메뉴 건너뛰기




Volumn 31, Issue 3, 2016, Pages 255-265

Epigenetic regulation in heart failure

Author keywords

Aging; Epigenetics; Heart failure; Metabolism

Indexed keywords

MITOCHONDRIAL DNA; UNTRANSLATED RNA; CHROMATIN;

EID: 84961896776     PISSN: 02684705     EISSN: 15317080     Source Type: Journal    
DOI: 10.1097/HCO.0000000000000276     Document Type: Review
Times cited : (41)

References (156)
  • 1
    • 41449086790 scopus 로고    scopus 로고
    • Cardiac plasticity
    • Hill JA, Olson EN. Cardiac plasticity. N Engl J Med 2008; 358:1370-1380.
    • (2008) N Engl J Med , vol.358 , pp. 1370-1380
    • Hill, J.A.1    Olson, E.N.2
  • 3
    • 0035143859 scopus 로고    scopus 로고
    • Heart failure in the 21st century: A cardiogeriatric syndrome
    • Rich MW. Heart failure in the 21st century: a cardiogeriatric syndrome. J Gerontol A Biol Sci Med Sci 2001; 56:M88-M96.
    • (2001) J Gerontol A Biol Sci Med Sci , vol.56 , pp. M88-M96
    • Rich, M.W.1
  • 4
    • 33745894642 scopus 로고    scopus 로고
    • Diabetes in heart failure: Prevalence and impact on outcome in the population
    • From AM, Leibson CL, Bursi F, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med 2006; 119:591-599.
    • (2006) Am J Med , vol.119 , pp. 591-599
    • From, A.M.1    Leibson, C.L.2    Bursi, F.3
  • 5
    • 0036681988 scopus 로고    scopus 로고
    • Obesity and the risk of heart failure
    • Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med 2002; 347:305-313.
    • (2002) N Engl J Med , vol.347 , pp. 305-313
    • Kenchaiah, S.1    Evans, J.C.2    Levy, D.3
  • 6
    • 77956612624 scopus 로고    scopus 로고
    • Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study
    • Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010; 376:875-885.
    • (2010) Lancet , vol.376 , pp. 875-885
    • Swedberg, K.1    Komajda, M.2    Bohm, M.3
  • 7
    • 84907087561 scopus 로고    scopus 로고
    • Angiotensin-neprilysin inhibition versus enalapril in heart failure
    • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371:993-1004.
    • (2014) N Engl J Med , vol.371 , pp. 993-1004
    • McMurray, J.J.1    Packer, M.2    Desai, A.S.3
  • 8
    • 33644837326 scopus 로고    scopus 로고
    • Control of cardiac growth by histone acetylation/deacetylation
    • Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006; 98:15-24.
    • (2006) Circ Res , vol.98 , pp. 15-24
    • Backs, J.1    Olson, E.N.2
  • 9
    • 84962936621 scopus 로고    scopus 로고
    • Harnessing fetal and adult genetic reprograming for therapy of heart disease
    • Nandi SS, Mishra PK. Harnessing fetal and adult genetic reprograming for therapy of heart disease. J Nat Sci 2015; 1:e71.
    • (2015) J Nat Sci , vol.1 , pp. e71
    • Nandi, S.S.1    Mishra, P.K.2
  • 14
    • 84925874958 scopus 로고    scopus 로고
    • Epigenetic mechanisms in heart failure pathogenesis
    • Di Salvo TG, Haldar SM. Epigenetic mechanisms in heart failure pathogenesis. Circ Heart Fail 2014; 7:850-863.
    • (2014) Circ Heart Fail , vol.7 , pp. 850-863
    • Di Salvo, T.G.1    Haldar, S.M.2
  • 15
    • 84940079857 scopus 로고    scopus 로고
    • Readers, writers, and erasers: Chromatin as the whiteboard of heart disease
    • Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res 2015; 116:1245-1253.
    • (2015) Circ Res , vol.116 , pp. 1245-1253
    • Gillette, T.G.1    Hill, J.A.2
  • 16
    • 79751473406 scopus 로고    scopus 로고
    • Chromatin remodeling in cardiovascular development and physiology
    • Han P, Hang CT, Yang J, Chang CP. Chromatin remodeling in cardiovascular development and physiology. Circ Res 2011; 108:378-396.
    • (2011) Circ Res , vol.108 , pp. 378-396
    • Han, P.1    Hang, C.T.2    Yang, J.3    Chang, C.P.4
  • 17
    • 0032030770 scopus 로고    scopus 로고
    • Histone acetylation and transcriptional regulatory mechanisms
    • Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998; 12:599-606.
    • (1998) Genes Dev , vol.12 , pp. 599-606
    • Struhl, K.1
  • 18
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 1964; 51:786-794.
    • (1964) Proc Natl Acad Sci U S A , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 19
    • 77955051048 scopus 로고    scopus 로고
    • Role of histone acetylation in cell physiology and diseases: An update
    • Khan SN, Khan AU. Role of histone acetylation in cell physiology and diseases: an update. Clin Chim Acta 2010; 411:1401-1411.
    • (2010) Clin Chim Acta , vol.411 , pp. 1401-1411
    • Khan, S.N.1    Khan, A.U.2
  • 20
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
    • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Gen 2009; 10:32-42.
    • (2009) Nat Rev Gen , vol.10 , pp. 32-42
    • Haberland, M.1    Montgomery, R.L.2    Olson, E.N.3
  • 21
    • 0038302887 scopus 로고    scopus 로고
    • Cardiac p300 is involved in myocyte growth with decompensated heart failure
    • Yanazume T, Hasegawa K, Morimoto T, et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 2003; 23:3593-3606.
    • (2003) Mol Cell Biol , vol.23 , pp. 3593-3606
    • Yanazume, T.1    Hasegawa, K.2    Morimoto, T.3
  • 22
    • 0041530268 scopus 로고    scopus 로고
    • Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors
    • Antos CL, McKinsey TA, Dreitz M, et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003; 278:28930-28937.
    • (2003) J Biol Chem , vol.278 , pp. 28930-28937
    • Antos, C.L.1    McKinsey, T.A.2    Dreitz, M.3
  • 23
    • 0037162697 scopus 로고    scopus 로고
    • Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
    • Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002; 110:479-488.
    • (2002) Cell , vol.110 , pp. 479-488
    • Zhang, C.L.1    McKinsey, T.A.2    Chang, S.3
  • 24
    • 84855875719 scopus 로고    scopus 로고
    • Therapeutic potential for HDAC inhibitors in the heart
    • McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 2012; 52:303-319.
    • (2012) Annu Rev Pharmacol Toxicol , vol.52 , pp. 303-319
    • McKinsey, T.A.1
  • 25
    • 84889654527 scopus 로고    scopus 로고
    • Cardiovascular effects of a novel Sirt1 activator, SRT2104, in otherwise healthy cigarette smokers
    • Venkatasubramanian S, Noh RM, Daga S, et al. Cardiovascular effects of a novel Sirt1 activator, SRT2104, in otherwise healthy cigarette smokers. J Am Heart Assoc 2013; 2:e000042.
    • (2013) J Am Heart Assoc , vol.2 , pp. e000042
    • Venkatasubramanian, S.1    Noh, R.M.2    Daga, S.3
  • 26
    • 84869121812 scopus 로고    scopus 로고
    • Exploring the therapeutic space around NAD+
    • Houtkooper RH, Auwerx J. Exploring the therapeutic space around NAD+. J Cell Biol 2012; 199:205-209.
    • (2012) J Cell Biol , vol.199 , pp. 205-209
    • Houtkooper, R.H.1    Auwerx, J.2
  • 27
    • 84883084726 scopus 로고    scopus 로고
    • BET acetyl-lysine binding proteins control pathological cardiac hypertrophy
    • Spiltoir JI, Stratton MS, Cavasin MA, et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 2013; 63:175-179.
    • (2013) J Mol Cell Cardiol , vol.63 , pp. 175-179
    • Spiltoir, J.I.1    Stratton, M.S.2    Cavasin, M.A.3
  • 28
    • 84881192460 scopus 로고    scopus 로고
    • BET bromodomains mediate transcriptional pause release in heart failure
    • Anand P, Brown JD, Lin CY, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 2013; 154:569-582.
    • (2013) Cell , vol.154 , pp. 569-582
    • Anand, P.1    Brown, J.D.2    Lin, C.Y.3
  • 29
    • 84865120905 scopus 로고    scopus 로고
    • A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
    • Kruidenier L, Chung CW, Cheng Z, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 2012; 488:404-408.
    • (2012) Nature , vol.488 , pp. 404-408
    • Kruidenier, L.1    Chung, C.W.2    Cheng, Z.3
  • 30
    • 79957892087 scopus 로고    scopus 로고
    • The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice
    • Zhang QJ, Chen HZ, Wang L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 2011; 121:2447-2456.
    • (2011) J Clin Invest , vol.121 , pp. 2447-2456
    • Zhang, Q.J.1    Chen, H.Z.2    Wang, L.3
  • 31
    • 14644425217 scopus 로고    scopus 로고
    • Mitochondrial energy metabolism in heart failure: A question of balance
    • Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005; 115:547-555.
    • (2005) J Clin Invest , vol.115 , pp. 547-555
    • Huss, J.M.1    Kelly, D.P.2
  • 32
    • 83455238338 scopus 로고    scopus 로고
    • Optimization of cardiac metabolism in heart failure
    • Nagoshi T, Yoshimura M, Rosano GM, et al. Optimization of cardiac metabolism in heart failure. Curr Pharm Des 2011; 17:3846-3853.
    • (2011) Curr Pharm des , vol.17 , pp. 3846-3853
    • Nagoshi, T.1    Yoshimura, M.2    Rosano, G.M.3
  • 33
    • 84875232063 scopus 로고    scopus 로고
    • Diabetic cardiomyopathy and metabolic remodeling of the heart
    • Battiprolu PK, Lopez-Crisosto C, Wang ZV, et al. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci 2013; 92:609-615.
    • (2013) Life Sci , vol.92 , pp. 609-615
    • Battiprolu, P.K.1    Lopez-Crisosto, C.2    Wang, Z.V.3
  • 34
    • 85026337179 scopus 로고    scopus 로고
    • Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure ( 2013 Grover Conference Series)
    • Sankaralingam S, Lopaschuk GD. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 Grover Conference Series). Pulm Circ 2015; 5:15-28.
    • (2015) Pulm Circ , vol.5 , pp. 15-28
    • Sankaralingam, S.1    Lopaschuk, G.D.2
  • 35
    • 71849109938 scopus 로고    scopus 로고
    • Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin
    • Connaughton S, Chowdhury F, Attia RR, et al. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol 2010; 315:159-167.
    • (2010) Mol Cell Endocrinol , vol.315 , pp. 159-167
    • Connaughton, S.1    Chowdhury, F.2    Attia, R.R.3
  • 36
    • 0031259554 scopus 로고    scopus 로고
    • The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity
    • Seymour AM, Chatham JC. The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity. J Mol Cell Cardiol 1997; 29:2771-2778.
    • (1997) J Mol Cell Cardiol , vol.29 , pp. 2771-2778
    • Seymour, A.M.1    Chatham, J.C.2
  • 37
    • 0031973056 scopus 로고    scopus 로고
    • Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart
    • Wu P, Sato J, Zhao Y, et al. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J 1998; 329 (Pt 1):197-201.
    • (1998) Biochem J , vol.329 , pp. 197-201
    • Wu, P.1    Sato, J.2    Zhao, Y.3
  • 38
    • 84881507866 scopus 로고    scopus 로고
    • Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure
    • Mori J, Zhang L, Oudit GY, Lopaschuk GD. Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 2013; 63:98-106.
    • (2013) J Mol Cell Cardiol , vol.63 , pp. 98-106
    • Mori, J.1    Zhang, L.2    Oudit, G.Y.3    Lopaschuk, G.D.4
  • 39
    • 0036066319 scopus 로고    scopus 로고
    • Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin
    • Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes 2002; 51:276-283.
    • (2002) Diabetes , vol.51 , pp. 276-283
    • Huang, B.1    Wu, P.2    Bowker-Kinley, M.M.3    Harris, R.A.4
  • 40
    • 84863283393 scopus 로고    scopus 로고
    • Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice
    • Battiprolu PK, Hojayev B, Jiang N, et al. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest 2012; 122:1109-1118.
    • (2012) J Clin Invest , vol.122 , pp. 1109-1118
    • Battiprolu, P.K.1    Hojayev, B.2    Jiang, N.3
  • 41
    • 0030807891 scopus 로고    scopus 로고
    • Dichloroacetate as metabolic therapy for myocardial ischemia and failure
    • Bersin RM, Stacpoole PW. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 1997; 134 (5 Pt 1):841-855.
    • (1997) Am Heart J , vol.134 , Issue.5 , pp. 841-855
    • Bersin, R.M.1    Stacpoole, P.W.2
  • 42
    • 77954743140 scopus 로고    scopus 로고
    • Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure
    • Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 2010; 3:420-430.
    • (2010) Circ Heart Fail , vol.3 , pp. 420-430
    • Kato, T.1    Niizuma, S.2    Inuzuka, Y.3
  • 43
    • 0031773645 scopus 로고    scopus 로고
    • Effects of dichloroacetate in patients with congestive heart failure
    • Lewis JF, DaCosta M, Wargowich T, Stacpoole P. Effects of dichloroacetate in patients with congestive heart failure. Clin Cardiol 1998; 21:888-892.
    • (1998) Clin Cardiol , vol.21 , pp. 888-892
    • Lewis, J.F.1    DaCosta, M.2    Wargowich, T.3    Stacpoole, P.4
  • 44
    • 84929455277 scopus 로고    scopus 로고
    • Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart
    • Matsuhashi T, Hishiki T, Zhou H, et al. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol 2015; 82:116-124.
    • (2015) J Mol Cell Cardiol , vol.82 , pp. 116-124
    • Matsuhashi, T.1    Hishiki, T.2    Zhou, H.3
  • 45
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42:426-437.
    • (2011) Mol Cell , vol.42 , pp. 426-437
    • Cai, L.1    Sutter, B.M.2    Li, B.3    Tu, B.P.4
  • 46
    • 84924369505 scopus 로고    scopus 로고
    • Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
    • Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015; 21:392-402.
    • (2015) Cell Metab , vol.21 , pp. 392-402
    • Moussaieff, A.1    Rouleau, M.2    Kitsberg, D.3
  • 47
    • 84905858776 scopus 로고    scopus 로고
    • Protein acetylation as a means to regulate protein function in tune with metabolic state
    • Shi L, Tu BP. Protein acetylation as a means to regulate protein function in tune with metabolic state. Biochem Soc Trans 2014; 42:1037-1042.
    • (2014) Biochem Soc Trans , vol.42 , pp. 1037-1042
    • Shi, L.1    Tu, B.P.2
  • 48
    • 37549068090 scopus 로고    scopus 로고
    • NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences
    • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 179-206
    • Ying, W.1
  • 49
    • 80053920774 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice
    • Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metab 2011; 14:528-536.
    • (2011) Cell Metab , vol.14 , pp. 528-536
    • Yoshino, J.1    Mills, K.F.2    Yoon, M.J.3    Imai, S.4
  • 50
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324:651-654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1    Yoshino, J.2    Brace, C.S.3
  • 51
    • 84924857323 scopus 로고    scopus 로고
    • The NAD(+)-dependent Sirt1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells
    • Ryall JG, Dell'Orso S, Derfoul A, et al. The NAD(+)-dependent Sirt1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015; 16:171-183.
    • (2015) Cell Stem Cell , vol.16 , pp. 171-183
    • Ryall, J.G.1    Dell'Orso, S.2    Derfoul, A.3
  • 52
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein SIR2 is a NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein SIR2 is a NAD-dependent histone deacetylase. Nature 2000; 403:795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 53
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13:2570-2580.
    • (1999) Genes Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 54
    • 8644224064 scopus 로고    scopus 로고
    • SIR2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B, Helfand SL. SIR2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004; 101:15998-16003.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 55
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz D, Munoz-Martin M, Canamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010; 1:3.
    • (2010) Nat Commun , vol.1 , pp. 3
    • Herranz, D.1    Munoz-Martin, M.2    Canamero, M.3
  • 56
    • 84937970546 scopus 로고    scopus 로고
    • Sirtuin function in aging heart and vessels
    • Cencioni C, Spallotta F, Mai A, et al. Sirtuin function in aging heart and vessels. J Mol Cell Cardiol 2015; 83:55-61.
    • (2015) J Mol Cell Cardiol , vol.83 , pp. 55-61
    • Cencioni, C.1    Spallotta, F.2    Mai, A.3
  • 57
    • 84943391158 scopus 로고    scopus 로고
    • Protective effects of sirtuins in cardiovascular diseases: From bench to bedside
    • Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 2015; 36:3404-3412.
    • (2015) Eur Heart J , vol.36 , pp. 3404-3412
    • Winnik, S.1    Auwerx, J.2    Sinclair, D.A.3    Matter, C.M.4
  • 58
    • 84872687705 scopus 로고    scopus 로고
    • Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis
    • Gorenne I, Kumar S, Gray K, et al. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 2013; 127:386-396.
    • (2013) Circulation , vol.127 , pp. 386-396
    • Gorenne, I.1    Kumar, S.2    Gray, K.3
  • 59
    • 58149090925 scopus 로고    scopus 로고
    • Sirt6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. Sirt6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136:62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 60
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin Sirt6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin Sirt6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012; 18:1643-1650.
    • (2012) Nat Med , vol.18 , pp. 1643-1650
    • Sundaresan, N.R.1    Vasudevan, P.2    Zhong, L.3
  • 61
    • 84924528336 scopus 로고    scopus 로고
    • Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor kappaB signaling
    • Tian K, Liu Z, Wang J, et al. Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor kappaB signaling. Transl Res 2015; 165:374-386.
    • (2015) Transl Res , vol.165 , pp. 374-386
    • Tian, K.1    Liu, Z.2    Wang, J.3
  • 62
    • 84861338375 scopus 로고    scopus 로고
    • Emerging beneficial roles of sirtuins in heart failure
    • Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107:273.
    • (2012) Basic Res Cardiol , vol.107 , pp. 273
    • Tanno, M.1    Kuno, A.2    Horio, Y.3    Miura, T.4
  • 63
    • 70149095672 scopus 로고    scopus 로고
    • Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+synthesis in cardiac myocytes
    • Hsu CP, Oka S, Shao D, et al. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+synthesis in cardiac myocytes. Circ Res 2009; 105:481-491.
    • (2009) Circ Res , vol.105 , pp. 481-491
    • Hsu, C.P.1    Oka, S.2    Shao, D.3
  • 64
    • 84862786955 scopus 로고    scopus 로고
    • NMNAT2 protects cardiomyocytes from hypertrophy via activation of Sirt6
    • Cai Y, Yu SS, Chen SR, et al. NMNAT2 protects cardiomyocytes from hypertrophy via activation of Sirt6. FEBS Lett 2012; 586:866-874.
    • (2012) FEBS Lett , vol.586 , pp. 866-874
    • Cai, Y.1    Yu, S.S.2    Chen, S.R.3
  • 65
    • 84860346630 scopus 로고    scopus 로고
    • Depression of mitochondrial metabolism by downregulation of cytoplasmic deacetylase
    • Kamemura K, Ogawa M, Ohkubo S, et al. Depression of mitochondrial metabolism by downregulation of cytoplasmic deacetylase, HDAC6. FEBS Lett 2012; 586:1379-1383.
    • (2012) HDAC6. FEBS Lett , vol.586 , pp. 1379-1383
    • Kamemura, K.1    Ogawa, M.2    Ohkubo, S.3
  • 66
    • 79956317095 scopus 로고    scopus 로고
    • Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension
    • Lemon DD, Horn TR, Cavasin MA, et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol 2011; 51:41-50.
    • (2011) J Mol Cell Cardiol , vol.51 , pp. 41-50
    • Lemon, D.D.1    Horn, T.R.2    Cavasin, M.A.3
  • 67
    • 84893126165 scopus 로고    scopus 로고
    • Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation
    • Zhang D, Wu CT, Qi X, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 2014; 129:346-358.
    • (2014) Circulation , vol.129 , pp. 346-358
    • Zhang, D.1    Wu, C.T.2    Qi, X.3
  • 68
    • 84904293106 scopus 로고    scopus 로고
    • HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling
    • Demos-Davies KM, Ferguson BS, Cavasin MA, et al. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am J Physiol Heart Circ Physiol 2014; 307:H252-H258.
    • (2014) Am J Physiol Heart Circ Physiol , vol.307 , pp. H252-H258
    • Demos-Davies, K.M.1    Ferguson, B.S.2    Cavasin, M.A.3
  • 69
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013; 339:211-214.
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1    Hirschey, M.D.2    Newman, J.3
  • 70
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity. Nature 2009; 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 71
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and Sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Canto C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and Sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010; 11:213-219.
    • (2010) Cell Metab , vol.11 , pp. 213-219
    • Canto, C.1    Jiang, L.Q.2    Deshmukh, A.S.3
  • 72
    • 84924181684 scopus 로고    scopus 로고
    • Epigenetics and metabolism
    • Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res 2015; 116:715-736.
    • (2015) Circ Res , vol.116 , pp. 715-736
    • Keating, S.T.1    El-Osta, A.2
  • 73
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: A dynamic mark in health, disease and inheritance
    • Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13:343-357.
    • (2012) Nat Rev Genet , vol.13 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 74
    • 58049145427 scopus 로고    scopus 로고
    • Genome-wide histone methylation profile for heart failure
    • Kaneda R, Takada S, Yamashita Y, et al. Genome-wide histone methylation profile for heart failure. Genes Cells 2009; 14:69-77.
    • (2009) Genes Cells , vol.14 , pp. 69-77
    • Kaneda, R.1    Takada, S.2    Yamashita, Y.3
  • 75
    • 84890255267 scopus 로고    scopus 로고
    • Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy
    • Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 2013; 110:20164-20169.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 20164-20169
    • Papait, R.1    Cattaneo, P.2    Kunderfranco, P.3
  • 76
    • 84874589977 scopus 로고    scopus 로고
    • HDAC4 controls histone methylation in response to elevated cardiac load
    • Hohl M, Wagner M, Reil JC, et al. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 2013; 123:1359-1370.
    • (2013) J Clin Invest , vol.123 , pp. 1359-1370
    • Hohl, M.1    Wagner, M.2    Reil, J.C.3
  • 77
    • 84860215207 scopus 로고    scopus 로고
    • Molecular mechanisms and potential functions of histone demethylases
    • Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13:297-311.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 297-311
    • Kooistra, S.M.1    Helin, K.2
  • 78
    • 79959980701 scopus 로고    scopus 로고
    • Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes
    • Stein AB, Jones TA, Herron TJ, et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 2011; 121:2641-2650.
    • (2011) J Clin Invest , vol.121 , pp. 2641-2650
    • Stein, A.B.1    Jones, T.A.2    Herron, T.J.3
  • 79
    • 33947513027 scopus 로고    scopus 로고
    • Regulation of histone methylation by demethylimination and demethylation
    • Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 2007; 8:307-318.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 307-318
    • Klose, R.J.1    Zhang, Y.2
  • 80
    • 84902685602 scopus 로고    scopus 로고
    • Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process
    • Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014; 16:45-65.
    • (2014) Ageing Res Rev , vol.16 , pp. 45-65
    • Salminen, A.1    Kauppinen, A.2    Hiltunen, M.3    Kaarniranta, K.4
  • 81
    • 33846983276 scopus 로고    scopus 로고
    • Polycomb/trithorax response elements and epigenetic memory of cell identity
    • Ringrose L, Paro R. Polycomb/trithorax response elements and epigenetic memory of cell identity. Development 2007; 134:223-232.
    • (2007) Development , vol.134 , pp. 223-232
    • Ringrose, L.1    Paro, R.2
  • 82
    • 77954660029 scopus 로고    scopus 로고
    • Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. Elegans
    • Greer EL, Maures TJ, Hauswirth AG, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010; 466:383-387.
    • (2010) Nature , vol.466 , pp. 383-387
    • Greer, E.L.1    Maures, T.J.2    Hauswirth, A.G.3
  • 83
    • 84861194045 scopus 로고    scopus 로고
    • Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins
    • Wang QT. Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn 2012; 241:1021-1033.
    • (2012) Dev Dyn , vol.241 , pp. 1021-1033
    • Wang, Q.T.1
  • 84
    • 0038349957 scopus 로고    scopus 로고
    • Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells
    • Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302-305.
    • (2003) Nature , vol.423 , pp. 302-305
    • Park, I.K.1    Qian, D.2    Kiel, M.3
  • 85
    • 84924359164 scopus 로고    scopus 로고
    • Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence
    • Gonzalez-Valdes I, Hidalgo I, Bujarrabal A, et al. Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence. Nat Commun 2015; 6:6473.
    • (2015) Nat Commun , vol.6 , pp. 6473
    • Gonzalez-Valdes, I.1    Hidalgo, I.2    Bujarrabal, A.3
  • 86
    • 0033552813 scopus 로고    scopus 로고
    • The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus
    • Jacobs JJ, Kieboom K, Marino S, et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397:164-168.
    • (1999) Nature , vol.397 , pp. 164-168
    • Jacobs, J.J.1    Kieboom, K.2    Marino, S.3
  • 87
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011; 25:1010-1022.
    • (2011) Genes Dev , vol.25 , pp. 1010-1022
    • Deaton, A.M.1    Bird, A.2
  • 88
    • 84874194072 scopus 로고    scopus 로고
    • DNA methylation: Roles in mammalian development
    • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Gen 2013; 14:204-220.
    • (2013) Nat Rev Gen , vol.14 , pp. 204-220
    • Smith, Z.D.1    Meissner, A.2
  • 89
    • 75749104729 scopus 로고    scopus 로고
    • DNMT1 maintains progenitor function in self-renewing somatic tissue
    • Sen GL, Reuter JA, Webster DE, et al. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 2010; 463:563-567.
    • (2010) Nature , vol.463 , pp. 563-567
    • Sen, G.L.1    Reuter, J.A.2    Webster, D.E.3
  • 90
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development
    • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development. Cell 1999; 99:247-257.
    • (1999) Cell , vol.99 , pp. 247-257
    • Okano, M.1    Bell, D.W.2    Haber, D.A.3    Li, E.4
  • 91
    • 84902971042 scopus 로고    scopus 로고
    • DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2
    • Tao H, Yang JJ, Chen ZW, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 2014; 323:42-50.
    • (2014) Toxicology , vol.323 , pp. 42-50
    • Tao, H.1    Yang, J.J.2    Chen, Z.W.3
  • 92
    • 84924367822 scopus 로고    scopus 로고
    • Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease
    • Gilsbach R, Preissl S, Gruning BA, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 2014; 5:5288.
    • (2014) Nat Commun , vol.5 , pp. 5288
    • Gilsbach, R.1    Preissl, S.2    Gruning, B.A.3
  • 93
    • 84894518920 scopus 로고    scopus 로고
    • Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats
    • Xiao D, Dasgupta C, Chen M, et al. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res 2014; 101:373-382.
    • (2014) Cardiovasc Res , vol.101 , pp. 373-382
    • Xiao, D.1    Dasgupta, C.2    Chen, M.3
  • 94
    • 82355180985 scopus 로고    scopus 로고
    • Distinct epigenomic features in end-stage failing human hearts
    • Movassagh M, Choy MK, Knowles DA, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 2011; 124:2411-2422.
    • (2011) Circulation , vol.124 , pp. 2411-2422
    • Movassagh, M.1    Choy, M.K.2    Knowles, D.A.3
  • 95
    • 84866839590 scopus 로고    scopus 로고
    • The landscape of DNA repeat elements in human heart failure
    • Haider S, Cordeddu L, Robinson E, et al. The landscape of DNA repeat elements in human heart failure. Genome Biol 2012; 13:R90.
    • (2012) Genome Biol , vol.13 , pp. R90
    • Haider, S.1    Cordeddu, L.2    Robinson, E.3
  • 96
    • 84874746425 scopus 로고    scopus 로고
    • Alterations in cardiac DNA methylation in human dilated cardiomyopathy
    • Haas J, Frese KS, Park YJ, et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 2013; 5:413-429.
    • (2013) EMBO Mol Med , vol.5 , pp. 413-429
    • Haas, J.1    Frese, K.S.2    Park, Y.J.3
  • 97
    • 77649197044 scopus 로고    scopus 로고
    • Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure
    • Movassagh M, Choy MK, Goddard M, et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE 2010; 5:e8564.
    • (2010) PLoS ONE , vol.5 , pp. e8564
    • Movassagh, M.1    Choy, M.K.2    Goddard, M.3
  • 98
    • 84888787152 scopus 로고    scopus 로고
    • Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis
    • Connelly JJ, Cherepanova OA, Doss JF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet 2013; 22:5107-5120.
    • (2013) Hum Mol Genet , vol.22 , pp. 5107-5120
    • Connelly, J.J.1    Cherepanova, O.A.2    Doss, J.F.3
  • 100
    • 77955891911 scopus 로고    scopus 로고
    • The epigenome and the mitochondrion: Bioenergetics and the environment [corrected]
    • Wallace DC. The epigenome and the mitochondrion: bioenergetics and the environment [corrected]. Genes Dev 2010; 24:1571-1573.
    • (2010) Genes Dev , vol.24 , pp. 1571-1573
    • Wallace, D.C.1
  • 101
    • 84943258103 scopus 로고    scopus 로고
    • AZT-induced mitochondrial toxicity: An epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress
    • Koczor CA, Jiao Z, Fields E, et al. AZT-induced mitochondrial toxicity: an epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress. Physiol Genomics 2015; 47:447-454.
    • (2015) Physiol Genomics , vol.47 , pp. 447-454
    • Koczor, C.A.1    Jiao, Z.2    Fields, E.3
  • 102
    • 84943527056 scopus 로고
    • Mitochondrial biogenesis and dynamics in the developing and diseased heart
    • Dorn GW 2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 2015; 29:1981-1991.
    • (1981) Genes Dev , vol.2015 , pp. 29
    • Dorn, G.W.1    Vega, R.B.2    Kelly, D.P.3
  • 104
    • 84911408878 scopus 로고    scopus 로고
    • Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria
    • Ghosh S, Sengupta S, Scaria V. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 2014; 18:58-62.
    • (2014) Mitochondrion , vol.18 , pp. 58-62
    • Ghosh, S.1    Sengupta, S.2    Scaria, V.3
  • 105
    • 79952749156 scopus 로고    scopus 로고
    • DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria
    • Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 2011; 108:3630-3635.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 3630-3635
    • Shock, L.S.1    Thakkar, P.V.2    Peterson, E.J.3
  • 106
    • 84891533924 scopus 로고    scopus 로고
    • Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS
    • Wong M, Gertz B, Chestnut BA, Martin LJ. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 2013; 7:279.
    • (2013) Front Cell Neurosci , vol.7 , pp. 279
    • Wong, M.1    Gertz, B.2    Chestnut, B.A.3    Martin, L.J.4
  • 107
    • 80555128721 scopus 로고    scopus 로고
    • The mitochondrial transcription and packaging factor tfam imposes a u-turn on mitochondrial DNA
    • Ngo HB, Kaiser JT, Chan DC. The mitochondrial transcription and packaging factor tfam imposes a u-turn on mitochondrial DNA. Nat Struct Mol Biol 2011; 18:1290-1296.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 1290-1296
    • Ngo, H.B.1    Kaiser, J.T.2    Chan, D.C.3
  • 108
    • 84926382602 scopus 로고    scopus 로고
    • Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress
    • Ikeda M, Ide T, Fujino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS ONE 2015; 10:e0119687.
    • (2015) PLoS ONE , vol.10 , pp. e0119687
    • Ikeda, M.1    Ide, T.2    Fujino, T.3
  • 109
    • 84983071823 scopus 로고    scopus 로고
    • Platelet mitochondrial DNA methylation: A potential new marker of cardiovascular disease
    • Baccarelli AA, Byun HM. Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenetics 2015; 7:44.
    • (2015) Clin Epigenetics , vol.7 , pp. 44
    • Baccarelli, A.A.1    Byun, H.M.2
  • 110
    • 0018177462 scopus 로고
    • Regulation of carbohydrate metabolism in platelets
    • Akkerman JW. Regulation of carbohydrate metabolism in platelets. A review. Thromb Haemost 1978; 39:712-724.
    • (1978) A Review. Thromb Haemost , vol.39 , pp. 712-724
    • Akkerman, J.W.1
  • 111
    • 84952715101 scopus 로고    scopus 로고
    • RNA (epi)genetics in cardiovascular diseases
    • Elia L, Condorelli G. RNA (epi)genetics in cardiovascular diseases. J Mol Cell Cardiol 2015; 89:11-16.
    • (2015) J Mol Cell Cardiol , vol.89 , pp. 11-16
    • Elia, L.1    Condorelli, G.2
  • 112
    • 36248948593 scopus 로고    scopus 로고
    • Altered microRNA expression in human heart disease
    • Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics 2007; 31:367-373.
    • (2007) Physiol Genomics , vol.31 , pp. 367-373
    • Ikeda, S.1    Kong, S.W.2    Lu, J.3
  • 113
    • 84937694780 scopus 로고    scopus 로고
    • Noncoding RNA in age-related cardiovascular diseases
    • Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 2015; 83:142-155.
    • (2015) J Mol Cell Cardiol , vol.83 , pp. 142-155
    • Greco, S.1    Gorospe, M.2    Martelli, F.3
  • 114
    • 84901020290 scopus 로고    scopus 로고
    • MiR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo
    • Das S, Bedja D, Campbell N, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS ONE 2014; 9:e96820.
    • (2014) PLoS ONE , vol.9 , pp. e96820
    • Das, S.1    Bedja, D.2    Campbell, N.3
  • 115
    • 84940788564 scopus 로고    scopus 로고
    • MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
    • Wang H, Li J, Chi H, et al. microRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med 2015; 19:2084-2097.
    • (2015) J Cell Mol Med , vol.19 , pp. 2084-2097
    • Wang, H.1    Li, J.2    Chi, H.3
  • 116
    • 84936998888 scopus 로고    scopus 로고
    • MicroRNA-340-5p functions downstream of cardiotrophin-1 to regulate cardiac eccentric hypertrophy and heart failure via target gene dystrophin
    • Zhou J, Gao J, Zhang X, et al. microRNA-340-5p functions downstream of cardiotrophin-1 to regulate cardiac eccentric hypertrophy and heart failure via target gene dystrophin. Int Heart J 2015; 56:454-458.
    • (2015) Int Heart J , vol.56 , pp. 454-458
    • Zhou, J.1    Gao, J.2    Zhang, X.3
  • 117
    • 84884818765 scopus 로고    scopus 로고
    • Identification of micro-RNA networks in endstage heart failure because of dilated cardiomyopathy
    • Zhu X, Wang H, Liu F, et al. Identification of micro-RNA networks in endstage heart failure because of dilated cardiomyopathy. J Cell Mol Med 2013; 17:1173-1187.
    • (2013) J Cell Mol Med , vol.17 , pp. 1173-1187
    • Zhu, X.1    Wang, H.2    Liu, F.3
  • 118
    • 84928390077 scopus 로고
    • MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis
    • DuanQ, Yang L, Gong W, et al. microRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 2015; 230:1964-1973.
    • (1964) J Cell Physiol , vol.2015 , pp. 230
    • DuanQ Yang, L.1    Gong, W.2
  • 120
    • 84867009927 scopus 로고    scopus 로고
    • The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
    • Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3:1078.
    • (2012) Nat Commun , vol.3 , pp. 1078
    • Ucar, A.1    Gupta, S.K.2    Fiedler, J.3
  • 121
    • 80053567152 scopus 로고    scopus 로고
    • Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
    • Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124:1537-1547.
    • (2011) Circulation , vol.124 , pp. 1537-1547
    • Montgomery, R.L.1    Hullinger, T.G.2    Semus, H.M.3
  • 122
    • 84915754365 scopus 로고    scopus 로고
    • MiRNAs as biomarkers of myocardial infarction: A step forward towards personalized medicine?
    • Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med 2014; 20:716-725.
    • (2014) Trends Mol Med , vol.20 , pp. 716-725
    • Goretti, E.1    Wagner, D.R.2    Devaux, Y.3
  • 123
    • 84908462087 scopus 로고    scopus 로고
    • MicroRNA-539 is upregulated in failing heart, and suppresses O-GlcNAcase expression
    • Muthusamy S, DeMartino AM, Watson LJ, et al. microRNA-539 is upregulated in failing heart, and suppresses O-GlcNAcase expression. J Biol Chem 2014; 289:29665-29676.
    • (2014) J Biol Chem , vol.289 , pp. 29665-29676
    • Muthusamy, S.1    DeMartino, A.M.2    Watson, L.J.3
  • 124
    • 84940001131 scopus 로고    scopus 로고
    • MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis
    • Su M, Wang J, Wang C, et al. microRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 2015; 22:986-999.
    • (2015) Cell Death Differ , vol.22 , pp. 986-999
    • Su, M.1    Wang, J.2    Wang, C.3
  • 125
    • 84867903854 scopus 로고    scopus 로고
    • Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function
    • Bernardo BC, Gao XM, Winbanks CE, et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA 2012; 109:17615-17620.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 17615-17620
    • Bernardo, B.C.1    Gao, X.M.2    Winbanks, C.E.3
  • 126
    • 84874700585 scopus 로고    scopus 로고
    • MicroRNA-34a regulates cardiac ageing and function
    • Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013; 495:107-110.
    • (2013) Nature , vol.495 , pp. 107-110
    • Boon, R.A.1    Iekushi, K.2    Lechner, S.3
  • 127
    • 84888131014 scopus 로고    scopus 로고
    • Elevated microRNA-34a in obesity reduces NAD+ levels and Sirt1 activity by directly targeting NAMPT
    • Choi SE, Fu T, Seok S, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and Sirt1 activity by directly targeting NAMPT. Aging Cell 2013; 12:1062-1072.
    • (2013) Aging Cell , vol.12 , pp. 1062-1072
    • Choi, S.E.1    Fu, T.2    Seok, S.3
  • 128
    • 78649843756 scopus 로고    scopus 로고
    • MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling
    • da Costa Martins PA, Salic K, Gladka MM, et al. microRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol 2010; 12:1220-1227.
    • (2010) Nat Cell Biol , vol.12 , pp. 1220-1227
    • Da Costa Martins, P.A.1    Salic, K.2    Gladka, M.M.3
  • 129
    • 84861891920 scopus 로고    scopus 로고
    • MicroRNA dysregulation in diabetic ischemic heart failure patients
    • Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012; 61:1633-1641.
    • (2012) Diabetes , vol.61 , pp. 1633-1641
    • Greco, S.1    Fasanaro, P.2    Castelvecchio, S.3
  • 130
    • 84937524134 scopus 로고
    • Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice
    • Zheng D, Ma J, Yu Y, et al. Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia 2015; 58:1949-1958.
    • (1949) Diabetologia , vol.2015 , pp. 58
    • Zheng, D.1    Ma, J.2    Yu, Y.3
  • 131
    • 84922104763 scopus 로고    scopus 로고
    • MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway
    • Kuwabara Y, Horie T, Baba O, et al. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res 2015; 116:279-288.
    • (2015) Circ Res , vol.116 , pp. 279-288
    • Kuwabara, Y.1    Horie, T.2    Baba, O.3
  • 132
    • 84905014949 scopus 로고    scopus 로고
    • Regulation of cardiac expression of the diabetic marker microRNA miR-29
    • Arnold N, Koppula PR, Gul R, et al. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One 2014; 9:e103284.
    • (2014) PLoS One , vol.9 , pp. e103284
    • Arnold, N.1    Koppula, P.R.2    Gul, R.3
  • 133
    • 84895521111 scopus 로고    scopus 로고
    • Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy
    • Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2014; 63:920-927.
    • (2014) J Am Coll Cardiol , vol.63 , pp. 920-927
    • Roncarati, R.1    Viviani Anselmi, C.2    Losi, M.A.3
  • 134
    • 84885034083 scopus 로고    scopus 로고
    • Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta
    • Talasila A, Yu H, Ackers-Johnson M, et al. Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta. Arterioscler Thromb Vasc Biol 2013; 33:2355-2365.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 2355-2365
    • Talasila, A.1    Yu, H.2    Ackers-Johnson, M.3
  • 135
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008; 105:13027-13032.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 13027-13032
    • Van Rooij, E.1    Sutherland, L.B.2    Thatcher, J.E.3
  • 136
    • 59849128881 scopus 로고    scopus 로고
    • MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling
    • Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009; 104:170-178.
    • (2009) Circ Res , vol.104 , pp. 170-178
    • Duisters, R.F.1    Tijsen, A.J.2    Schroen, B.3
  • 137
    • 84941360761 scopus 로고    scopus 로고
    • Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension
    • Potus F, Ruffenach G, Dahou A, et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132:932-943.
    • (2015) Circulation , vol.132 , pp. 932-943
    • Potus, F.1    Ruffenach, G.2    Dahou, A.3
  • 138
    • 84887251900 scopus 로고    scopus 로고
    • NFAT and miR-25 cooperate to reactivate the transcription factor HAND2 in heart failure
    • Dirkx E, Gladka MM, Philippen LE, et al. NFAT and miR-25 cooperate to reactivate the transcription factor HAND2 in heart failure. Nat Cell Biol 2013; 15:1282-1293.
    • (2013) Nat Cell Biol , vol.15 , pp. 1282-1293
    • Dirkx, E.1    Gladka, M.M.2    Philippen, L.E.3
  • 139
    • 84899482237 scopus 로고    scopus 로고
    • Inhibition of miR-25 improves cardiac contractility in the failing heart
    • Wahlquist C, Jeong D, Rojas-Munoz A, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508:531-535.
    • (2014) Nature , vol.508 , pp. 531-535
    • Wahlquist, C.1    Jeong, D.2    Rojas-Munoz, A.3
  • 140
    • 34249279050 scopus 로고    scopus 로고
    • MicroRNA-133 controls cardiac hypertrophy
    • Care A, Catalucci D, Felicetti F, et al. microRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13:613-618.
    • (2007) Nat Med , vol.13 , pp. 613-618
    • Care, A.1    Catalucci, D.2    Felicetti, F.3
  • 141
    • 84894577814 scopus 로고    scopus 로고
    • Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
    • Chen S, Puthanveetil P, Feng B, et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 2014; 18:415-421.
    • (2014) J Cell Mol Med , vol.18 , pp. 415-421
    • Chen, S.1    Puthanveetil, P.2    Feng, B.3
  • 142
    • 57749121689 scopus 로고    scopus 로고
    • MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
    • Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008; 22:3242-3254.
    • (2008) Genes Dev , vol.22 , pp. 3242-3254
    • Liu, N.1    Bezprozvannaya, S.2    Williams, A.H.3
  • 143
    • 84928953471 scopus 로고    scopus 로고
    • microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats
    • Sang HQ, Jiang ZM, Zhao QP, Xin F. microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomed Pharmacother 2015; 71:185-189.
    • (2015) Biomed Pharmacother , vol.71 , pp. 185-189
    • Sang, H.Q.1    Jiang, Z.M.2    Zhao, Q.P.3    Xin, F.4
  • 144
    • 64649094112 scopus 로고    scopus 로고
    • MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes
    • Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 2009; 29:2193-2204.
    • (2009) Mol Cell Biol , vol.29 , pp. 2193-2204
    • Ikeda, S.1    He, A.2    Kong, S.W.3
  • 145
    • 84877947272 scopus 로고    scopus 로고
    • An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart
    • Tritsch E, Mallat Y, Lefebvre F, et al. An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart. Cardiovasc Res 2013; 98:372-380.
    • (2013) Cardiovasc Res , vol.98 , pp. 372-380
    • Tritsch, E.1    Mallat, Y.2    Lefebvre, F.3
  • 146
    • 84941584725 scopus 로고    scopus 로고
    • Yu CM. Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure
    • Lai KB, Sanderson JE, Izzat MB, Yu CM. micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int J Cardiol 2015; 199:79-83.
    • (2015) Int J Cardiol , vol.199 , pp. 79-83
    • Lai, K.B.1    Sanderson, J.E.2    Izzat, M.B.3
  • 147
    • 84929026082 scopus 로고    scopus 로고
    • The prognostic value of circulating microRNAs in heart failure: Preliminary results from a genomewide expression study
    • Cakmak HA, Coskunpinar E, Ikitimur B, et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genomewide expression study. J Cardiovasc Med 2015; 16:431-437.
    • (2015) J Cardiovasc Med , vol.16 , pp. 431-437
    • Cakmak, H.A.1    Coskunpinar, E.2    Ikitimur, B.3
  • 148
    • 84943584023 scopus 로고    scopus 로고
    • Circulating microRNAs in obese and lean heart failure patients: A case-control study with computational target prediction analysis
    • Thome JG, Mendoza MR, Cheuiche AV, et al. Circulating microRNAs in obese and lean heart failure patients: a case-control study with computational target prediction analysis. Gene 2015; 574:1-10.
    • (2015) Gene , vol.574 , pp. 1-10
    • Thome, J.G.1    Mendoza, M.R.2    Cheuiche, A.V.3
  • 149
    • 84859942977 scopus 로고    scopus 로고
    • The expression of microRNA and microRNA clusters in the aging heart
    • Zhang X, Azhar G, Wei JY. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 2012; 7:e34688.
    • (2012) PLoS One , vol.7 , pp. e34688
    • Zhang, X.1    Azhar, G.2    Wei, J.Y.3
  • 150
    • 84925362344 scopus 로고    scopus 로고
    • Circulating microRNAs in response to exercise
    • Xu T, Liu Q, Yao J, et al. Circulating microRNAs in response to exercise. Scand J Med Sci Sports 2015; 25:e149-e154.
    • (2015) Scand J Med Sci Sports , vol.25 , pp. e149-e154
    • Xu, T.1    Liu, Q.2    Yao, J.3
  • 151
    • 84884862516 scopus 로고    scopus 로고
    • Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients
    • Ellis KL, Cameron VA, Troughton RW, et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 2013; 15:1138-1147.
    • (2013) Eur J Heart Fail , vol.15 , pp. 1138-1147
    • Ellis, K.L.1    Cameron, V.A.2    Troughton, R.W.3
  • 152
    • 84905560635 scopus 로고    scopus 로고
    • Can microRNAs emerge as biomarkers in distinguishing HFPEF versus HFREF?
    • Nair N, Gupta S, Collier IX, et al. Can microRNAs emerge as biomarkers in distinguishing HFPEF versus HFREF? Int J Cardiol 2014; 175:395-399.
    • (2014) Int J Cardiol , vol.175 , pp. 395-399
    • Nair, N.1    Gupta, S.2    Collier, I.X.3
  • 153
    • 84926151941 scopus 로고    scopus 로고
    • MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure
    • Watson CJ, Gupta SK, O'Connell E, et al. microRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 2015; 17:405-415.
    • (2015) Eur J Heart Fail , vol.17 , pp. 405-415
    • Watson, C.J.1    Gupta, S.K.2    O'Connell, E.3
  • 154
    • 84964270351 scopus 로고    scopus 로고
    • Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction
    • Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 2015; 17:393-404.
    • (2015) Eur J Heart Fail , vol.17 , pp. 393-404
    • Wong, L.L.1    Armugam, A.2    Sepramaniam, S.3
  • 155
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 2012; 16:9-17.
    • (2012) Cell Metab , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 156
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013; 153:56-69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.