-
1
-
-
84942585419
-
Regulation of innate immune cell function by mTOR
-
Weichhart T, Hengstschläger M, Linke M. Regulation of innate immune cell function by mTOR. Nat Rev Immunol (2015) 15(10):599-614. doi:10.1038/nri3901
-
(2015)
Nat Rev Immunol
, vol.15
, Issue.10
, pp. 599-614
-
-
Weichhart, T.1
Hengstschläger, M.2
Linke, M.3
-
2
-
-
84906971768
-
Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase a (IKKa)
-
Dan HC, Ebbs A, Pasparakis M, Van Dyke T, Basseres DS, Baldwin AS. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase a (IKKa). J Biol Chem (2014) 289(36):25227-40. doi:10.1074/jbc.M114.554881
-
(2014)
J Biol Chem
, vol.289
, Issue.36
, pp. 25227-25240
-
-
Dan, H.C.1
Ebbs, A.2
Pasparakis, M.3
Van Dyke, T.4
Basseres, D.S.5
Baldwin, A.S.6
-
3
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E, Lee S-I, Bandhakavi S, Griffin TJ, Kim D-H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol (2007) 9(3):316-23. doi:10.1038/ncb1547
-
(2007)
Nat Cell Biol
, vol.9
, Issue.3
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.-I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.-H.5
-
4
-
-
33750068623
-
mTOR, translation initiation and cancer
-
Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation initiation and cancer. Oncogene (2006) 25(48):6416-22. doi:10.1038/sj.onc.1209888
-
(2006)
Oncogene
, vol.25
, Issue.48
, pp. 6416-6422
-
-
Mamane, Y.1
Petroulakis, E.2
LeBacquer, O.3
Sonenberg, N.4
-
5
-
-
0037662713
-
Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
-
Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J (2003) 372(Pt 2):555-66. doi:10.1042/bj20021266
-
(2003)
Biochem J
, vol.372
, pp. 555-566
-
-
Beugnet, A.1
Tee, A.R.2
Taylor, P.M.3
Proud, C.G.4
-
6
-
-
4043171462
-
Upstream and downstream of mTOR
-
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev (2004) 18(16):1926-45. doi:10.1101/gad.1212704
-
(2004)
Genes Dev
, vol.18
, Issue.16
, pp. 1926-1945
-
-
Hay, N.1
Sonenberg, N.2
-
7
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell (2011) 144(5):757-68. doi:10.1016/j.cell.2011.02.014
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
8
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell (2006) 11(6):859-71. doi:10.1016/j.devcel.2006.10.007
-
(2006)
Dev Cell
, vol.11
, Issue.6
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
-
9
-
-
79958068761
-
mTORC2 is required for proliferation and survival of TSC2-null cells
-
Goncharova EA, Goncharov DA, Li H, Pimtong W, Lu S, Khavin I, et al. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol Cell Biol (2011) 31(12):2484-98. doi:10.1128/MCB.01061-10
-
(2011)
Mol Cell Biol
, vol.31
, Issue.12
, pp. 2484-2498
-
-
Goncharova, E.A.1
Goncharov, D.A.2
Li, H.3
Pimtong, W.4
Lu, S.5
Khavin, I.6
-
10
-
-
0030010183
-
Immunopharmacology of rapamycin
-
Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol (1996) 14:483-510. doi:10.1146/annurev.immunol.14.1.483
-
(1996)
Annu Rev Immunol
, vol.14
, pp. 483-510
-
-
Abraham, R.T.1
Wiederrecht, G.J.2
-
11
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen J-H, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell (2006) 22(2):159-68. doi:10.1016/j.molcel.2006.03.029
-
(2006)
Mol Cell
, vol.22
, Issue.2
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.-H.4
Hsu, P.P.5
Bagley, A.F.6
-
12
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (2005) 307(5712):1098-101. doi:10.1126/science.1106148
-
(2005)
Science
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
13
-
-
66449106340
-
Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition
-
Breuleux M, Klopfenstein M, Stephan C, Doughty CA, Barys L, Maira S-M, et al. Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther (2009) 8(4):742-53. doi:10.1158/1535-7163.MCT-08-0668
-
(2009)
Mol Cancer Ther
, vol.8
, Issue.4
, pp. 742-753
-
-
Breuleux, M.1
Klopfenstein, M.2
Stephan, C.3
Doughty, C.A.4
Barys, L.5
Maira, S.-M.6
-
14
-
-
84947023702
-
A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation
-
Yang G, Murashige DS, Humphrey SJ, James DE. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep (2015) 12(6):937-43. doi:10.1016/j.celrep.2015.07.016
-
(2015)
Cell Rep
, vol.12
, Issue.6
, pp. 937-943
-
-
Yang, G.1
Murashige, D.S.2
Humphrey, S.J.3
James, D.E.4
-
15
-
-
28344447599
-
Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A
-
Pim D, Massimi P, Dilworth SM, Banks L. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene (2005) 24(53):7830-8. doi:10.1038/sj.onc.1208935
-
(2005)
Oncogene
, vol.24
, Issue.53
, pp. 7830-7838
-
-
Pim, D.1
Massimi, P.2
Dilworth, S.M.3
Banks, L.4
-
16
-
-
77956024826
-
The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis
-
Spangle JM, Münger K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol (2010) 84(18):9398-407. doi:10.1128/JVI.00974-10
-
(2010)
J Virol
, vol.84
, Issue.18
, pp. 9398-9407
-
-
Spangle, J.M.1
Münger, K.2
-
17
-
-
17444368316
-
Modulation of the cell growth regulator mTOR by Epstein-Barr virus-encoded LMP2A
-
Moody CA, Scott RS, Amirghahari N, Nathan C-A, Young LS, Dawson CW, et al. Modulation of the cell growth regulator mTOR by Epstein-Barr virus-encoded LMP2A. J Virol (2005) 79(9):5499-506. doi:10.1128/JVI.79.9.5499-5506.2005
-
(2005)
J Virol
, vol.79
, Issue.9
, pp. 5499-5506
-
-
Moody, C.A.1
Scott, R.S.2
Amirghahari, N.3
Nathan, C.-A.4
Young, L.S.5
Dawson, C.W.6
-
18
-
-
17144403770
-
Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication
-
O'Shea C, Klupsch K, Choi S, Bagus B, Soria C, Shen J, et al. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J (2005) 24(6):1211-21. doi:10.1038/sj.emboj.7600597
-
(2005)
EMBO J
, vol.24
, Issue.6
, pp. 1211-1221
-
-
O'Shea, C.1
Klupsch, K.2
Choi, S.3
Bagus, B.4
Soria, C.5
Shen, J.6
-
19
-
-
54949109311
-
The TSC-mTOR signaling pathway regulates the innate inflammatory response
-
Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity (2008) 29(4):565-77. doi:10.1016/j.immuni.2008.08.012
-
(2008)
Immunity
, vol.29
, Issue.4
, pp. 565-577
-
-
Weichhart, T.1
Costantino, G.2
Poglitsch, M.3
Rosner, M.4
Zeyda, M.5
Stuhlmeier, K.M.6
-
20
-
-
4644252994
-
Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase
-
Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol (2004) 78(20):11030-9. doi:10.1128/JVI.78.20.11030-11039.2004
-
(2004)
J Virol
, vol.78
, Issue.20
, pp. 11030-11039
-
-
Kudchodkar, S.B.1
Yu, Y.2
Maguire, T.G.3
Alwine, J.C.4
-
21
-
-
79955054747
-
Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection
-
Jaramillo M, Gomez MA, Larsson O, Shio MT, Topisirovic I, Contreras I, et al. Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe (2011) 9(4):331-41. doi:10.1016/j.chom.2011.03.008
-
(2011)
Cell Host Microbe
, vol.9
, Issue.4
, pp. 331-341
-
-
Jaramillo, M.1
Gomez, M.A.2
Larsson, O.3
Shio, M.T.4
Topisirovic, I.5
Contreras, I.6
-
22
-
-
84928485213
-
Autophagy stimulation abrogates herpes simplex virus-1 infection
-
Yakoub AM, Shukla D. Autophagy stimulation abrogates herpes simplex virus-1 infection. Sci Rep (2015) 5:9730. doi:10.1038/srep09730
-
(2015)
Sci Rep
, vol.5
, pp. 9730
-
-
Yakoub, A.M.1
Shukla, D.2
-
23
-
-
84920504512
-
mTOR: a pharmacologic target for autophagy regulation
-
Kim YC, Guan K-L. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest (2015) 125(1):25-32. doi:10.1172/JCI73939
-
(2015)
J Clin Invest
, vol.125
, Issue.1
, pp. 25-32
-
-
Kim, Y.C.1
Guan, K.-L.2
-
24
-
-
84888881200
-
Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures
-
Tattoli I, Sorbara MT, Yang C, Tooze SA, Philpott DJ, Girardin SE. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J (2013) 32(23):3066-78. doi:10.1038/emboj.2013.234
-
(2013)
EMBO J
, vol.32
, Issue.23
, pp. 3066-3078
-
-
Tattoli, I.1
Sorbara, M.T.2
Yang, C.3
Tooze, S.A.4
Philpott, D.J.5
Girardin, S.E.6
-
25
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell (2004) 119(6):753-66. doi:10.1016/j.cell.2004.11.038
-
(2004)
Cell
, vol.119
, Issue.6
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
26
-
-
84938866111
-
Basal autophagy is required for herpes simplex virus-2 infection
-
Yakoub AM, Shukla D. Basal autophagy is required for herpes simplex virus-2 infection. Sci Rep (2015) 5:12985. doi:10.1038/srep12985
-
(2015)
Sci Rep
, vol.5
, pp. 12985
-
-
Yakoub, A.M.1
Shukla, D.2
-
27
-
-
84862301902
-
Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program
-
Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LAM, et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe (2012) 11(6):563-75. doi:10.1016/j.chom.2012.04.012
-
(2012)
Cell Host Microbe
, vol.11
, Issue.6
, pp. 563-575
-
-
Tattoli, I.1
Sorbara, M.T.2
Vuckovic, D.3
Ling, A.4
Soares, F.5
Carneiro, L.A.M.6
-
28
-
-
84911868012
-
Baicalin inhibits autophagy induced by influenza A virus H3N2
-
Zhu H, Han L, Shi X, Wang B, Huang H, Wang X, et al. Baicalin inhibits autophagy induced by influenza A virus H3N2. Antiviral Res (2015) 113:62-70. doi:10.1016/j.antiviral.2014.11.003
-
(2015)
Antiviral Res
, vol.113
, pp. 62-70
-
-
Zhu, H.1
Han, L.2
Shi, X.3
Wang, B.4
Huang, H.5
Wang, X.6
-
29
-
-
82455212854
-
Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling
-
Ma J, Sun Q, Mi R, Zhang H. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling. J Genet Genomics (2011) 38(11):533-7. doi:10.1016/j.jgg.2011.10.002
-
(2011)
J Genet Genomics
, vol.38
, Issue.11
, pp. 533-537
-
-
Ma, J.1
Sun, Q.2
Mi, R.3
Zhang, H.4
-
30
-
-
84893478933
-
mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection
-
453
-
Datan E, Shirazian A, Benjamin S, Matassov D, Tinari A, Malorni W, et al. mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection. Virology (2014) 45(2-453):175-90. doi:10.1016/j.virol.2014.01.008
-
(2014)
Virology
, vol.45
, Issue.2
, pp. 175-190
-
-
Datan, E.1
Shirazian, A.2
Benjamin, S.3
Matassov, D.4
Tinari, A.5
Malorni, W.6
-
31
-
-
84904725488
-
The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells
-
Marçais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol (2014) 15(8):749-57. doi:10.1038/ni.2936
-
(2014)
Nat Immunol
, vol.15
, Issue.8
, pp. 749-757
-
-
Marçais, A.1
Cherfils-Vicini, J.2
Viant, C.3
Degouve, S.4
Viel, S.5
Fenis, A.6
-
32
-
-
38149136619
-
Rapamycin, but not cyclosporine or FK506, alters natural killer cell function
-
Wai L-E, Fujiki M, Takeda S, Martinez OM, Krams SM. Rapamycin, but not cyclosporine or FK506, alters natural killer cell function. Transplantation (2008) 85(1):145-9. doi:10.1097/01.tp.0000296817.28053.7b
-
(2008)
Transplantation
, vol.85
, Issue.1
, pp. 145-149
-
-
Wai, L.-E.1
Fujiki, M.2
Takeda, S.3
Martinez, O.M.4
Krams, S.M.5
-
33
-
-
84900848952
-
The critical role of IL-15-PI3K-mTOR pathway in natural killer cell effector functions
-
Nandagopal N, Ali AK, Komal AK, Lee S-H. The critical role of IL-15-PI3K-mTOR pathway in natural killer cell effector functions. Front Immunol (2014) 5:187. doi:10.3389/fimmu.2014.00187
-
(2014)
Front Immunol
, vol.5
, pp. 187
-
-
Nandagopal, N.1
Ali, A.K.2
Komal, A.K.3
Lee, S.-H.4
-
34
-
-
77956167822
-
Rapamycin and MPA, but not CsA, impair human NK cell cytotoxicity due to differential effects on NK cell phenotype
-
Eissens DN, Van Der Meer A, Van Cranenbroek B, Preijers FWMB, Joosten I. Rapamycin and MPA, but not CsA, impair human NK cell cytotoxicity due to differential effects on NK cell phenotype. Am J Transplant (2010) 10(9):1981-90. doi:10.1111/j.1600-6143.2010.03242.x
-
(2010)
Am J Transplant
, vol.10
, Issue.9
, pp. 1981-1990
-
-
Eissens, D.N.1
Van Der Meer, A.2
Van Cranenbroek, B.3
Preijers, F.W.M.B.4
Joosten, I.5
-
35
-
-
84908123523
-
mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function
-
Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol (2014) 193(9):4477-84. doi:10.4049/jimmunol.1401558
-
(2014)
J Immunol
, vol.193
, Issue.9
, pp. 4477-4484
-
-
Donnelly, R.P.1
Loftus, R.M.2
Keating, S.E.3
Liou, K.T.4
Biron, C.A.5
Gardiner, C.M.6
-
36
-
-
72849136940
-
Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation
-
Ripoli M, D'Aprile A, Quarato G, Sarasin-Filipowicz M, Gouttenoire J, Scrima R, et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J Virol (2010) 84(1):647-60. doi:10.1128/JVI.00769-09
-
(2010)
J Virol
, vol.84
, Issue.1
, pp. 647-660
-
-
Ripoli, M.1
D'Aprile, A.2
Quarato, G.3
Sarasin-Filipowicz, M.4
Gouttenoire, J.5
Scrima, R.6
-
37
-
-
0037123607
-
Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors
-
Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science (2002) 296(5571):1323-6. doi:10.1126/science.1070884
-
(2002)
Science
, vol.296
, Issue.5571
, pp. 1323-1326
-
-
Arase, H.1
Mocarski, E.S.2
Campbell, A.E.3
Hill, A.B.4
Lanier, L.L.5
-
38
-
-
70349231090
-
Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection
-
Sun JC, Ma A, Lanier LL. Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection. J Immunol (2009) 183(5):2911-4. doi:10.4049/jimmunol.0901872
-
(2009)
J Immunol
, vol.183
, Issue.5
, pp. 2911-2914
-
-
Sun, J.C.1
Ma, A.2
Lanier, L.L.3
-
39
-
-
84886673181
-
Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells
-
Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol (2013) 14(11):1146-54. doi:10.1038/ni.2731
-
(2013)
Nat Immunol
, vol.14
, Issue.11
, pp. 1146-1154
-
-
Lee, Y.J.1
Holzapfel, K.L.2
Zhu, J.3
Jameson, S.C.4
Hogquist, K.A.5
-
40
-
-
84877018173
-
Transcriptional regulation of the NKT cell lineage
-
Constantinides MG, Bendelac A. Transcriptional regulation of the NKT cell lineage. Curr Opin Immunol (2013) 25(2):161-7. doi:10.1016/j.coi.2013.01.003
-
(2013)
Curr Opin Immunol
, vol.25
, Issue.2
, pp. 161-167
-
-
Constantinides, M.G.1
Bendelac, A.2
-
41
-
-
84905976831
-
Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function
-
Zhang L, Tschumi BO, Corgnac S, Rüegg MA, Hall MN, Mach J-P, et al. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J Immunol (2014) 193(4):1759-65. doi:10.4049/jimmunol.1400769
-
(2014)
J Immunol
, vol.193
, Issue.4
, pp. 1759-1765
-
-
Zhang, L.1
Tschumi, B.O.2
Corgnac, S.3
Rüegg, M.A.4
Hall, M.N.5
Mach, J.-P.6
-
42
-
-
84896869317
-
Mechanistic target of rapamycin complex 1 is critical for invariant natural killer T-cell development and effector function
-
Shin J, Wang S, Deng W, Wu J, Gao J, Zhong X-P. Mechanistic target of rapamycin complex 1 is critical for invariant natural killer T-cell development and effector function. Proc Natl Acad Sci U S A (2014) 111(8):E776-83. doi:10.1073/pnas.1315435111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.8
, pp. E776-E783
-
-
Shin, J.1
Wang, S.2
Deng, W.3
Wu, J.4
Gao, J.5
Zhong, X.-P.6
-
43
-
-
84908120735
-
Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision
-
Wei J, Yang K, Chi H. Cutting edge: discrete functions of mTOR signaling in invariant NKT cell development and NKT17 fate decision. J Immunol (2014) 193(9):4297-301. doi:10.4049/jimmunol.1402042
-
(2014)
J Immunol
, vol.193
, Issue.9
, pp. 4297-4301
-
-
Wei, J.1
Yang, K.2
Chi, H.3
-
44
-
-
84919625728
-
Mammalian target of rapamycin complex 2 regulates invariant NKT cell development and function independent of promyelocytic leukemia zinc-finger
-
Prevot N, Pyaram K, Bischoff E, Sen JM, Powell JD, Chang C-H. Mammalian target of rapamycin complex 2 regulates invariant NKT cell development and function independent of promyelocytic leukemia zinc-finger. J Immunol (2015) 194(1):223-30. doi:10.4049/jimmunol.1401985
-
(2015)
J Immunol
, vol.194
, Issue.1
, pp. 223-230
-
-
Prevot, N.1
Pyaram, K.2
Bischoff, E.3
Sen, J.M.4
Powell, J.D.5
Chang, C.-H.6
-
45
-
-
84940112130
-
mTOR inhibition per se induces nuclear localization of FOXP3 and conversion of invariant NKT (iNKT) cells into immunosuppressive regulatory iNKT cells
-
Huijts CM, Schneiders FL, Garcia-Vallejo JJ, Verheul HM, de Gruijl TD, van der Vliet HJ. mTOR inhibition per se induces nuclear localization of FOXP3 and conversion of invariant NKT (iNKT) cells into immunosuppressive regulatory iNKT cells. J Immunol (2015) 195(5):2038-45. doi:10.4049/jimmunol.1402710
-
(2015)
J Immunol
, vol.195
, Issue.5
, pp. 2038-2045
-
-
Huijts, C.M.1
Schneiders, F.L.2
Garcia-Vallejo, J.J.3
Verheul, H.M.4
de Gruijl, T.D.5
van der Vliet, H.J.6
-
46
-
-
84897518164
-
Tuberous sclerosis 1 promotes invariant NKT cell anergy and inhibits invariant NKT cell-mediated antitumor immunity
-
Wu J, Shin J, Xie D, Wang H, Gao J, Zhong X-P. Tuberous sclerosis 1 promotes invariant NKT cell anergy and inhibits invariant NKT cell-mediated antitumor immunity. J Immunol (2014) 192(6):2643-50. doi:10.4049/jimmunol.1302076
-
(2014)
J Immunol
, vol.192
, Issue.6
, pp. 2643-2650
-
-
Wu, J.1
Shin, J.2
Xie, D.3
Wang, H.4
Gao, J.5
Zhong, X.-P.6
-
47
-
-
0037018103
-
Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines
-
Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, Wilson JM, Schmieg J, Kronenberg M, et al. Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med (2002) 195(5):617-24. doi:10.1084/jem.20011889
-
(2002)
J Exp Med
, vol.195
, Issue.5
, pp. 617-624
-
-
Gonzalez-Aseguinolaza, G.1
Van Kaer, L.2
Bergmann, C.C.3
Wilson, J.M.4
Schmieg, J.5
Kronenberg, M.6
-
48
-
-
40849106237
-
Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide
-
Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine (2008) 26(15):1807-16. doi:10.1016/j.vaccine.2008.02.002
-
(2008)
Vaccine
, vol.26
, Issue.15
, pp. 1807-1816
-
-
Huang, Y.1
Chen, A.2
Li, X.3
Chen, Z.4
Zhang, W.5
Song, Y.6
-
49
-
-
34250219958
-
A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system
-
Youn H-J, Ko S-Y, Lee K-A, Ko H-J, Lee Y-S, Fujihashi K, et al. A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine (2007) 25(28):5189-98. doi:10.1016/j.vaccine.2007.04.081
-
(2007)
Vaccine
, vol.25
, Issue.28
, pp. 5189-5198
-
-
Youn, H.-J.1
Ko, S.-Y.2
Lee, K.-A.3
Ko, H.-J.4
Lee, Y.-S.5
Fujihashi, K.6
-
50
-
-
0038155134
-
NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells
-
Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E, et al. NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer (2003) 106(2):236-43. doi:10.1002/ijc.11201
-
(2003)
Int J Cancer
, vol.106
, Issue.2
, pp. 236-243
-
-
Shibolet, O.1
Alper, R.2
Zlotogarov, L.3
Thalenfeld, B.4
Engelhardt, D.5
Rabbani, E.6
-
51
-
-
0346752118
-
Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection
-
Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C, Uezu K, et al. Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol (2003) 33(12):3322-30. doi:10.1002/eji.200324254
-
(2003)
Eur J Immunol
, vol.33
, Issue.12
, pp. 3322-3330
-
-
Kawakami, K.1
Yamamoto, N.2
Kinjo, Y.3
Miyagi, K.4
Nakasone, C.5
Uezu, K.6
-
52
-
-
33747607029
-
Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria
-
Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR-E-I, et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol (2006) 7(9):978-86. doi:10.1038/ni1380
-
(2006)
Nat Immunol
, vol.7
, Issue.9
, pp. 978-986
-
-
Kinjo, Y.1
Tupin, E.2
Wu, D.3
Fujio, M.4
Garcia-Navarro, R.5
Benhnia, M.R.-E.-I.6
-
53
-
-
43049181301
-
Liver autoimmunity triggered by microbial activation of natural killer T cells
-
Mattner J, Savage PB, Leung P, Oertelt SS, Wang V, Trivedi O, et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe (2008) 3(5):304-15. doi:10.1016/j.chom.2008.03.009
-
(2008)
Cell Host Microbe
, vol.3
, Issue.5
, pp. 304-315
-
-
Mattner, J.1
Savage, P.B.2
Leung, P.3
Oertelt, S.S.4
Wang, V.5
Trivedi, O.6
-
54
-
-
67650457542
-
Enhanced interaction between Hsp90 and raptor regulates mTOR signaling upon T cell activation
-
Delgoffe GM, Kole TP, Cotter RJ, Powell JD. Enhanced interaction between Hsp90 and raptor regulates mTOR signaling upon T cell activation. Mol Immunol (2009) 46(13):2694-8. doi:10.1016/j.molimm.2009.05.185
-
(2009)
Mol Immunol
, vol.46
, Issue.13
, pp. 2694-2698
-
-
Delgoffe, G.M.1
Kole, T.P.2
Cotter, R.J.3
Powell, J.D.4
-
55
-
-
77958140465
-
Cutting edge: expression of the transcription factor E74-like factor 4 is regulated by the mammalian target of rapamycin pathway in CD8+ T cells
-
Yamada T, Gierach K, Lee P-H, Wang X, Lacorazza HD. Cutting edge: expression of the transcription factor E74-like factor 4 is regulated by the mammalian target of rapamycin pathway in CD8+ T cells. J Immunol (2010) 185(7):3824-8. doi:10.4049/jimmunol.1000718
-
(2010)
J Immunol
, vol.185
, Issue.7
, pp. 3824-3828
-
-
Yamada, T.1
Gierach, K.2
Lee, P.-H.3
Wang, X.4
Lacorazza, H.D.5
-
56
-
-
54249141095
-
Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival
-
Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol (2008) 84(4):949-57. doi:10.1189/jlb.0108024
-
(2008)
J Leukoc Biol
, vol.84
, Issue.4
, pp. 949-957
-
-
Maciver, N.J.1
Jacobs, S.R.2
Wieman, H.L.3
Wofford, J.A.4
Coloff, J.L.5
Rathmell, J.C.6
-
57
-
-
84929008302
-
mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation
-
Pollizzi KN, Patel CH, Sun I-H, Oh M-H, Waickman AT, Wen J, et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J Clin Invest (2015) 125(5):2090-108. doi:10.1172/JCI77746
-
(2015)
J Clin Invest
, vol.125
, Issue.5
, pp. 2090-2108
-
-
Pollizzi, K.N.1
Patel, C.H.2
Sun, I.-H.3
Oh, M.-H.4
Waickman, A.T.5
Wen, J.6
-
58
-
-
84871861969
-
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
-
Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med (2012) 209(13):2441-53. doi:10.1084/jem.20112607
-
(2012)
J Exp Med
, vol.209
, Issue.13
, pp. 2441-2453
-
-
Finlay, D.K.1
Rosenzweig, E.2
Sinclair, L.V.3
Feijoo-Carnero, C.4
Hukelmann, J.L.5
Rolf, J.6
-
59
-
-
84904264964
-
Immune memory-boosting dose of rapamycin impairs macrophage vesicle acidification and curtails glycolysis in effector CD8 cells, impairing defense against acute infections
-
Goldberg EL, Smithey MJ, Lutes LK, Uhrlaub JL, Nikolich-Žugich J. Immune memory-boosting dose of rapamycin impairs macrophage vesicle acidification and curtails glycolysis in effector CD8 cells, impairing defense against acute infections. J Immunol (2014) 193(2):757-63. doi:10.4049/jimmunol.1400188
-
(2014)
J Immunol
, vol.193
, Issue.2
, pp. 757-763
-
-
Goldberg, E.L.1
Smithey, M.J.2
Lutes, L.K.3
Uhrlaub, J.L.4
Nikolich-Žugich, J.5
-
60
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity (2011) 35(6):871-82. doi:10.1016/j.immuni.2011.09.021
-
(2011)
Immunity
, vol.35
, Issue.6
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
-
61
-
-
84887507709
-
Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation
-
Yao S, Buzo BF, Pham D, Jiang L, Taparowsky EJ, Kaplan MH, et al. Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity (2013) 39(5):833-45. doi:10.1016/j.immuni.2013.10.007
-
(2013)
Immunity
, vol.39
, Issue.5
, pp. 833-845
-
-
Yao, S.1
Buzo, B.F.2
Pham, D.3
Jiang, L.4
Taparowsky, E.J.5
Kaplan, M.H.6
-
62
-
-
84886720433
-
The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells
-
Man K, Miasari M, Shi W, Xin A, Henstridge DC, Preston S, et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol (2013) 14(11):1155-65. doi:10.1038/ni.2710
-
(2013)
Nat Immunol
, vol.14
, Issue.11
, pp. 1155-1165
-
-
Man, K.1
Miasari, M.2
Shi, W.3
Xin, A.4
Henstridge, D.C.5
Preston, S.6
-
63
-
-
84937698850
-
mTOR complex signaling through the SEMA4A-Plexin B2 axis is required for optimal activation and differentiation of CD8+ T cells
-
Ito D, Nojima S, Nishide M, Okuno T, Takamatsu H, Kang S, et al. mTOR complex signaling through the SEMA4A-Plexin B2 axis is required for optimal activation and differentiation of CD8+ T cells. J Immunol (2015) 195(3):934-43. doi:10.4049/jimmunol.1403038
-
(2015)
J Immunol
, vol.195
, Issue.3
, pp. 934-943
-
-
Ito, D.1
Nojima, S.2
Nishide, M.3
Okuno, T.4
Takamatsu, H.5
Kang, S.6
-
64
-
-
75749119313
-
Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration
-
Finlay D, Cantrell D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann N Y Acad Sci (2010) 1183:149-57. doi:10.1111/j.1749-6632.2009.05134.x
-
(2010)
Ann N Y Acad Sci
, vol.1183
, pp. 149-157
-
-
Finlay, D.1
Cantrell, D.2
-
65
-
-
42449110816
-
Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking
-
Sinclair LV, Finlay D, Feijoo C, Cornish GH, Gray A, Ager A, et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol (2008) 9(5):513-21. doi:10.1038/ni.1603
-
(2008)
Nat Immunol
, vol.9
, Issue.5
, pp. 513-521
-
-
Sinclair, L.V.1
Finlay, D.2
Feijoo, C.3
Cornish, G.H.4
Gray, A.5
Ager, A.6
-
66
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
-
van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity (2012) 36(1):68-78. doi:10.1016/j.immuni.2011.12.007
-
(2012)
Immunity
, vol.36
, Issue.1
, pp. 68-78
-
-
van der Windt, G.J.W.1
Everts, B.2
Chang, C.-H.3
Curtis, J.D.4
Freitas, T.C.5
Amiel, E.6
-
67
-
-
67650074206
-
mTOR regulates memory CD8 T-cell differentiation
-
Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. mTOR regulates memory CD8 T-cell differentiation. Nature (2009) 460(7251):108-12. doi:10.1038/nature08155
-
(2009)
Nature
, vol.460
, Issue.7251
, pp. 108-112
-
-
Araki, K.1
Turner, A.P.2
Shaffer, V.O.3
Gangappa, S.4
Keller, S.A.5
Bachmann, M.F.6
-
68
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature (2009) 460(7251):103-7. doi:10.1038/nature08097
-
(2009)
Nature
, vol.460
, Issue.7251
, pp. 103-107
-
-
Pearce, E.L.1
Walsh, M.C.2
Cejas, P.J.3
Harms, G.M.4
Shen, H.5
Wang, L.-S.6
-
69
-
-
79956142389
-
Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells
-
He S, Kato K, Jiang J, Wahl DR, Mineishi S, Fisher EM, et al. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS One (2011) 6(5):e20107. doi:10.1371/journal.pone.0020107
-
(2011)
PLoS One
, vol.6
, Issue.5
-
-
He, S.1
Kato, K.2
Jiang, J.3
Wahl, D.R.4
Mineishi, S.5
Fisher, E.M.6
-
70
-
-
84907886513
-
Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs
-
Shrestha S, Yang K, Wei J, Karmaus PWF, Neale G, Chi H. Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci U S A (2014) 111(41):14858-63. doi:10.1073/pnas.1404264111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.41
, pp. 14858-14863
-
-
Shrestha, S.1
Yang, K.2
Wei, J.3
Karmaus, P.W.F.4
Neale, G.5
Chi, H.6
-
71
-
-
84859400580
-
Regulating mammalian target of rapamycin to tune vaccination-induced CD8(+) T cell responses for tumor immunity
-
Li Q, Rao R, Vazzana J, Goedegebuure P, Odunsi K, Gillanders W, et al. Regulating mammalian target of rapamycin to tune vaccination-induced CD8(+) T cell responses for tumor immunity. J Immunol (2012) 188(7):3080-7. doi:10.4049/jimmunol.1103365
-
(2012)
J Immunol
, vol.188
, Issue.7
, pp. 3080-3087
-
-
Li, Q.1
Rao, R.2
Vazzana, J.3
Goedegebuure, P.4
Odunsi, K.5
Gillanders, W.6
-
72
-
-
84920490964
-
IFN-κ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals
-
Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-κ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol (2015) 194(2):553-9. doi:10.4049/jimmunol.1402058
-
(2015)
J Immunol
, vol.194
, Issue.2
, pp. 553-559
-
-
Stoycheva, D.1
Deiser, K.2
Stärck, L.3
Nishanth, G.4
Schlüter, D.5
Uckert, W.6
-
73
-
-
84899495799
-
The influenza virus-specific CTL immunodominance hierarchy in mice is determined by the relative frequency of high-avidity T cells
-
Cukalac T, Chadderton J, Zeng W, Cullen JG, Kan WT, Doherty PC, et al. The influenza virus-specific CTL immunodominance hierarchy in mice is determined by the relative frequency of high-avidity T cells. J Immunol (2014) 192(9):4061-8. doi:10.4049/jimmunol.1301403
-
(2014)
J Immunol
, vol.192
, Issue.9
, pp. 4061-4068
-
-
Cukalac, T.1
Chadderton, J.2
Zeng, W.3
Cullen, J.G.4
Kan, W.T.5
Doherty, P.C.6
-
74
-
-
74649085700
-
The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
-
Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity (2010) 32(1):67-78. doi:10.1016/j.immuni.2009.10.010
-
(2010)
Immunity
, vol.32
, Issue.1
, pp. 67-78
-
-
Rao, R.R.1
Li, Q.2
Odunsi, K.3
Shrikant, P.A.4
-
75
-
-
79954623272
-
A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity
-
Li Q, Rao RR, Araki K, Pollizzi K, Odunsi K, Powell JD, et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity (2011) 34(4):541-53. doi:10.1016/j.immuni.2011.04.006
-
(2011)
Immunity
, vol.34
, Issue.4
, pp. 541-553
-
-
Li, Q.1
Rao, R.R.2
Araki, K.3
Pollizzi, K.4
Odunsi, K.5
Powell, J.D.6
-
76
-
-
84901730344
-
IL-12 is required for mTOR regulation of memory CTLs during viral infection
-
Garcia K, Sun Z, Mattson E, Li L, Smyth K, Xiao Z. IL-12 is required for mTOR regulation of memory CTLs during viral infection. Genes Immun (2014) 15(6):413-23. doi:10.1038/gene.2014.33
-
(2014)
Genes Immun
, vol.15
, Issue.6
, pp. 413-423
-
-
Garcia, K.1
Sun, Z.2
Mattson, E.3
Li, L.4
Smyth, K.5
Xiao, Z.6
-
77
-
-
84893719649
-
Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation
-
Mehlhop-Williams ER, Bevan MJ. Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation. J Exp Med (2014) 211(2):345-56. doi:10.1084/jem.20131271
-
(2014)
J Exp Med
, vol.211
, Issue.2
, pp. 345-356
-
-
Mehlhop-Williams, E.R.1
Bevan, M.J.2
-
78
-
-
84941614968
-
Inflammatory IL-15 is required for optimal memory T cell responses
-
Richer MJ, Pewe LL, Hancox LS, Hartwig SM, Varga SM, Harty JT. Inflammatory IL-15 is required for optimal memory T cell responses. J Clin Invest (2015) 125(9):3477-90. doi:10.1172/JCI81261
-
(2015)
J Clin Invest
, vol.125
, Issue.9
, pp. 3477-3490
-
-
Richer, M.J.1
Pewe, L.L.2
Hancox, L.S.3
Hartwig, S.M.4
Varga, S.M.5
Harty, J.T.6
-
79
-
-
84912111808
-
The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection
-
Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity (2014) 41(5):802-14. doi:10.1016/j.immuni.2014.10.013
-
(2014)
Immunity
, vol.41
, Issue.5
, pp. 802-814
-
-
Staron, M.M.1
Gray, S.M.2
Marshall, H.D.3
Parish, I.A.4
Chen, J.H.5
Perry, C.J.6
-
80
-
-
79956077563
-
T cell exhaustion
-
Wherry EJ. T cell exhaustion. Nat Immunol (2011) 12(6):492-9. doi:10.1038/ni.2035
-
(2011)
Nat Immunol
, vol.12
, Issue.6
, pp. 492-499
-
-
Wherry, E.J.1
-
81
-
-
2442465855
-
Dynamics of blood-borne CD8 memory T cell migration in vivo
-
Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrançois L. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity (2004) 20(5):551-62. doi:10.1016/S1074-7613(04)00103-7
-
(2004)
Immunity
, vol.20
, Issue.5
, pp. 551-562
-
-
Klonowski, K.D.1
Williams, K.J.2
Marzo, A.L.3
Blair, D.A.4
Lingenheld, E.G.5
Lefrançois, L.6
-
82
-
-
77949506152
-
Dynamic T cell migration program provides resident memory within intestinal epithelium
-
Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med (2010) 207(3):553-64. doi:10.1084/jem.20090858
-
(2010)
J Exp Med
, vol.207
, Issue.3
, pp. 553-564
-
-
Masopust, D.1
Choo, D.2
Vezys, V.3
Wherry, E.J.4
Duraiswamy, J.5
Akondy, R.6
-
83
-
-
84907542588
-
T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses
-
Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science (2014) 346(6205):98-101. doi:10.1126/science.1254536
-
(2014)
Science
, vol.346
, Issue.6205
, pp. 98-101
-
-
Schenkel, J.M.1
Fraser, K.A.2
Beura, L.K.3
Pauken, K.E.4
Vezys, V.5
Masopust, D.6
-
84
-
-
84907020087
-
Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR
-
Sowell RT, Rogozinska M, Nelson CE, Vezys V, Marzo AL. Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. J Immunol (2014) 193(5):2067-71. doi:10.4049/jimmunol.1400074
-
(2014)
J Immunol
, vol.193
, Issue.5
, pp. 2067-2071
-
-
Sowell, R.T.1
Rogozinska, M.2
Nelson, C.E.3
Vezys, V.4
Marzo, A.L.5
-
85
-
-
33747765545
-
CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch
-
Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol (2006) 177(5):2888-98. doi:10.4049/?jimmunol.177.5.2888
-
(2006)
J Immunol
, vol.177
, Issue.5
, pp. 2888-2898
-
-
Brown, D.M.1
Dilzer, A.M.2
Meents, D.L.3
Swain, S.L.4
-
86
-
-
84864746073
-
Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms
-
McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, et al. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest (2012) 122(8):2847-56. doi:10.1172/JCI63689
-
(2012)
J Clin Invest
, vol.122
, Issue.8
, pp. 2847-2856
-
-
McKinstry, K.K.1
Strutt, T.M.2
Kuang, Y.3
Brown, D.M.4
Sell, S.5
Dutton, R.W.6
-
88
-
-
77952313777
-
Differentiation of effector CD4 T cell populations (*)
-
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol (2010) 28:445-89. doi:10.1146/annurev-immunol-030409-101212
-
(2010)
Annu Rev Immunol
, vol.28
, pp. 445-489
-
-
Zhu, J.1
Yamane, H.2
Paul, W.E.3
-
89
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity (2009) 30(6):832-44. doi:10.1016/j.immuni.2009.04.014
-
(2009)
Immunity
, vol.30
, Issue.6
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
-
90
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity (2010) 33(3):301-11. doi:10.1016/j.immuni.2010.09.002
-
(2010)
Immunity
, vol.33
, Issue.3
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
91
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol (2011) 12(4):295-303. doi:10.1038/ni.2005
-
(2011)
Nat Immunol
, vol.12
, Issue.4
, pp. 295-303
-
-
Delgoffe, G.M.1
Pollizzi, K.N.2
Waickman, A.T.3
Heikamp, E.4
Meyers, D.J.5
Horton, M.R.6
-
92
-
-
84861134382
-
PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of ROR?
-
Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y, et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of ROR?. Cell Rep (2012) 1(4):360-73. doi:10.1016/j.celrep.2012.02.007
-
(2012)
Cell Rep
, vol.1
, Issue.4
, pp. 360-373
-
-
Kurebayashi, Y.1
Nagai, S.2
Ikejiri, A.3
Ohtani, M.4
Ichiyama, K.5
Baba, Y.6
-
93
-
-
84890137621
-
T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
-
Yang K, Shrestha S, Zeng H, Karmaus PWF, Neale G, Vogel P, et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity (2013) 39(6):1043-56. doi:10.1016/j.immuni.2013.09.015
-
(2013)
Immunity
, vol.39
, Issue.6
, pp. 1043-1056
-
-
Yang, K.1
Shrestha, S.2
Zeng, H.3
Karmaus, P.W.F.4
Neale, G.5
Vogel, P.6
-
94
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity (2010) 32(6):743-53. doi:10.1016/j.immuni.2010.06.002
-
(2010)
Immunity
, vol.32
, Issue.6
, pp. 743-753
-
-
Lee, K.1
Gudapati, P.2
Dragovic, S.3
Spencer, C.4
Joyce, S.5
Killeen, N.6
-
95
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 186(6):3299-303. doi:10.4049/jimmunol.1003613
-
(2011)
J Immunol
, vol.186
, Issue.6
, pp. 3299-3303
-
-
Michalek, R.D.1
Gerriets, V.A.2
Jacobs, S.R.3
Macintyre, A.N.4
MacIver, N.J.5
Mason, E.F.6
-
96
-
-
79960369458
-
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208(7):1367-76. doi:10.1084/jem.20110278
-
(2011)
J Exp Med
, vol.208
, Issue.7
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
-
97
-
-
80052277906
-
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
-
Dang EV, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell (2011) 146(5):772-84. doi:10.1016/j.cell.2011.07.033
-
(2011)
Cell
, vol.146
, Issue.5
, pp. 772-784
-
-
Dang, E.V.1
Barbi, J.2
Yang, H.-Y.3
Jinasena, D.4
Yu, H.5
Zheng, Y.6
-
98
-
-
79952700657
-
The role of natural regulatory T cells in infection
-
Sanchez AM, Yang Y. The role of natural regulatory T cells in infection. Immunol Res (2011) 49(1-3):124-34. doi:10.1007/s12026-010-8176-8
-
(2011)
Immunol Res
, vol.49
, Issue.1-3
, pp. 124-134
-
-
Sanchez, A.M.1
Yang, Y.2
-
99
-
-
16844363097
-
A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3
-
Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol (2005) 6(4):331-7. doi:10.1038/ni1179
-
(2005)
Nat Immunol
, vol.6
, Issue.4
, pp. 331-337
-
-
Fontenot, J.D.1
Rudensky, A.Y.2
-
100
-
-
33746342994
-
Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease
-
Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev (2006) 212:8-27. doi:10.1111/j.0105-2896.2006.00427.x
-
(2006)
Immunol Rev
, vol.212
, pp. 8-27
-
-
Sakaguchi, S.1
Ono, M.2
Setoguchi, R.3
Yagi, H.4
Hori, S.5
Fehervari, Z.6
-
101
-
-
20444373376
-
Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
-
Battaglia M, Stabilini A, Roncarolo M-G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood (2005) 105(12):4743-8. doi:10.1182/blood-2004-10-3932
-
(2005)
Blood
, vol.105
, Issue.12
, pp. 4743-4748
-
-
Battaglia, M.1
Stabilini, A.2
Roncarolo, M.-G.3
-
102
-
-
33845379986
-
Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients
-
Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo M-G. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol (2006) 177(12):8338-47. doi:10.4049/?jimmunol.177.12.8338
-
(2006)
J Immunol
, vol.177
, Issue.12
, pp. 8338-8347
-
-
Battaglia, M.1
Stabilini, A.2
Migliavacca, B.3
Horejs-Hoeck, J.4
Kaupper, T.5
Roncarolo, M.-G.6
-
103
-
-
41149113441
-
The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
-
Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med (2008) 205(3):565-74. doi:10.1084/jem.20071477
-
(2008)
J Exp Med
, vol.205
, Issue.3
, pp. 565-574
-
-
Haxhinasto, S.1
Mathis, D.2
Benoist, C.3
-
104
-
-
34250156673
-
Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells
-
Gao W, Lu Y, El Essawy B, Oukka M, Kuchroo VK, Strom TB. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant (2007) 7(7):1722-32. doi:10.1111/j.1600-6143.2007.01842.x
-
(2007)
Am J Transplant
, vol.7
, Issue.7
, pp. 1722-1732
-
-
Gao, W.1
Lu, Y.2
El Essawy, B.3
Oukka, M.4
Kuchroo, V.K.5
Strom, T.B.6
-
105
-
-
33745861719
-
Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells
-
Valmori D, Tosello V, Souleimanian NE, Godefroy E, Scotto L, Wang Y, et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol (2006) 177(2):944-9. doi:10.4049/?jimmunol.177.2.944
-
(2006)
J Immunol
, vol.177
, Issue.2
, pp. 944-949
-
-
Valmori, D.1
Tosello, V.2
Souleimanian, N.E.3
Godefroy, E.4
Scotto, L.5
Wang, Y.6
-
106
-
-
35748956420
-
Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells
-
Kopf H, de la Rosa GM, Howard OMZ, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol (2007) 7(13):1819-24. doi:10.1016/j.intimp.2007.08.027
-
(2007)
Int Immunopharmacol
, vol.7
, Issue.13
, pp. 1819-1824
-
-
Kopf, H.1
de la Rosa, G.M.2
Howard, O.M.Z.3
Chen, X.4
-
107
-
-
84860187314
-
Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo
-
Yurchenko E, Shio MT, Huang TC, Da Silva Martins M, Szyf M, Levings MK, et al. Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS One (2012) 7(4):e35572. doi:10.1371/journal.pone.0035572
-
(2012)
PLoS One
, vol.7
, Issue.4
-
-
Yurchenko, E.1
Shio, M.T.2
Huang, T.C.3
Da Silva Martins, M.4
Szyf, M.5
Levings, M.K.6
-
108
-
-
74649086985
-
The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation
-
Gulen MF, Kang Z, Bulek K, Youzhong W, Kim TW, Chen Y, et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity (2010) 32(1):54-66. doi:10.1016/j.immuni.2009.12.003
-
(2010)
Immunity
, vol.32
, Issue.1
, pp. 54-66
-
-
Gulen, M.F.1
Kang, Z.2
Bulek, K.3
Youzhong, W.4
Kim, T.W.5
Chen, Y.6
-
109
-
-
79952931627
-
Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells
-
Gabryšová L, Christensen JR, Wu X, Kissenpfennig A, Malissen B, O'Garra A. Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur J Immunol (2011) 41(5):1242-8. doi:10.1002/eji.201041073
-
(2011)
Eur J Immunol
, vol.41
, Issue.5
, pp. 1242-1248
-
-
Gabryšová, L.1
Christensen, J.R.2
Wu, X.3
Kissenpfennig, A.4
Malissen, B.5
O'Garra, A.6
-
110
-
-
77958151145
-
The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells
-
Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol (2010) 11(11):1047-56. doi:10.1038/ni.1939
-
(2010)
Nat Immunol
, vol.11
, Issue.11
, pp. 1047-1056
-
-
Liu, G.1
Yang, K.2
Burns, S.3
Shrestha, S.4
Chi, H.5
-
111
-
-
84881192927
-
mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function
-
Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature (2013) 499(7459):485-90. doi:10.1038/nature12297
-
(2013)
Nature
, vol.499
, Issue.7459
, pp. 485-490
-
-
Zeng, H.1
Yang, K.2
Cloer, C.3
Neale, G.4
Vogel, P.5
Chi, H.6
-
112
-
-
79952675131
-
Follicular helper CD4 T cells (TFH)
-
Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol (2011) 29:621-63. doi:10.1146/annurev-immunol-031210-101400
-
(2011)
Annu Rev Immunol
, vol.29
, pp. 621-663
-
-
Crotty, S.1
-
113
-
-
69249109601
-
Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation
-
Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science (2009) 325(5943):1006-10. doi:10.1126/science.1175870
-
(2009)
Science
, vol.325
, Issue.5943
, pp. 1006-1010
-
-
Johnston, R.J.1
Poholek, A.C.2
DiToro, D.3
Yusuf, I.4
Eto, D.5
Barnett, B.6
-
114
-
-
77956207524
-
In vivo regulation of Bcl6 and T follicular helper cell development
-
Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A, Weinstein JS, et al. In vivo regulation of Bcl6 and T follicular helper cell development. J Immunol (2010) 185(1):313-26. doi:10.4049/jimmunol.0904023
-
(2010)
J Immunol
, vol.185
, Issue.1
, pp. 313-326
-
-
Poholek, A.C.1
Hansen, K.2
Hernandez, S.G.3
Eto, D.4
Chandele, A.5
Weinstein, J.S.6
-
115
-
-
79959328032
-
ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6
-
Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity (2011) 34(6):932-46. doi:10.1016/j.immuni.2011.03.023
-
(2011)
Immunity
, vol.34
, Issue.6
, pp. 932-946
-
-
Choi, Y.S.1
Kageyama, R.2
Eto, D.3
Escobar, T.C.4
Johnston, R.J.5
Monticelli, L.6
-
116
-
-
84875444198
-
Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory
-
Choi YS, Yang JA, Yusuf I, Johnston RJ, Greenbaum J, Peters B, et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J Immunol (2013) 190(8):4014-26. doi:10.4049/jimmunol.1202963
-
(2013)
J Immunol
, vol.190
, Issue.8
, pp. 4014-4026
-
-
Choi, Y.S.1
Yang, J.A.2
Yusuf, I.3
Johnston, R.J.4
Greenbaum, J.5
Peters, B.6
-
117
-
-
84896372779
-
Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells
-
Ray JP, Marshall HD, Laidlaw BJ, Staron MM, Kaech SM, Craft J. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity (2014) 40(3):367-77. doi:10.1016/j.immuni.2014.02.005
-
(2014)
Immunity
, vol.40
, Issue.3
, pp. 367-377
-
-
Ray, J.P.1
Marshall, H.D.2
Laidlaw, B.J.3
Staron, M.M.4
Kaech, S.M.5
Craft, J.6
-
118
-
-
84944681622
-
The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T Cells
-
Ray JP, Staron MM, Shyer JA, Ho P-C, Marshall HD, Gray SM, et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T Cells. Immunity (2015) 43(4):690-702. doi:10.1016/j.immuni.2015.08.017
-
(2015)
Immunity
, vol.43
, Issue.4
, pp. 690-702
-
-
Ray, J.P.1
Staron, M.M.2
Shyer, J.A.3
Ho, P.-C.4
Marshall, H.D.5
Gray, S.M.6
-
119
-
-
80755172184
-
Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells
-
Pepper M, Pagán AJ, Igyártó BZ, Taylor JJ, Jenkins MK. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity (2011) 35(4):583-95. doi:10.1016/j.immuni.2011.09.009
-
(2011)
Immunity
, vol.35
, Issue.4
, pp. 583-595
-
-
Pepper, M.1
Pagán, A.J.2
Igyártó, B.Z.3
Taylor, J.J.4
Jenkins, M.K.5
-
120
-
-
84875417243
-
Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation
-
Choi YS, Eto D, Yang JA, Lao C, Crotty S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J Immunol (2013) 190(7):3049-53. doi:10.4049/jimmunol.1203032
-
(2013)
J Immunol
, vol.190
, Issue.7
, pp. 3049-3053
-
-
Choi, Y.S.1
Eto, D.2
Yang, J.A.3
Lao, C.4
Crotty, S.5
-
121
-
-
84861423126
-
Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation
-
Ballesteros-Tato A, León B, Graf BA, Moquin A, Adams PS, Lund FE, et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity (2012) 36(5):847-56. doi:10.1016/j.immuni.2012.02.012
-
(2012)
Immunity
, vol.36
, Issue.5
, pp. 847-856
-
-
Ballesteros-Tato, A.1
León, B.2
Graf, B.A.3
Moquin, A.4
Adams, P.S.5
Lund, F.E.6
-
122
-
-
84990310424
-
The transforming growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa
-
Marshall HD, Ray JP, Laidlaw BJ, Zhang N, Gawande D, Staron MM, et al. The transforming growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa. eLife (2015) 4:e04851. doi:10.7554/eLife.04851
-
(2015)
eLife
, vol.4
-
-
Marshall, H.D.1
Ray, J.P.2
Laidlaw, B.J.3
Zhang, N.4
Gawande, D.5
Staron, M.M.6
-
123
-
-
84911132031
-
Bcl-6 directly represses the gene program of the glycolysis pathway
-
Oestreich KJ, Read KA, Gilbertson SE, Hough KP, McDonald PW, Krishnamoorthy V, et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat Immunol (2014) 15(10):957-64. doi:10.1038/ni.2985
-
(2014)
Nat Immunol
, vol.15
, Issue.10
, pp. 957-964
-
-
Oestreich, K.J.1
Read, K.A.2
Gilbertson, S.E.3
Hough, K.P.4
McDonald, P.W.5
Krishnamoorthy, V.6
-
124
-
-
79251569252
-
Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production
-
Zhang S, Readinger JA, DuBois W, Janka-Junttila M, Robinson R, Pruitt M, et al. Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood (2011) 117(4):1228-38. doi:10.1182/blood-2010-05-287821
-
(2011)
Blood
, vol.117
, Issue.4
, pp. 1228-1238
-
-
Zhang, S.1
Readinger, J.A.2
DuBois, W.3
Janka-Junttila, M.4
Robinson, R.5
Pruitt, M.6
-
125
-
-
84881399035
-
B cell-specific deficiencies in mTOR limit humoral immune responses
-
Zhang S, Pruitt M, Tran D, Du Bois W, Zhang K, Patel R, et al. B cell-specific deficiencies in mTOR limit humoral immune responses. J Immunol (2013) 191(4):1692-703. doi:10.4049/jimmunol.1201767
-
(2013)
J Immunol
, vol.191
, Issue.4
, pp. 1692-1703
-
-
Zhang, S.1
Pruitt, M.2
Tran, D.3
Du Bois, W.4
Zhang, K.5
Patel, R.6
-
126
-
-
77955488179
-
Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells
-
Lazorchak AS, Liu D, Facchinetti V, Di Lorenzo A, Sessa WC, Schatz DG, et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell (2010) 39(3):433-43. doi:10.1016/j.molcel.2010.07.031
-
(2010)
Mol Cell
, vol.39
, Issue.3
, pp. 433-443
-
-
Lazorchak, A.S.1
Liu, D.2
Facchinetti, V.3
Di Lorenzo, A.4
Sessa, W.C.5
Schatz, D.G.6
-
127
-
-
84887729393
-
Requirement for Rictor in homeostasis and function of mature B lymphoid cells
-
Lee K, Heffington L, Jellusova J, Nam KT, Raybuck A, Cho SH, et al. Requirement for Rictor in homeostasis and function of mature B lymphoid cells. Blood (2013) 122(14):2369-79. doi:10.1182/blood-2013-01-477505
-
(2013)
Blood
, vol.122
, Issue.14
, pp. 2369-2379
-
-
Lee, K.1
Heffington, L.2
Jellusova, J.3
Nam, K.T.4
Raybuck, A.5
Cho, S.H.6
-
128
-
-
79960724234
-
Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation andloss of marginal zone B cells
-
Benhamron S, Tirosh B. Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation andloss of marginal zone B cells. Eur J Immunol (2011) 41(8):2390-6. doi:10.1002/eji.201041336
-
(2011)
Eur J Immunol
, vol.41
, Issue.8
, pp. 2390-2396
-
-
Benhamron, S.1
Tirosh, B.2
-
129
-
-
84930647059
-
TSC1 promotes B cell maturation but is dispensable for germinal center formation
-
Ci X, Kuraoka M, Wang H, Carico Z, Hopper K, Shin J, et al. TSC1 promotes B cell maturation but is dispensable for germinal center formation. PLoS One (2015) 10(5):e0127527. doi:10.1371/journal.pone.0127527
-
(2015)
PLoS One
, vol.10
, Issue.5
-
-
Ci, X.1
Kuraoka, M.2
Wang, H.3
Carico, Z.4
Hopper, K.5
Shin, J.6
-
130
-
-
35348852627
-
Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli
-
Donahue AC, Fruman DA. Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur J Immunol (2007) 37(10):2923-36. doi:10.1002/eji.200737281
-
(2007)
Eur J Immunol
, vol.37
, Issue.10
, pp. 2923-2936
-
-
Donahue, A.C.1
Fruman, D.A.2
-
131
-
-
0038281331
-
Proliferation and survival of activated B cells requires sustained antigen receptor engagement and phosphoinositide 3-kinase activation
-
Donahue AC, Fruman DA. Proliferation and survival of activated B cells requires sustained antigen receptor engagement and phosphoinositide 3-kinase activation. J Immunol (2003) 170(12):5851-60
-
(2003)
J Immunol
, vol.170
, Issue.12
, pp. 5851-5860
-
-
Donahue, A.C.1
Fruman, D.A.2
-
132
-
-
0033152319
-
Involvement of a rapamycin-sensitive pathway in CD40-mediated activation of murine B cells in vitro
-
Sakata A, Kuwahara K, Ohmura T, Inui S, Sakaguchi N. Involvement of a rapamycin-sensitive pathway in CD40-mediated activation of murine B cells in vitro. Immunol Lett (1999) 68(2-3):301-9. doi:10.1016/S0165-2478(99)00053-X
-
(1999)
Immunol Lett
, vol.68
, Issue.2-3
, pp. 301-309
-
-
Sakata, A.1
Kuwahara, K.2
Ohmura, T.3
Inui, S.4
Sakaguchi, N.5
-
133
-
-
0025132636
-
Suppression of B cell activation by cyclosporin A, FK506 and rapamycin
-
Wicker LS, Boltz RC Jr, Matt V, Nichols EA, Peterson LB, Sigal NH. Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol (1990) 20(10):2277-83. doi:10.1002/eji.1830201017
-
(1990)
Eur J Immunol
, vol.20
, Issue.10
, pp. 2277-2283
-
-
Wicker, L.S.1
Boltz, R.C.2
Matt, V.3
Nichols, E.A.4
Peterson, L.B.5
Sigal, N.H.6
-
134
-
-
0025734876
-
Inhibition of T and B lymphocyte proliferation by rapamycin
-
Kay JE, Kromwel L, Doe SE, Denyer M. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology (1991) 72(4):544-9
-
(1991)
Immunology
, vol.72
, Issue.4
, pp. 544-549
-
-
Kay, J.E.1
Kromwel, L.2
Doe, S.E.3
Denyer, M.4
-
135
-
-
0028093139
-
Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin
-
Aagaard-Tillery KM, Jelinek DF. Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol (1994) 156(2):493-507. doi:10.1006/cimm.1994.1193
-
(1994)
Cell Immunol
, vol.156
, Issue.2
, pp. 493-507
-
-
Aagaard-Tillery, K.M.1
Jelinek, D.F.2
-
136
-
-
84947614179
-
Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells
-
Zeng Q, Zhang H, Qin J, Xu Z, Gui L, Liu B, et al. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Cell Mol Life Sci (2015) 72(24):4867-84. doi:10.1007/s00018-015-1976-1
-
(2015)
Cell Mol Life Sci
, vol.72
, Issue.24
, pp. 4867-4884
-
-
Zeng, Q.1
Zhang, H.2
Qin, J.3
Xu, Z.4
Gui, L.5
Liu, B.6
-
137
-
-
84887976550
-
The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus
-
Keating R, Hertz T, Wehenkel M, Harris TL, Edwards BA, McClaren JL, et al. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nat Immunol (2013) 14(12):1266-76. doi:10.1038/ni.2741
-
(2013)
Nat Immunol
, vol.14
, Issue.12
, pp. 1266-1276
-
-
Keating, R.1
Hertz, T.2
Wehenkel, M.3
Harris, T.L.4
Edwards, B.A.5
McClaren, J.L.6
-
138
-
-
84913594343
-
mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition
-
Limon JJ, So L, Jellbauer S, Chiu H, Corado J, Sykes SM, et al. mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proc Natl Acad Sci U S A (2014) 111(47):E5076-85. doi:10.1073/pnas.1407104111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.47
, pp. E5076-E5085
-
-
Limon, J.J.1
So, L.2
Jellbauer, S.3
Chiu, H.4
Corado, J.5
Sykes, S.M.6
|