet , vol.40 , pp. 363-383
    • Wyman, C.1    Kanaar, R.2
  • 3
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79: 181–211.
    • (2010) Annu Rev Biochem , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 4
    • 65549095526 scopus 로고    scopus 로고
    • Nucleases and helicases take center stage in homologous recombination
    • Mimitou EP, Symington LS. 2009. Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34: 264–72.
    • (2009) Trends Biochem Sci , vol.34 , pp. 264-272
    • Mimitou, E.P.1    Symington, L.S.2
  • 5
    • 0029976325 scopus 로고    scopus 로고
    • Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
    • Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16: 2164–73.
    • (1996) Mol Cell Biol , vol.16 , pp. 2164-2173
    • Moore, J.K.1    Haber, J.E.2
  • 6
    • 0029791694 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
    • Boulton SJ, Jackson SP. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15: 5093–103.
    • (1996) EMBO J , vol.15 , pp. 5093-5103
    • Boulton, S.J.1    Jackson, S.P.2
  • 7
    • 84896717088 scopus 로고    scopus 로고
    • Is non-homologous end-joining really an inherently error-prone process?
    • Bétermier M, Bertrand P, Lopez BS. 2014. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10: e1004086.
    • (2014) PLoS Genet , vol.10
    • Bétermier, M.1    Bertrand, P.2    Lopez, B.S.3
  • 8
    • 18944373328 scopus 로고    scopus 로고
    • Highly efficient endogenous human gene correction using designed zinc-finger nucleases
    • Urnov FD, Miller JC, Lee Y-LL, Beausejour CM, et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: 646–51.
    • (2005) Nature , vol.435 , pp. 646-651
    • Urnov, F.D.1    Miller, J.C.2    Lee, Y.-L.L.3    Beausejour, C.M.4
  • 9
    • 0037510038 scopus 로고    scopus 로고
    • Enhancing gene targeting with designed zinc finger nucleases
    • Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.
    • (2003) Science , vol.300 , pp. 764
    • Bibikova, M.1    Beumer, K.2    Trautman, J.K.3    Carroll, D.4
  • 10
    • 55549138062 scopus 로고    scopus 로고
    • Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases
    • Redondo P, Prieto J, Muñoz IGG, Alibés A, et al. 2008. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456: 107–11.
    • (2008) Nature , vol.456 , pp. 107-111
    • Redondo, P.1    Prieto, J.2    Muñoz, I.G.G.3    Alibés, A.4
  • 11
    • 79551491956 scopus 로고    scopus 로고
    • Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus
    • Muñoz IGG, Prieto J, Subramanian S, Coloma J, et al. 2011. Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39: 729–43.
    • (2011) Nucleic Acids Res , vol.39 , pp. 729-743
    • Muñoz, I.G.G.1    Prieto, J.2    Subramanian, S.3    Coloma, J.4
  • 12
    • 78651240053 scopus 로고    scopus 로고
    • Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification
    • Stoddard BL. 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19: 7–15.
    • (2011) Structure , vol.19 , pp. 7-15
    • Stoddard, B.L.1
  • 13
    • 0034923498 scopus 로고    scopus 로고
    • Design and selection of novel Cys2His2 zinc finger proteins
    • Pabo CO, Peisach E, Grant RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70: 313–40.
    • (2001) Annu Rev Biochem , vol.70 , pp. 313-340
    • Pabo, C.O.1    Peisach, E.2    Grant, R.A.3
  • 15
    • 34447109864 scopus 로고    scopus 로고
    • Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells
    • Arnould S, Perez C, Cabaniols J-PP, Smith J, et al. 2007. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371: 49–65.
    • (2007) J Mol Biol , vol.371 , pp. 49-65
    • Arnould, S.1    Perez, C.2    Cabaniols, J.-P.P.3    Smith, J.4
  • 16
    • 84930618439 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
    • Liang P, Xu Y, Zhang X, Ding C, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6: 363–72.
    • (2015) Protein Cell , vol.6 , pp. 363-372
    • Liang, P.1    Xu, Y.2    Zhang, X.3    Ding, C.4
  • 17
    • 84928809320 scopus 로고    scopus 로고
    • Embryo editing sparks epic debate
    • Cyranoski D, Reardon S. 2015. Embryo editing sparks epic debate. Nature 520: 593–4.
    • (2015) Nature , vol.520 , pp. 593-594
    • Cyranoski, D.1    Reardon, S.2
  • 19
    • 84928775846 scopus 로고    scopus 로고
    • Biotechnology. A prudent path forward for genomic engineering and germline gene modification
    • Baltimore D, Berg P, Botchan M, Carroll D, et al. 2015. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348: 36–8.
    • (2015) Science , vol.348 , pp. 36-38
    • Baltimore, D.1    Berg, P.2    Botchan, M.3    Carroll, D.4
  • 20
    • 84930613203 scopus 로고    scopus 로고
    • CRISPR, the disruptor
    • Ledford H. 2015. CRISPR, the disruptor. Nature 522: 20–4.
    • (2015) Nature , vol.522 , pp. 20-24
    • Ledford, H.1
  • 21
    • 77956126894 scopus 로고    scopus 로고
    • Xanthomonas AvrBs3 family-type III effectors: discovery and function
    • Boch J, Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48: 419–36.
    • (2010) Annu Rev Phytopathol , vol.48 , pp. 419-436
    • Boch, J.1    Bonas, U.2
  • 22
    • 84857029597 scopus 로고    scopus 로고
    • The crystal structure of TAL effector PthXo1 bound to its DNA target
    • Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, et al. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716–9.
    • (2012) Science , vol.335 , pp. 716-719
    • Mak, A.N.1    Bradley, P.2    Cernadas, R.A.3    Bogdanove, A.J.4
  • 23
    • 84857032466 scopus 로고    scopus 로고
    • Structural basis for sequence-specific recognition of DNA by TAL effectors
    • Deng D, Yan C, Pan X, Mahfouz M, et al. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335: 720–3.
    • (2012) Science , vol.335 , pp. 720-723
    • Deng, D.1    Yan, C.2    Pan, X.3    Mahfouz, M.4
  • 24
    • 84883588736 scopus 로고    scopus 로고
    • Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism
    • Stella S, Molina R, Yefimenko I, Prieto J, et al. 2013. Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr D Biol Crystallogr 69: 1707–16.
    • (2013) Acta Crystallogr D Biol Crystallogr , vol.69 , pp. 1707-1716
    • Stella, S.1    Molina, R.2    Yefimenko, I.3    Prieto, J.4
  • 25
    • 72149110399 scopus 로고    scopus 로고
    • Breaking the code of DNA binding specificity of TAL-type III effectors
    • Boch J, Scholze H, Schornack S, Landgraf A, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–12.
    • (2009) Science , vol.326 , pp. 1509-1512
    • Boch, J.1    Scholze, H.2    Schornack, S.3    Landgraf, A.4
  • 26
    • 72149090954 scopus 로고    scopus 로고
    • A simple cipher governs DNA recognition by TAL effectors
    • Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.
    • (2009) Science , vol.326 , pp. 1501
    • Moscou, M.J.1    Bogdanove, A.J.2
  • 27
    • 84866879789 scopus 로고    scopus 로고
    • Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers
    • Briggs AW, Rios X, Chari R, Yang L, et al. 2012. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40: e117.
    • (2012) Nucleic Acids Res , vol.40
    • Briggs, A.W.1    Rios, X.2    Chari, R.3    Yang, L.4
  • 28
    • 79960064013 scopus 로고    scopus 로고
    • Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
    • Cermak T, Doyle EL, Christian M, Wang L, et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82.
    • (2011) Nucleic Acids Res , vol.39
    • Cermak, T.1    Doyle, E.L.2    Christian, M.3    Wang, L.4
  • 29
    • 84872203111 scopus 로고    scopus 로고
    • A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes
    • Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, et al. 2013. A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotechnol 31: 76–81.
    • (2013) Nat Biotechnol , vol.31 , pp. 76-81
    • Schmid-Burgk, J.L.1    Schmidt, T.2    Kaiser, V.3    Höning, K.4
  • 30
    • 84860747716 scopus 로고    scopus 로고
    • FLASH assembly of TALENs for high-throughput genome editing
    • Reyon D, Tsai SQ, Khayter C, Foden JA, et al. 2012. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30: 460–5.
    • (2012) Nat Biotechnol , vol.30 , pp. 460-465
    • Reyon, D.1    Tsai, S.Q.2    Khayter, C.3    Foden, J.A.4
  • 31
    • 84885157177 scopus 로고    scopus 로고
    • Optimization of scarless human stem cell genome editing
    • Yang L, Guell M, Byrne S, Yang JL. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41: 9049–61.
    • (2013) Nucleic Acids Res , vol.41 , pp. 9049-9061
    • Yang, L.1    Guell, M.2    Byrne, S.3    Yang, J.L.4
  • 32
    • 84876389220 scopus 로고    scopus 로고
    • Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells
    • Holkers M, Maggio I, Liu J, Janssen JM, et al. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41: e63.
    • (2013) Nucleic Acids Res , vol.41
    • Holkers, M.1    Maggio, I.2    Liu, J.3    Janssen, J.M.4
  • 33
    • 84901470151 scopus 로고    scopus 로고
    • BurrH: a new modular DNA binding protein for genome engineering
    • Juillerat A, Bertonati C, Dubois G, Guyot V, et al. 2014. BurrH: a new modular DNA binding protein for genome engineering. Sci Rep 4: srep03831.
    • (2014) Sci Rep , vol.4 , pp. srep03831
    • Juillerat, A.1    Bertonati, C.2    Dubois, G.3    Guyot, V.4
  • 34
    • 84891819652 scopus 로고    scopus 로고
    • TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat −1
    • Doyle EL, Hummel AW, Demorest ZL, Starker CG, et al. 2013. TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat −1. PLoS One 8: e82120.
    • (2013) PLoS One , vol.8
    • Doyle, E.L.1    Hummel, A.W.2    Demorest, Z.L.3    Starker, C.G.4
  • 35
    • 84866721599 scopus 로고    scopus 로고
    • Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues
    • Christian ML, Demorest ZL, Starker CG, Osborn MJ, et al. 2012. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One 7: e45383.
    • (2012) PLoS One , vol.7
    • Christian, M.L.1    Demorest, Z.L.2    Starker, C.G.3    Osborn, M.J.4
  • 37
    • 78651270582 scopus 로고    scopus 로고
    • TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain
    • Li T, Huang S, Jiang WZ, Wright D, et al. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39: 359–72.
    • (2011) Nucleic Acids Res , vol.39 , pp. 359-372
    • Li, T.1    Huang, S.2    Jiang, W.Z.3    Wright, D.4
  • 38
    • 78951479577 scopus 로고    scopus 로고
    • Targeting DNA double-strand breaks with TAL effector nucleases
    • Christian M, Cermak T, Doyle EL, Schmidt C, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757–61.
    • (2010) Genetics , vol.186 , pp. 757-761
    • Christian, M.1    Cermak, T.2    Doyle, E.L.3    Schmidt, C.4
  • 39
    • 84877782609 scopus 로고    scopus 로고
    • Compact designer TALENs for efficient genome engineering
    • Beurdeley M, Bietz F, Li J, Thomas S, et al. 2013. Compact designer TALENs for efficient genome engineering. Nat Commun 4: 1762.
    • (2013) Nat Commun , vol.4 , pp. 1762
    • Beurdeley, M.1    Bietz, F.2    Li, J.3    Thomas, S.4
  • 40
    • 84941041246 scopus 로고    scopus 로고
    • Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells
    • Lin J, Chen H, Luo L, Lai Y, et al. 2015. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells. Nucleic Acids Res 43: 1112–22.
    • (2015) Nucleic Acids Res , vol.43 , pp. 1112-1122
    • Lin, J.1    Chen, H.2    Luo, L.3    Lai, Y.4
  • 41
    • 84902595538 scopus 로고    scopus 로고
    • The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs
    • Kleinstiver BP, Wang L, Wolfs JM, Kolaczyk T, et al. 2014. The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs. G3 (Bethesda) 4: 1155–65.
    • (2014) G3 (Bethesda) , vol.4 , pp. 1155-1165
    • Kleinstiver, B.P.1    Wang, L.2    Wolfs, J.M.3    Kolaczyk, T.4
  • 42
    • 79551685675 scopus 로고    scopus 로고
    • A TALE nuclease architecture for efficient genome editing
    • Miller JC, Tan S, Qiao G, Barlow KA, et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29: 143–8.
    • (2011) Nat Biotechnol , vol.29 , pp. 143-148
    • Miller, J.C.1    Tan, S.2    Qiao, G.3    Barlow, K.A.4
  • 43
    • 84870579235 scopus 로고    scopus 로고
    • Chimeric TALE recombinases with programmable DNA sequence specificity
    • Mercer AC, Gaj T, Fuller RP, Barbas CF. 2012. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40: 11163–72.
    • (2012) Nucleic Acids Res , vol.40 , pp. 11163-11172
    • Mercer, A.C.1    Gaj, T.2    Fuller, R.P.3    Barbas, C.F.4
  • 44
    • 16444385662 scopus 로고    scopus 로고
    • Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
    • Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174–82.
    • (2005) J Mol Evol , vol.60 , pp. 174-182
    • Mojica, F.J.1    Díez-Villaseñor, C.2    García-Martínez, J.3    Soria, E.4
  • 45
    • 34250662138 scopus 로고    scopus 로고
    • The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats
    • Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172.
    • (2007) BMC Bioinformatics , vol.8 , pp. 172
    • Grissa, I.1    Vergnaud, G.2    Pourcel, C.3
  • 46
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–21.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4
  • 47
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109: E2579–86.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 48
    • 80755145195 scopus 로고    scopus 로고
    • The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, et al. 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39: 9275–82.
    • (2011) Nucleic Acids Res , vol.39 , pp. 9275-9282
    • Sapranauskas, R.1    Gasiunas, G.2    Fremaux, C.3    Barrangou, R.4
  • 49
    • 79959963663 scopus 로고    scopus 로고
    • Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
    • Semenova E, Jore MM, Datsenko KA, Semenova A, et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108: 10098–103.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 10098-10103
    • Semenova, E.1    Jore, M.M.2    Datsenko, K.A.3    Semenova, A.4
  • 50
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, Ran FA, Cox D, Lin S, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–23.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1    Ran, F.A.2    Cox, D.3    Lin, S.4
  • 51
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W, Bikard D, Cox D, Zhang F, et al. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233–9.
    • (2013) Nat Biotechnol , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4
  • 52
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran FA, Hsu PD, Lin C-YY, Gootenberg JS, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–9.
    • (2013) Cell , vol.154 , pp. 1380-1389
    • Ran, F.A.1    Hsu, P.D.2    Lin, C.-Y.Y.3    Gootenberg, J.S.4
  • 53
    • 84884907424 scopus 로고    scopus 로고
    • CRISPR RNA-guided activation of endogenous human genes
    • Maeder ML, Linder SJ, Cascio VM, Fu Y, et al. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10: 977–9.
    • (2013) Nat Methods , vol.10 , pp. 977-979
    • Maeder, M.L.1    Linder, S.J.2    Cascio, V.M.3    Fu, Y.4
  • 54
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • Gilbert LA, Larson MH, Morsut L, Liu Z, et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442–51.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1    Larson, M.H.2    Morsut, L.3    Liu, Z.4
  • 55
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi LS, Larson MH, Gilbert LA, Doudna JA, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173–83.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3    Doudna, J.A.4
  • 56
    • 84884906690 scopus 로고    scopus 로고
    • RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    • Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10: 973–6.
    • (2013) Nat Methods , vol.10 , pp. 973-976
    • Perez-Pinera, P.1    Kocak, D.D.2    Vockley, C.M.3    Adler, A.F.4
  • 57
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479–91.
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1    Gilbert, L.A.2    Cimini, B.A.3    Schnitzbauer, J.4
  • 58
    • 84902204289 scopus 로고    scopus 로고
    • Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    • Tsai SQ, Wyvekens N, Khayter C, Foden JA, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32: 569–76.
    • (2014) Nat Biotechnol , vol.32 , pp. 569-576
    • Tsai, S.Q.1    Wyvekens, N.2    Khayter, C.3    Foden, J.A.4
  • 59
    • 84929666410 scopus 로고    scopus 로고
    • Expanding the Biologist's Toolkit with CRISPR-Cas9
    • Sternberg SH, Doudna JA. 2015. Expanding the Biologist's Toolkit with CRISPR-Cas9. Mol Cell 58: 568–74.
    • (2015) Mol Cell , vol.58 , pp. 568-574
    • Sternberg, S.H.1    Doudna, J.A.2
  • 60
    • 80053039555 scopus 로고    scopus 로고
    • A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity
    • Mussolino C, Morbitzer R, Lütge F, Dannemann N, et al. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 9283–93.
    • (2011) Nucleic Acids Res , vol.39 , pp. 9283-9293
    • Mussolino, C.1    Morbitzer, R.2    Lütge, F.3    Dannemann, N.4
  • 61
    • 84928948209 scopus 로고    scopus 로고
    • Genome editing technologies: defining a path to clinic
    • Corrigan-Curay J, O'Reilly M, Kohn DB, Cannon PM, et al. 2015. Genome editing technologies: defining a path to clinic. Mol Ther 23: 796–806.
    • (2015) Mol Ther , vol.23 , pp. 796-806
    • Corrigan-Curay, J.1    O'Reilly, M.2    Kohn, D.B.3    Cannon, P.M.4
  • 62
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • Hsu PD, Scott DA, Weinstein JA, Ran FA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31: 827–32.
    • (2013) Nat Biotechnol , vol.31 , pp. 827-832
    • Hsu, P.D.1    Scott, D.A.2    Weinstein, J.A.3    Ran, F.A.4
  • 63
    • 84864475122 scopus 로고    scopus 로고
    • TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
    • Doyle EL, Booher NJ, Standage DS, Voytas DF, et al. 2012. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117–22.
    • (2012) Nucleic Acids Res , vol.40 , pp. W117-W122
    • Doyle, E.L.1    Booher, N.J.2    Standage, D.S.3    Voytas, D.F.4
  • 64
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • Fu Y, Foden JA, Khayter C, Maeder ML, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31: 822–6.
    • (2013) Nat Biotechnol , vol.31 , pp. 822-826
    • Fu, Y.1    Foden, J.A.2    Khayter, C.3    Maeder, M.L.4
  • 65
    • 84875157258 scopus 로고    scopus 로고
    • A library of TAL effector nucleases spanning the human genome
    • Kim Y, Kweon J, Kim A, Chon JK, et al. 2013. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31: 251–8.
    • (2013) Nat Biotechnol , vol.31 , pp. 251-258
    • Kim, Y.1    Kweon, J.2    Kim, A.3    Chon, J.K.4
  • 66
    • 84897954502 scopus 로고    scopus 로고
    • Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
    • Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, et al. 2014. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11: 429–35.
    • (2014) Nat Methods , vol.11 , pp. 429-435
    • Guilinger, J.P.1    Pattanayak, V.2    Reyon, D.3    Tsai, S.Q.4
  • 67
    • 80052293623 scopus 로고    scopus 로고
    • Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection
    • Pattanayak V, Ramirez CL, Joung JK, Liu DR. 2011. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8: 765–70.
    • (2011) Nat Methods , vol.8 , pp. 765-770
    • Pattanayak, V.1    Ramirez, C.L.2    Joung, J.K.3    Liu, D.R.4
  • 68
    • 84884155038 scopus 로고    scopus 로고
    • High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
    • Pattanayak V, Lin S, Guilinger JP, Ma E, et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31: 839–43.
    • (2013) Nat Biotechnol , vol.31 , pp. 839-843
    • Pattanayak, V.1    Lin, S.2    Guilinger, J.P.3    Ma, E.4
  • 69
    • 80052766645 scopus 로고    scopus 로고
    • An unbiased genome-wide analysis of zinc-finger nuclease specificity
    • Gabriel R, Lombardo A, Arens A, Miller JC, et al. 2011. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29: 816–23.
    • (2011) Nat Biotechnol , vol.29 , pp. 816-823
    • Gabriel, R.1    Lombardo, A.2    Arens, A.3    Miller, J.C.4
  • 70
    • 84925441397 scopus 로고    scopus 로고
    • Determining the specificities of TALENs, Cas9, and other genome-editing enzymes
    • Pattanayak V, Guilinger JP, Liu DR. 2014. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Meth Enzymol 546: 47–78.
    • (2014) Meth Enzymol , vol.546 , pp. 47-78
    • Pattanayak, V.1    Guilinger, J.P.2    Liu, D.R.3
  • 71
    • 84923221641 scopus 로고    scopus 로고
    • Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
    • Wang X, Wang Y, Wu X, Wang J, et al. 2015. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33: 175–8.
    • (2015) Nat Biotechnol , vol.33 , pp. 175-178
    • Wang, X.1    Wang, Y.2    Wu, X.3    Wang, J.4
  • 72
    • 84903138336 scopus 로고    scopus 로고
    • CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
    • Lin Y, Cradick TJ, Brown MT, Deshmukh H, et al. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42: 7473–85.
    • (2014) Nucleic Acids Res , vol.42 , pp. 7473-7485
    • Lin, Y.1    Cradick, T.J.2    Brown, M.T.3    Deshmukh, H.4
  • 73
    • 84896380709 scopus 로고    scopus 로고
    • A TAL effector repeat architecture for frameshift binding
    • Richter A, Streubel J, Blücher C, Szurek B, et al. 2014. A TAL effector repeat architecture for frameshift binding. Nat Commun 5: 3447.
    • (2014) Nat Commun , vol.5 , pp. 3447
    • Richter, A.1    Streubel, J.2    Blücher, C.3    Szurek, B.4
  • 74
    • 84903943282 scopus 로고    scopus 로고
    • Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
    • Smith C, Gore A, Yan W, Abalde-Atristain L, et al. 2014. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15: 12–3.
    • (2014) Cell Stem Cell , vol.15 , pp. 12-13
    • Smith, C.1    Gore, A.2    Yan, W.3    Abalde-Atristain, L.4
  • 75
    • 84903942097 scopus 로고    scopus 로고
    • Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones
    • Yao X, Yuan T, Goebl A, Tang S, et al. 2014. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 3: 31–6.
    • (2014) Cell Stem Cell , vol.3 , pp. 31-36
    • Yao, X.1    Yuan, T.2    Goebl, A.3    Tang, S.4
  • 76
    • 84904010334 scopus 로고    scopus 로고
    • Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
    • Veres A, Gosis BS, Ding Q, Collins R, et al. 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15: 27–30.
    • (2014) Cell Stem Cell , vol.15 , pp. 27-30
    • Veres, A.1    Gosis, B.S.2    Ding, Q.3    Collins, R.4
  • 77
    • 84904018481 scopus 로고    scopus 로고
    • What's changed with genome editing?
    • Tsai SQ, Joung JK. 2014. What's changed with genome editing? Cell Stem Cell 15: 3–4.
    • (2014) Cell Stem Cell , vol.15 , pp. 3-4
    • Tsai, S.Q.1    Joung, J.K.2
  • 78
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497–510.
    • (2012) Mol Cell , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.R.2    Boulton, S.J.3
  • 79
    • 84872862315 scopus 로고    scopus 로고
    • High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes
    • Delacôte F, Perez C, Guyot V, Duhamel M, et al. 2013. High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes. PLoS One 8: e53217.
    • (2013) PLoS One , vol.8
    • Delacôte, F.1    Perez, C.2    Guyot, V.3    Duhamel, M.4
  • 80
    • 84907546073 scopus 로고    scopus 로고
    • Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage
    • Cencic R, Miura H, Malina A, Robert F, et al. 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9: e109213.
    • (2014) PLoS One , vol.9
    • Cencic, R.1    Miura, H.2    Malina, A.3    Robert, F.4
  • 81
    • 84903545084 scopus 로고    scopus 로고
    • Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
    • Kuscu C, Arslan S, Singh R, Thorpe J, et al. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32: 677–83.
    • (2014) Nat Biotechnol , vol.32 , pp. 677-683
    • Kuscu, C.1    Arslan, S.2    Singh, R.3    Thorpe, J.4
  • 82
    • 84902095352 scopus 로고    scopus 로고
    • Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
    • Wu X, Scott D, Kriz A, Chiu A, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32: 670–6.
    • (2014) Nat Biotechnol , vol.32 , pp. 670-676
    • Wu, X.1    Scott, D.2    Kriz, A.3    Chiu, A.4
  • 83
    • 84886084801 scopus 로고    scopus 로고
    • Locus-specific editing of histone modifications at endogenous enhancers
    • Mendenhall EM, Williamson KE, Reyon D, Zou JY, et al. 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31: 1133–6.
    • (2013) Nat Biotechnol , vol.31 , pp. 1133-1136
    • Mendenhall, E.M.1    Williamson, K.E.2    Reyon, D.3    Zou, J.Y.4
  • 84
    • 84923266604 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • Tsai SQ, Zheng Z, Nguyen NT, Liebers M, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33: 187–97.
    • (2015) Nat Biotechnol , vol.33 , pp. 187-197
    • Tsai, S.Q.1    Zheng, Z.2    Nguyen, N.T.3    Liebers, M.4
  • 85
    • 84923275611 scopus 로고    scopus 로고
    • Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
    • Frock RL, Hu J, Meyers RM, Ho Y-JJ, et al. 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33: 179–86.
    • (2015) Nat Biotechnol , vol.33 , pp. 179-186
    • Frock, R.L.1    Hu, J.2    Meyers, R.M.3    Ho, Y.-J.J.4
  • 86
    • 84923846574 scopus 로고    scopus 로고
    • Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
    • Kim D, Bae S, Park J, Kim E, et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12: 237–43.
    • (2015) Nat Methods , vol.12 , pp. 237-243
    • Kim, D.1    Bae, S.2    Park, J.3    Kim, E.4
  • 87
    • 80053558376 scopus 로고    scopus 로고
    • Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
    • Chiarle R, Zhang Y, Frock RL, Lewis SM, et al. 2011. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147: 107–19.
    • (2011) Cell , vol.147 , pp. 107-119
    • Chiarle, R.1    Zhang, Y.2    Frock, R.L.3    Lewis, S.M.4
  • 88
    • 36749052217 scopus 로고    scopus 로고
    • High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR)
    • Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, et al. 2007. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4: 1051–7.
    • (2007) Nat Methods , vol.4 , pp. 1051-1057
    • Schmidt, M.1    Schwarzwaelder, K.2    Bartholomae, C.3    Zaoui, K.4
  • 90
    • 84878580410 scopus 로고    scopus 로고
    • TALEN-based gene correction for epidermolysis bullosa
    • Osborn MJ, Starker CG, McElroy AN, Webber BR, et al. 2013. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 21: 1151–9.
    • (2013) Mol Ther , vol.21 , pp. 1151-1159
    • Osborn, M.J.1    Starker, C.G.2    McElroy, A.N.3    Webber, B.R.4
  • 91
    • 84928054835 scopus 로고    scopus 로고
    • Genome editing at the crossroads of delivery, specificity, and fidelity
    • Maggio I, Gonçalves MA. 2015. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 33: 280–91.
    • (2015) Trends Biotechnol , vol.33 , pp. 280-291
    • Maggio, I.1    Gonçalves, M.A.2
  • 92
    • 84908508061 scopus 로고    scopus 로고
    • Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    • Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–73.
    • (2014) Nature , vol.513 , pp. 569-573
    • Anders, C.1    Niewoehner, O.2    Duerst, A.3    Jinek, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.