-
1
-
-
39849109338
-
Autophagy fi ghts disease through cellular self-digestion
-
Mizushima, N., B. Levine, A. M. Cuervo, and D. J. Klionsky. 2008. Autophagy fi ghts disease through cellular self-digestion. Nature. 451: 1069-1075.
-
(2008)
Nature.
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
2
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine, B., and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell. 132: 27-42.
-
(2008)
Cell.
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
4
-
-
81055140893
-
Feedback on fat: P62-mTORC1-autophagy connections
-
Moscat, J., and M. T. Diaz-Meco. 2011. Feedback on fat: p62-mTORC1-autophagy connections. Cell. 147: 724-727.
-
(2011)
Cell.
, vol.147
, pp. 724-727
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
5
-
-
36249025723
-
Autophagy: Process and function
-
Mizushima, N. 2007. Autophagy: process and function. Genes Dev. 21: 2861-2873.
-
(2007)
Genes Dev.
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
6
-
-
40449139980
-
The itinerary of autophagosomes: From peripheral formation to kiss-and-run fusion with lysosomes
-
Jahreiss, L., F. M. Menzies, and D. C. Rubinsztein. 2008. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffi c. 9: 574-587.
-
(2008)
Traffi C.
, vol.9
, pp. 574-587
-
-
Jahreiss, L.1
Menzies, F.M.2
Rubinsztein, D.C.3
-
7
-
-
77956404377
-
Eaten alive: A history of macroautophagy
-
Yang, Z., and D. J. Klionsky. 2010. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12: 814-822.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
8
-
-
79955631150
-
Autophagy in the cellular energetic balance
-
Singh, R., and A. M. Cuervo. 2011. Autophagy in the cellular energetic balance. Cell Metab. 13: 495-504.
-
(2011)
Cell Metab.
, vol.13
, pp. 495-504
-
-
Singh, R.1
Cuervo, A.M.2
-
9
-
-
79551634458
-
Autophagy in tumorigenesis and energy metabolism: Friend by day, foe by night
-
Mathew, R., and E. White. 2011. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr. Opin. Genet. Dev. 21: 113-119.
-
(2011)
Curr. Opin. Genet. Dev.
, vol.21
, pp. 113-119
-
-
Mathew, R.1
White, E.2
-
10
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh, R., S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A. M. Cuervo, and M. J. Czaja. 2009. Autophagy regulates lipid metabolism. Nature. 458: 1131-1135.
-
(2009)
Nature.
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
11
-
-
77955789211
-
Altered lipid content inhibits autophagic vesicular fusion
-
Koga, H., S. Kaushik, and A. M. Cuervo. 2010. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24: 3052-3065.
-
(2010)
FASEB J.
, vol.24
, pp. 3052-3065
-
-
Koga, H.1
Kaushik, S.2
Cuervo, A.M.3
-
12
-
-
33646168160
-
Lipid droplets: A unifi ed view of a dynamic organelle
-
Martin, S., and R. G. Parton. 2006. Lipid droplets: a unifi ed view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7: 373-378.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 373-378
-
-
Martin, S.1
Parton, R.G.2
-
13
-
-
48749110651
-
Lipid droplets: A classic organelle with new outfi ts
-
Fujimoto, T., Y. Ohsaki, J. Cheng, M. Suzuki, and Y. Shinohara. 2008. Lipid droplets: a classic organelle with new outfi ts. Histochem. Cell Biol. 130: 263-279.
-
(2008)
Histochem. Cell Biol.
, vol.130
, pp. 263-279
-
-
Fujimoto, T.1
Ohsaki, Y.2
Cheng, J.3
Suzuki, M.4
Shinohara, Y.5
-
14
-
-
77951464621
-
Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: Pathophysiological implications
-
Czaja, M. J. 2010. Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. Am. J. Physiol. Cell Physiol. 298: C973-C978.
-
(2010)
Am. J. Physiol. Cell Physiol.
, vol.298
-
-
Czaja, M.J.1
-
15
-
-
0035424239
-
The role of phosphoinositides in membrane transport
-
Simonsen, A., A. E. Wurmser, S. D. Emr, and H. Stenmark. 2001. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13: 485-492.
-
(2001)
Curr. Opin. Cell Biol.
, vol.13
, pp. 485-492
-
-
Simonsen, A.1
Wurmser, A.E.2
Emr, S.D.3
Stenmark, H.4
-
16
-
-
77956178575
-
Regulation of membrane biogenesis in autophagy via PI3P dynamics
-
Noda, T., K. Matsunaga, N. Taguchi-Atarashi, and T. Yoshimori. 2010. Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin. Cell Dev. Biol. 21: 671-676.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 671-676
-
-
Noda, T.1
Matsunaga, K.2
Taguchi-Atarashi, N.3
Yoshimori, T.4
-
17
-
-
84856275868
-
PtdIns 3-kinase orchestrates autophagosome formation in yeast
-
Obara, K., and Y. Ohsumi. 2011. PtdIns 3-kinase orchestrates autophagosome formation in yeast. J. Lipids. 2011: 498768.
-
(2011)
J. Lipids. 2011
, pp. 498768
-
-
Obara, K.1
Ohsumi, Y.2
-
18
-
-
0005677775
-
3-Methyladenine: Specifi c inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
-
Seglen, P. O., and P. B. Gordon. 1982. 3-Methyladenine: specifi c inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA. 79: 1889-1892.
-
(1982)
Proc. Natl. Acad. Sci. USA.
, vol.79
, pp. 1889-1892
-
-
Seglen, P.O.1
Gordon, P.B.2
-
19
-
-
8044257699
-
The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes
-
Blommaart, E. F., U. Krause, J. P. Schellens, H. Vreeling-Sindelarova, and A. J. Meijer. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243: 240-246.
-
(1997)
Eur. J. Biochem.
, vol.243
, pp. 240-246
-
-
Blommaart, E.F.1
Krause, U.2
Schellens, J.P.3
Vreeling-Sindelarova, H.4
Meijer, A.J.5
-
20
-
-
0033978633
-
Distinct classes of phosphatidylinositol 3 ?OElig;-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
-
Petiot, A., E. Ogier-Denis, E. F. Blommaart, A. J. Meijer, and P. Codogno. 2000. Distinct classes of phosphatidylinositol 3 ?OElig;-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275: 992-998.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 992-998
-
-
Petiot, A.1
Ogier-Denis, E.2
Blommaart, E.F.3
Meijer, A.J.4
Codogno, P.5
-
21
-
-
0035809160
-
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae
-
Kihara, A., T. Noda, N. Ishihara, and Y. Ohsumi. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152: 519-530.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 519-530
-
-
Kihara, A.1
Noda, T.2
Ishihara, N.3
Ohsumi, Y.4
-
22
-
-
53549100450
-
Dynamics and function of PtdIns(3)P in autophagy
-
Obara, K., and Y. Ohsumi. 2008. Dynamics and function of PtdIns(3)P in autophagy. Autophagy. 4: 952-954.
-
(2008)
Autophagy.
, vol.4
, pp. 952-954
-
-
Obara, K.1
Ohsumi, Y.2
-
23
-
-
27644466759
-
Autophagy and signaling: Their role in cell survival and cell death
-
Codogno, P., and A. J. Meijer. 2005. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 ( Suppl. 2 ): 1509-1518.
-
(2005)
Cell Death Differ.
, vol.12 SUPPL. 2
, pp. 1509-1518
-
-
Codogno, P.1
Meijer, A.J.2
-
24
-
-
0034722378
-
Dissection of autophagosome biogenesis into distinct nucleation and expansion steps
-
Abeliovich, H., W. A. Dunn, Jr., J. Kim, and D. J. Klionsky. 2000. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J. Cell Biol. 151: 1025-1034.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 1025-1034
-
-
Abeliovich, H.1
Dunn Jr., W.A.2
Kim, J.3
Klionsky, D.J.4
-
25
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14L and UVRAG
-
Itakura, E., C. Kishi, K. Inoue, and N. Mizushima. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14L and UVRAG. Mol. Biol. Cell. 19: 5360-5372.
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
26
-
-
64049086758
-
Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
-
Matsunaga, K., T. Saitoh, K. Tabata, H. Omori, T. Satoh, N. Kurotori, I. Maejima, K. Shirahama-Noda, T. Ichimura, T. Isobe, et al. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11: 385-396.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 385-396
-
-
Matsunaga, K.1
Saitoh, T.2
Tabata, K.3
Omori, H.4
Satoh, T.5
Kurotori, N.6
Maejima, I.7
Shirahama-Noda, K.8
Ichimura, T.9
Isobe, T.10
-
27
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong, Y., Q. J. Wang, X. Li, Y. Yan, J. M. Backer, B. T. Chait, N. Heintz, and Z. Yue. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11: 468-476.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
Chait, B.T.6
Heintz, N.7
Yue, Z.8
-
28
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
Pattingre, S., A. Tassa, X. Qu, R. Garuti, X. H. Liang, N. Mizushima, M. Packer, M. D. Schneider, and B. Levine. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122: 927-939.
-
(2005)
Cell.
, vol.122
, pp. 927-939
-
-
Pattingre, S.1
Tassa, A.2
Qu, X.3
Garuti, R.4
Liang, X.H.5
Mizushima, N.6
Packer, M.7
Schneider, M.D.8
Levine, B.9
-
29
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
Matsunaga, K., E. Morita, T. Saitoh, S. Akira, N. T. Ktistakis, T. Izumi, T. Noda, and T. Yoshimori. 2010. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 190: 511-521.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
Akira, S.4
Ktistakis, N.T.5
Izumi, T.6
Noda, T.7
Yoshimori, T.8
-
30
-
-
77950903972
-
The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
-
Filimonenko, M., P. Isakson, K. D. Finley, M. Anderson, H. Jeong, T. J. Melia, B. J. Bartlett, K. M. Myers, H. C. Birkeland, T. Lamark, et al. 2010. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell. 38: 265-279.
-
(2010)
Mol. Cell.
, vol.38
, pp. 265-279
-
-
Filimonenko, M.1
Isakson, P.2
Finley, K.D.3
Anderson, M.4
Jeong, H.5
Melia, T.J.6
Bartlett, B.J.7
Myers, K.M.8
Birkeland, H.C.9
Lamark, T.10
-
31
-
-
4944247868
-
Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes
-
Simonsen, A., H. C. Birkeland, D. J. Gillooly, N. Mizushima, A. Kuma, T. Yoshimori, T. Slagsvold, A. Brech, and H. Stenmark. 2004. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J. Cell Sci. 117: 4239-4251.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 4239-4251
-
-
Simonsen, A.1
Birkeland, H.C.2
Gillooly, D.J.3
Mizushima, N.4
Kuma, A.5
Yoshimori, T.6
Slagsvold, T.7
Brech, A.8
Stenmark, H.9
-
32
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E. L., S. A. Walker, M. Manifava, P. Chandra, H. L. Roderick, A. Habermann, G. Griffi ths, and N. T. Ktistakis. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182: 685-701.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffi Ths, G.7
Ktistakis, N.T.8
-
33
-
-
2542450910
-
PtdIns-specifi c MPR pathway association of a novel WD40 repeat protein, WIPI49
-
Jeffries, T. R., S. K. Dove, R. H. Michell, and P. J. Parker. 2004. PtdIns-specifi c MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol. Biol. Cell. 15: 2652-2663.
-
(2004)
Mol. Biol. Cell.
, vol.15
, pp. 2652-2663
-
-
Jeffries, T.R.1
Dove, S.K.2
Michell, R.H.3
Parker, P.J.4
-
34
-
-
11244289333
-
WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy
-
Proikas-Cezanne, T., S. Waddell, A. Gaugel, T. Frickey, A. Lupas, and A. Nordheim. 2004. WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene. 23: 9314-9325.
-
(2004)
Oncogene.
, vol.23
, pp. 9314-9325
-
-
Proikas-Cezanne, T.1
Waddell, S.2
Gaugel, A.3
Frickey, T.4
Lupas, A.5
Nordheim, A.6
-
35
-
-
84355162283
-
Canonical and non-canonical autophagy: Variations on a common theme of self-eating?
-
Codogno, P., M. Mehrpour, and T. Proikas-Cezanne. 2012. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13: 7-12.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 7-12
-
-
Codogno, P.1
Mehrpour, M.2
Proikas-Cezanne, T.3
-
36
-
-
80052145824
-
Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes
-
Proikas-Cezanne, T., and H. Robenek. 2011. Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J. Cell. Mol. Med. 15: 2007-2010.
-
(2011)
J. Cell. Mol. Med.
, vol.15
, pp. 2007-2010
-
-
Proikas-Cezanne, T.1
Robenek, H.2
-
37
-
-
34447276502
-
Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy
-
Proikas-Cezanne, T., S. Ruckerbauer, Y. D. Stierhof, C. Berg, and A. Nordheim. 2007. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett. 581: 3396-3404.
-
(2007)
FEBS Lett.
, vol.581
, pp. 3396-3404
-
-
Proikas-Cezanne, T.1
Ruckerbauer, S.2
Stierhof, Y.D.3
Berg, C.4
Nordheim, A.5
-
38
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
Polson, H. E., J. de Lartigue, D. J. Rigden, M. Reedijk, S. Urb́, M. J. Clague, and S. A. Tooze. 2010. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 6: 506-522.
-
(2010)
Autophagy.
, vol.6
, pp. 506-522
-
-
Polson, H.E.1
De Lartigue, J.2
Rigden, D.J.3
Reedijk, M.4
Urb́, S.5
Clague, M.J.6
Tooze, S.A.7
-
39
-
-
82855170845
-
Resveratrol-mediated autophagy requires WIPI-1 regulated LC3 lipidation in the absence of induced phagophore formation
-
Mauthe, M., A. Jacob, S. Freiberger, K. Hentschel, Y. D. Stierhof, P. Codogno, and T. Proikas-Cezanne. 2011. Resveratrol-mediated autophagy requires WIPI-1 regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy. 7: 1448-1461.
-
(2011)
Autophagy.
, vol.7
, pp. 1448-1461
-
-
Mauthe, M.1
Jacob, A.2
Freiberger, S.3
Hentschel, K.4
Stierhof, Y.D.5
Codogno, P.6
Proikas-Cezanne, T.7
-
40
-
-
0035839430
-
Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways
-
Wang, C. W., J. Kim, W. P. Huang, H. Abeliovich, P. E. Stromhaug, W. A. Dunn, Jr., and D. J. Klionsky. 2001. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem. 276: 30442-30451.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30442-30451
-
-
Wang, C.W.1
Kim, J.2
Huang, W.P.3
Abeliovich, H.4
Stromhaug, P.E.5
Dunn Jr., W.A.6
Klionsky, D.J.7
-
41
-
-
0035839551
-
Apg2p functions in autophagosome formation on the perivacuolar structure
-
Shintani, T., K. Suzuki, Y. Kamada, T. Noda, and Y. Ohsumi. 2001. Apg2p functions in autophagosome formation on the perivacuolar structure. J. Biol. Chem. 276: 30452-30460.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30452-30460
-
-
Shintani, T.1
Suzuki, K.2
Kamada, Y.3
Noda, T.4
Ohsumi, Y.5
-
42
-
-
0346503885
-
The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure
-
Reggiori, F., K. A. Tucker, P. E. Stromhaug, and D. J. Klionsky. 2004. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell. 6: 79-90.
-
(2004)
Dev. Cell.
, vol.6
, pp. 79-90
-
-
Reggiori, F.1
Tucker, K.A.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
43
-
-
53049102656
-
The ATG18-ATG2 complex is recruited to autophagic membranes via PtdIns(3)P and exerts an essential function
-
Obara, K., T. Sekito, K. Niimi, and Y. Ohsumi. 2008. The ATG18-ATG2 complex is recruited to autophagic membranes via PtdIns(3)P and exerts an essential function. J. Biol. Chem.
-
(2008)
J. Biol. Chem.
-
-
Obara, K.1
Sekito, T.2
Niimi, K.3
Ohsumi, Y.4
-
44
-
-
84864282281
-
Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2
-
Kobayashi, T., K. Suzuki, and Y. Ohsumi. 2012. Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett. 586: 2473-2478.
-
(2012)
FEBS Lett.
, vol.586
, pp. 2473-2478
-
-
Kobayashi, T.1
Suzuki, K.2
Ohsumi, Y.3
-
45
-
-
84857844643
-
Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
-
Velikkakath, A. K., T. Nishimura, E. Oita, N. Ishihara, and N. Mizushima. 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell. 23: 896-909.
-
(2012)
Mol. Biol. Cell.
, vol.23
, pp. 896-909
-
-
Velikkakath, A.K.1
Nishimura, T.2
Oita, E.3
Ishihara, N.4
Mizushima, N.5
-
46
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino, M., N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto. 2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11: 1433-1437.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
47
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Ylä-Anttila, P., H. Vihinen, E. Jokitalo, and E. L. Eskelinen. 2009. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 5: 1180-1185.
-
(2009)
Autophagy.
, vol.5
, pp. 1180-1185
-
-
Ylä-Anttila, P.1
Vihinen, H.2
Jokitalo, E.3
Eskelinen, E.L.4
-
48
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze, S. A., and T. Yoshimori. 2010. The origin of the autophagosomal membrane. Nat. Cell Biol. 12: 831-835.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
49
-
-
81555210958
-
Ca 2+ /calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy
-
Pfisterer, S. G., M. Mauthe, P. Codogno, and T. Proikas-Cezanne. 2011. Ca 2+ /calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol. Pharmacol. 80: 1066-1075.
-
(2011)
Mol. Pharmacol.
, vol.80
, pp. 1066-1075
-
-
Pfisterer, S.G.1
Mauthe, M.2
Codogno, P.3
Proikas-Cezanne, T.4
-
50
-
-
59249106796
-
Assessing mammalian autophagy by WIPI-1/Atg18 puncta formation
-
Proikas-Cezanne, T., and S. G. Pfisterer. 2009. Assessing mammalian autophagy by WIPI-1/Atg18 puncta formation. Methods Enzymol. 452: 247-260.
-
(2009)
Methods Enzymol.
, vol.452
, pp. 247-260
-
-
Proikas-Cezanne, T.1
Pfisterer, S.G.2
-
51
-
-
38649132870
-
Recent advances in freeze-fracture electron microscopy: The replica immunolabeling technique
-
Robenek, H., and N. J. Severs. 2008. Recent advances in freeze-fracture electron microscopy: the replica immunolabeling technique. Biol. Proced. Online. 10: 9-19.
-
(2008)
Biol. Proced. Online.
, vol.10
, pp. 9-19
-
-
Robenek, H.1
Severs, N.J.2
-
52
-
-
68149179047
-
GFP-tagged proteins visualized by freeze-fracture immunoelectron microscopy: A new tool in cellular and molecular medicine
-
Robenek, H., I. Buers, O. Hofnagel, S. Lorkowski, and N. J. Severs. 2009. GFP-tagged proteins visualized by freeze-fracture immunoelectron microscopy: a new tool in cellular and molecular medicine. J. Cell. Mol. Med. 13: 1381-1390.
-
(2009)
J. Cell. Mol. Med.
, vol.13
, pp. 1381-1390
-
-
Robenek, H.1
Buers, I.2
Hofnagel, O.3
Lorkowski, S.4
Severs, N.J.5
-
53
-
-
22544445888
-
Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains
-
Robenek, H., M. J. Robenek, I. Buers, S. Lorkowski, O. Hofnagel, D. Troyer, and N. J. Severs. 2005. Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J. Biol. Chem. 280: 26330-26338.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26330-26338
-
-
Robenek, H.1
Robenek, M.J.2
Buers, I.3
Lorkowski, S.4
Hofnagel, O.5
Troyer, D.6
Severs, N.J.7
-
54
-
-
33645500652
-
Identifi cation of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1
-
Britschgi, C., M. Rizzi, T. J. Grob, M. P. Tschan, B. Hugli, V. A. Reddy, A. C. Andres, B. E. Torbett, A. Tobler, and M. F. Fey. 2006. Identifi cation of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene. 25: 2030-2039.
-
(2006)
Oncogene.
, vol.25
, pp. 2030-2039
-
-
Britschgi, C.1
Rizzi, M.2
Grob, T.J.3
Tschan, M.P.4
Hugli, B.5
Reddy, V.A.6
Andres, A.C.7
Torbett, B.E.8
Tobler, A.9
Fey, M.F.10
-
55
-
-
77649191722
-
NDRG1/2 expression is inhibited in primary acute myeloid leukemia
-
Tschan, M. P., D. Shan, J. Laedrach, M. Eyholzer, E. O. Leibundgut, G. M. Baerlocher, A. Tobler, D. Stroka, and M. F. Fey. 2010. NDRG1/2 expression is inhibited in primary acute myeloid leukemia. Leuk. Res. 34: 393-398.
-
(2010)
Leuk. Res.
, vol.34
, pp. 393-398
-
-
Tschan, M.P.1
Shan, D.2
Laedrach, J.3
Eyholzer, M.4
Leibundgut, E.O.5
Baerlocher, G.M.6
Tobler, A.7
Stroka, D.8
Fey, M.F.9
-
56
-
-
0034141535
-
Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells
-
Yu, W., J. Cassara, and P. F. Weller. 2000. Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood. 95: 1078-1085.
-
(2000)
Blood.
, vol.95
, pp. 1078-1085
-
-
Yu, W.1
Cassara, J.2
Weller, P.F.3
-
57
-
-
10044222704
-
CLANS: A Java application for visualizing protein families based on pairwise similarity
-
Frickey, T., and A. Lupas. 2004. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics. 20: 3702-3704.
-
(2004)
Bioinformatics.
, vol.20
, pp. 3702-3704
-
-
Frickey, T.1
Lupas, A.2
-
58
-
-
0030724392
-
Adipose differentiationrelated protein is an ubiquitously expressed lipid storage dropletassociated protein
-
Brasaemle, D. L., T. Barber, N. E. Wolins, G. Serrero, E. J. Blanchette-Mackie, and C. Londos. 1997. Adipose differentiationrelated protein is an ubiquitously expressed lipid storage dropletassociated protein. J. Lipid Res. 38: 2249-2263.
-
(1997)
J. Lipid Res.
, vol.38
, pp. 2249-2263
-
-
Brasaemle, D.L.1
Barber, T.2
Wolins, N.E.3
Serrero, G.4
Blanchette-Mackie, E.J.5
Londos, C.6
-
59
-
-
30044445455
-
Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway
-
Xu, G., C. Sztalryd, X. Lu, J. T. Tansey, J. Gan, H. Dorward, A. R. Kimmel, and C. Londos. 2005. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 280: 42841-42847.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 42841-42847
-
-
Xu, G.1
Sztalryd, C.2
Lu, X.3
Tansey, J.T.4
Gan, J.5
Dorward, H.6
Kimmel, A.R.7
Londos, C.8
-
60
-
-
70449769682
-
Lipid droplets fi nally get a little R-E-S-P-E-C-T
-
Farese, R. V., Jr., and T. C. Walther. 2009. Lipid droplets fi nally get a little R-E-S-P-E-C-T. Cell. 139: 855-860.
-
(2009)
Cell.
, vol.139
, pp. 855-860
-
-
Farese Jr., R.V.1
Walther, T.C.2
-
61
-
-
63349104160
-
The MAP1-LC3 conjugation system is involved in lipid droplet formation
-
Shibata, M., K. Yoshimura, N. Furuya, M. Koike, T. Ueno, M. Komatsu, H. Arai, K. Tanaka, E. Kominami, and Y. Uchiyama. 2009. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382: 419-423.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.382
, pp. 419-423
-
-
Shibata, M.1
Yoshimura, K.2
Furuya, N.3
Koike, M.4
Ueno, T.5
Komatsu, M.6
Arai, H.7
Tanaka, K.8
Kominami, E.9
Uchiyama, Y.10
-
62
-
-
35548956009
-
Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy
-
Hellerer, T., C. Axang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder. 2007. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc. Natl. Acad. Sci. USA. 104: 14658-14663.
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 14658-14663
-
-
Hellerer, T.1
Axang, C.2
Brackmann, C.3
Hillertz, P.4
Pilon, M.5
Enejder, A.6
-
63
-
-
0001104583
-
Genetic and environmental regulation of dauer larva development
-
D. L. Riddle, T. Blumenthal, B. J. Meyer, and J. R. Priess, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Riddle, D. L., and P. S. Albert. 1997. Genetic and environmental regulation of dauer larva development. In C. elegans II. 2nd edition. D. L. Riddle, T. Blumenthal, B. J. Meyer, and J. R. Priess, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Chapter 26.
-
(1997)
C. Elegans. II. 2nd Edition.
, vol.26
-
-
Riddle, D.L.1
Albert, P.S.2
-
66
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh, R., Y. Xiang, Y. Wang, K. Baikati, A. M. Cuervo, Y. K. Luu, Y. Tang, J. E. Pessin, G. J. Schwartz, and M. J. Czaja. 2009. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119: 3329-3339.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
Baikati, K.4
Cuervo, A.M.5
Luu, Y.K.6
Tang, Y.7
Pessin, J.E.8
Schwartz, G.J.9
Czaja, M.J.10
-
67
-
-
0030762073
-
SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals
-
Brickner, J. H., and R. S. Fuller. 1997. SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. J. Cell Biol. 139: 23-36.
-
(1997)
J. Cell Biol.
, vol.139
, pp. 23-36
-
-
Brickner, J.H.1
Fuller, R.S.2
-
68
-
-
84869118647
-
VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae
-
Park, J. S., and A. M. Neiman. 2012. VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae. J. Cell Sci. 125: 3004-3011.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 3004-3011
-
-
Park, J.S.1
Neiman, A.M.2
-
69
-
-
0034972973
-
A conserved sorting-associated protein is mutant in chorea-acanthocytosis
-
Rampoldi, L., C. Dobson-Stone, J. P. Rubio, A. Danek, R. M. Chalmers, N. W. Wood, C. Verellen, X. Ferrer, A. Malandrini, G. M. Fabrizi, et al. 2001. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat. Genet. 28: 119-120.
-
(2001)
Nat. Genet.
, vol.28
, pp. 119-120
-
-
Rampoldi, L.1
Dobson-Stone, C.2
Rubio, J.P.3
Danek, A.4
Chalmers, R.M.5
Wood, N.W.6
Verellen, C.7
Ferrer, X.8
Malandrini, A.9
Fabrizi, G.M.10
-
70
-
-
0038353767
-
Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport
-
Kolehmainen, J., G. C. Black, A. Saarinen, K. Chandler, J. Clayton-Smith, A. L. Traskelin, R. Perveen, S. Kivitie-Kallio, R. Norio, M. Warburg, et al. 2003. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am. J. Hum. Genet. 72: 1359-1369.
-
(2003)
Am. J. Hum. Genet.
, vol.72
, pp. 1359-1369
-
-
Kolehmainen, J.1
Black, G.C.2
Saarinen, A.3
Chandler, K.4
Clayton-Smith, J.5
Traskelin, A.L.6
Perveen, R.7
Kivitie-Kallio, S.8
Norio, R.9
Warburg, M.10
|