-
3
-
-
0035143859
-
Heart failure in the 21st century: A cardiogeriatric syndrome
-
Rich MW. Heart failure in the 21st century: a cardiogeriatric syndrome. J Gerontol A Biol Sci Med Sci 2001; 56:M88-M96.
-
(2001)
J Gerontol A Biol Sci Med Sci
, vol.56
, pp. M88-M96
-
-
Rich, M.W.1
-
4
-
-
33745894642
-
Diabetes in heart failure: Prevalence and impact on outcome in the population
-
From AM, Leibson CL, Bursi F, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med 2006; 119:591-599.
-
(2006)
Am J Med
, vol.119
, pp. 591-599
-
-
From, A.M.1
Leibson, C.L.2
Bursi, F.3
-
5
-
-
0036681988
-
Obesity and the risk of heart failure
-
Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med 2002; 347:305-313.
-
(2002)
N Engl J Med
, vol.347
, pp. 305-313
-
-
Kenchaiah, S.1
Evans, J.C.2
Levy, D.3
-
6
-
-
77956612624
-
Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study
-
Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010; 376:875-885.
-
(2010)
Lancet
, vol.376
, pp. 875-885
-
-
Swedberg, K.1
Komajda, M.2
Bohm, M.3
-
7
-
-
84907087561
-
Angiotensin-neprilysin inhibition versus enalapril in heart failure
-
McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371:993-1004.
-
(2014)
N Engl J Med
, vol.371
, pp. 993-1004
-
-
McMurray, J.J.1
Packer, M.2
Desai, A.S.3
-
8
-
-
33644837326
-
Control of cardiac growth by histone acetylation/deacetylation
-
Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006; 98:15-24.
-
(2006)
Circ Res
, vol.98
, pp. 15-24
-
-
Backs, J.1
Olson, E.N.2
-
9
-
-
84962936621
-
Harnessing fetal and adult genetic reprograming for therapy of heart disease
-
Nandi SS, Mishra PK. Harnessing fetal and adult genetic reprograming for therapy of heart disease. J Nat Sci 2015; 1:e71.
-
(2015)
J Nat Sci
, vol.1
, pp. e71
-
-
Nandi, S.S.1
Mishra, P.K.2
-
14
-
-
84925874958
-
Epigenetic mechanisms in heart failure pathogenesis
-
Di Salvo TG, Haldar SM. Epigenetic mechanisms in heart failure pathogenesis. Circ Heart Fail 2014; 7:850-863.
-
(2014)
Circ Heart Fail
, vol.7
, pp. 850-863
-
-
Di Salvo, T.G.1
Haldar, S.M.2
-
15
-
-
84940079857
-
Readers, writers, and erasers: Chromatin as the whiteboard of heart disease
-
Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res 2015; 116:1245-1253.
-
(2015)
Circ Res
, vol.116
, pp. 1245-1253
-
-
Gillette, T.G.1
Hill, J.A.2
-
16
-
-
79751473406
-
Chromatin remodeling in cardiovascular development and physiology
-
Han P, Hang CT, Yang J, Chang CP. Chromatin remodeling in cardiovascular development and physiology. Circ Res 2011; 108:378-396.
-
(2011)
Circ Res
, vol.108
, pp. 378-396
-
-
Han, P.1
Hang, C.T.2
Yang, J.3
Chang, C.P.4
-
17
-
-
0032030770
-
Histone acetylation and transcriptional regulatory mechanisms
-
Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998; 12:599-606.
-
(1998)
Genes Dev
, vol.12
, pp. 599-606
-
-
Struhl, K.1
-
18
-
-
78651162036
-
Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
-
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 1964; 51:786-794.
-
(1964)
Proc Natl Acad Sci U S A
, vol.51
, pp. 786-794
-
-
Allfrey, V.G.1
Faulkner, R.2
Mirsky, A.E.3
-
19
-
-
77955051048
-
Role of histone acetylation in cell physiology and diseases: An update
-
Khan SN, Khan AU. Role of histone acetylation in cell physiology and diseases: an update. Clin Chim Acta 2010; 411:1401-1411.
-
(2010)
Clin Chim Acta
, vol.411
, pp. 1401-1411
-
-
Khan, S.N.1
Khan, A.U.2
-
20
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
-
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Gen 2009; 10:32-42.
-
(2009)
Nat Rev Gen
, vol.10
, pp. 32-42
-
-
Haberland, M.1
Montgomery, R.L.2
Olson, E.N.3
-
21
-
-
0038302887
-
Cardiac p300 is involved in myocyte growth with decompensated heart failure
-
Yanazume T, Hasegawa K, Morimoto T, et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 2003; 23:3593-3606.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3593-3606
-
-
Yanazume, T.1
Hasegawa, K.2
Morimoto, T.3
-
22
-
-
0041530268
-
Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors
-
Antos CL, McKinsey TA, Dreitz M, et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003; 278:28930-28937.
-
(2003)
J Biol Chem
, vol.278
, pp. 28930-28937
-
-
Antos, C.L.1
McKinsey, T.A.2
Dreitz, M.3
-
23
-
-
0037162697
-
Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
-
Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002; 110:479-488.
-
(2002)
Cell
, vol.110
, pp. 479-488
-
-
Zhang, C.L.1
McKinsey, T.A.2
Chang, S.3
-
24
-
-
84855875719
-
Therapeutic potential for HDAC inhibitors in the heart
-
McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 2012; 52:303-319.
-
(2012)
Annu Rev Pharmacol Toxicol
, vol.52
, pp. 303-319
-
-
McKinsey, T.A.1
-
25
-
-
84889654527
-
Cardiovascular effects of a novel Sirt1 activator, SRT2104, in otherwise healthy cigarette smokers
-
Venkatasubramanian S, Noh RM, Daga S, et al. Cardiovascular effects of a novel Sirt1 activator, SRT2104, in otherwise healthy cigarette smokers. J Am Heart Assoc 2013; 2:e000042.
-
(2013)
J Am Heart Assoc
, vol.2
, pp. e000042
-
-
Venkatasubramanian, S.1
Noh, R.M.2
Daga, S.3
-
26
-
-
84869121812
-
Exploring the therapeutic space around NAD+
-
Houtkooper RH, Auwerx J. Exploring the therapeutic space around NAD+. J Cell Biol 2012; 199:205-209.
-
(2012)
J Cell Biol
, vol.199
, pp. 205-209
-
-
Houtkooper, R.H.1
Auwerx, J.2
-
27
-
-
84883084726
-
BET acetyl-lysine binding proteins control pathological cardiac hypertrophy
-
Spiltoir JI, Stratton MS, Cavasin MA, et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 2013; 63:175-179.
-
(2013)
J Mol Cell Cardiol
, vol.63
, pp. 175-179
-
-
Spiltoir, J.I.1
Stratton, M.S.2
Cavasin, M.A.3
-
28
-
-
84881192460
-
BET bromodomains mediate transcriptional pause release in heart failure
-
Anand P, Brown JD, Lin CY, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 2013; 154:569-582.
-
(2013)
Cell
, vol.154
, pp. 569-582
-
-
Anand, P.1
Brown, J.D.2
Lin, C.Y.3
-
29
-
-
84865120905
-
A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
-
Kruidenier L, Chung CW, Cheng Z, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 2012; 488:404-408.
-
(2012)
Nature
, vol.488
, pp. 404-408
-
-
Kruidenier, L.1
Chung, C.W.2
Cheng, Z.3
-
30
-
-
79957892087
-
The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice
-
Zhang QJ, Chen HZ, Wang L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 2011; 121:2447-2456.
-
(2011)
J Clin Invest
, vol.121
, pp. 2447-2456
-
-
Zhang, Q.J.1
Chen, H.Z.2
Wang, L.3
-
31
-
-
14644425217
-
Mitochondrial energy metabolism in heart failure: A question of balance
-
Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005; 115:547-555.
-
(2005)
J Clin Invest
, vol.115
, pp. 547-555
-
-
Huss, J.M.1
Kelly, D.P.2
-
32
-
-
83455238338
-
Optimization of cardiac metabolism in heart failure
-
Nagoshi T, Yoshimura M, Rosano GM, et al. Optimization of cardiac metabolism in heart failure. Curr Pharm Des 2011; 17:3846-3853.
-
(2011)
Curr Pharm des
, vol.17
, pp. 3846-3853
-
-
Nagoshi, T.1
Yoshimura, M.2
Rosano, G.M.3
-
33
-
-
84875232063
-
Diabetic cardiomyopathy and metabolic remodeling of the heart
-
Battiprolu PK, Lopez-Crisosto C, Wang ZV, et al. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci 2013; 92:609-615.
-
(2013)
Life Sci
, vol.92
, pp. 609-615
-
-
Battiprolu, P.K.1
Lopez-Crisosto, C.2
Wang, Z.V.3
-
34
-
-
85026337179
-
Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure ( 2013 Grover Conference Series)
-
Sankaralingam S, Lopaschuk GD. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 Grover Conference Series). Pulm Circ 2015; 5:15-28.
-
(2015)
Pulm Circ
, vol.5
, pp. 15-28
-
-
Sankaralingam, S.1
Lopaschuk, G.D.2
-
35
-
-
71849109938
-
Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin
-
Connaughton S, Chowdhury F, Attia RR, et al. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol 2010; 315:159-167.
-
(2010)
Mol Cell Endocrinol
, vol.315
, pp. 159-167
-
-
Connaughton, S.1
Chowdhury, F.2
Attia, R.R.3
-
36
-
-
0031259554
-
The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity
-
Seymour AM, Chatham JC. The effects of hypertrophy and diabetes on cardiac pyruvate dehydrogenase activity. J Mol Cell Cardiol 1997; 29:2771-2778.
-
(1997)
J Mol Cell Cardiol
, vol.29
, pp. 2771-2778
-
-
Seymour, A.M.1
Chatham, J.C.2
-
37
-
-
0031973056
-
Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart
-
Wu P, Sato J, Zhao Y, et al. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J 1998; 329 (Pt 1):197-201.
-
(1998)
Biochem J
, vol.329
, pp. 197-201
-
-
Wu, P.1
Sato, J.2
Zhao, Y.3
-
38
-
-
84881507866
-
Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure
-
Mori J, Zhang L, Oudit GY, Lopaschuk GD. Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 2013; 63:98-106.
-
(2013)
J Mol Cell Cardiol
, vol.63
, pp. 98-106
-
-
Mori, J.1
Zhang, L.2
Oudit, G.Y.3
Lopaschuk, G.D.4
-
39
-
-
0036066319
-
Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin
-
Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes 2002; 51:276-283.
-
(2002)
Diabetes
, vol.51
, pp. 276-283
-
-
Huang, B.1
Wu, P.2
Bowker-Kinley, M.M.3
Harris, R.A.4
-
40
-
-
84863283393
-
Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice
-
Battiprolu PK, Hojayev B, Jiang N, et al. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest 2012; 122:1109-1118.
-
(2012)
J Clin Invest
, vol.122
, pp. 1109-1118
-
-
Battiprolu, P.K.1
Hojayev, B.2
Jiang, N.3
-
41
-
-
0030807891
-
Dichloroacetate as metabolic therapy for myocardial ischemia and failure
-
Bersin RM, Stacpoole PW. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 1997; 134 (5 Pt 1):841-855.
-
(1997)
Am Heart J
, vol.134
, Issue.5
, pp. 841-855
-
-
Bersin, R.M.1
Stacpoole, P.W.2
-
42
-
-
77954743140
-
Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure
-
Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 2010; 3:420-430.
-
(2010)
Circ Heart Fail
, vol.3
, pp. 420-430
-
-
Kato, T.1
Niizuma, S.2
Inuzuka, Y.3
-
43
-
-
0031773645
-
Effects of dichloroacetate in patients with congestive heart failure
-
Lewis JF, DaCosta M, Wargowich T, Stacpoole P. Effects of dichloroacetate in patients with congestive heart failure. Clin Cardiol 1998; 21:888-892.
-
(1998)
Clin Cardiol
, vol.21
, pp. 888-892
-
-
Lewis, J.F.1
DaCosta, M.2
Wargowich, T.3
Stacpoole, P.4
-
44
-
-
84929455277
-
Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart
-
Matsuhashi T, Hishiki T, Zhou H, et al. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol 2015; 82:116-124.
-
(2015)
J Mol Cell Cardiol
, vol.82
, pp. 116-124
-
-
Matsuhashi, T.1
Hishiki, T.2
Zhou, H.3
-
45
-
-
79955960768
-
Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
-
Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42:426-437.
-
(2011)
Mol Cell
, vol.42
, pp. 426-437
-
-
Cai, L.1
Sutter, B.M.2
Li, B.3
Tu, B.P.4
-
46
-
-
84924369505
-
Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
-
Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015; 21:392-402.
-
(2015)
Cell Metab
, vol.21
, pp. 392-402
-
-
Moussaieff, A.1
Rouleau, M.2
Kitsberg, D.3
-
47
-
-
84905858776
-
Protein acetylation as a means to regulate protein function in tune with metabolic state
-
Shi L, Tu BP. Protein acetylation as a means to regulate protein function in tune with metabolic state. Biochem Soc Trans 2014; 42:1037-1042.
-
(2014)
Biochem Soc Trans
, vol.42
, pp. 1037-1042
-
-
Shi, L.1
Tu, B.P.2
-
48
-
-
37549068090
-
NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences
-
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206.
-
(2008)
Antioxid Redox Signal
, vol.10
, pp. 179-206
-
-
Ying, W.1
-
49
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice
-
Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metab 2011; 14:528-536.
-
(2011)
Cell Metab
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
50
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
-
51
-
-
84924857323
-
The NAD(+)-dependent Sirt1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells
-
Ryall JG, Dell'Orso S, Derfoul A, et al. The NAD(+)-dependent Sirt1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015; 16:171-183.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 171-183
-
-
Ryall, J.G.1
Dell'Orso, S.2
Derfoul, A.3
-
52
-
-
0034677535
-
Transcriptional silencing and longevity protein SIR2 is a NAD-dependent histone deacetylase
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein SIR2 is a NAD-dependent histone deacetylase. Nature 2000; 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
53
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13:2570-2580.
-
(1999)
Genes Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
54
-
-
8644224064
-
SIR2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. SIR2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004; 101:15998-16003.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
55
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D, Munoz-Martin M, Canamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010; 1:3.
-
(2010)
Nat Commun
, vol.1
, pp. 3
-
-
Herranz, D.1
Munoz-Martin, M.2
Canamero, M.3
-
57
-
-
84943391158
-
Protective effects of sirtuins in cardiovascular diseases: From bench to bedside
-
Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 2015; 36:3404-3412.
-
(2015)
Eur Heart J
, vol.36
, pp. 3404-3412
-
-
Winnik, S.1
Auwerx, J.2
Sinclair, D.A.3
Matter, C.M.4
-
58
-
-
84872687705
-
Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis
-
Gorenne I, Kumar S, Gray K, et al. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 2013; 127:386-396.
-
(2013)
Circulation
, vol.127
, pp. 386-396
-
-
Gorenne, I.1
Kumar, S.2
Gray, K.3
-
59
-
-
58149090925
-
Sirt6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
-
Kawahara TL, Michishita E, Adler AS, et al. Sirt6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136:62-74.
-
(2009)
Cell
, vol.136
, pp. 62-74
-
-
Kawahara, T.L.1
Michishita, E.2
Adler, A.S.3
-
60
-
-
84869201195
-
The sirtuin Sirt6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
-
Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin Sirt6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012; 18:1643-1650.
-
(2012)
Nat Med
, vol.18
, pp. 1643-1650
-
-
Sundaresan, N.R.1
Vasudevan, P.2
Zhong, L.3
-
61
-
-
84924528336
-
Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor kappaB signaling
-
Tian K, Liu Z, Wang J, et al. Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor kappaB signaling. Transl Res 2015; 165:374-386.
-
(2015)
Transl Res
, vol.165
, pp. 374-386
-
-
Tian, K.1
Liu, Z.2
Wang, J.3
-
63
-
-
70149095672
-
Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+synthesis in cardiac myocytes
-
Hsu CP, Oka S, Shao D, et al. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+synthesis in cardiac myocytes. Circ Res 2009; 105:481-491.
-
(2009)
Circ Res
, vol.105
, pp. 481-491
-
-
Hsu, C.P.1
Oka, S.2
Shao, D.3
-
64
-
-
84862786955
-
NMNAT2 protects cardiomyocytes from hypertrophy via activation of Sirt6
-
Cai Y, Yu SS, Chen SR, et al. NMNAT2 protects cardiomyocytes from hypertrophy via activation of Sirt6. FEBS Lett 2012; 586:866-874.
-
(2012)
FEBS Lett
, vol.586
, pp. 866-874
-
-
Cai, Y.1
Yu, S.S.2
Chen, S.R.3
-
65
-
-
84860346630
-
Depression of mitochondrial metabolism by downregulation of cytoplasmic deacetylase
-
Kamemura K, Ogawa M, Ohkubo S, et al. Depression of mitochondrial metabolism by downregulation of cytoplasmic deacetylase, HDAC6. FEBS Lett 2012; 586:1379-1383.
-
(2012)
HDAC6. FEBS Lett
, vol.586
, pp. 1379-1383
-
-
Kamemura, K.1
Ogawa, M.2
Ohkubo, S.3
-
66
-
-
79956317095
-
Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension
-
Lemon DD, Horn TR, Cavasin MA, et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol 2011; 51:41-50.
-
(2011)
J Mol Cell Cardiol
, vol.51
, pp. 41-50
-
-
Lemon, D.D.1
Horn, T.R.2
Cavasin, M.A.3
-
67
-
-
84893126165
-
Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation
-
Zhang D, Wu CT, Qi X, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 2014; 129:346-358.
-
(2014)
Circulation
, vol.129
, pp. 346-358
-
-
Zhang, D.1
Wu, C.T.2
Qi, X.3
-
68
-
-
84904293106
-
HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling
-
Demos-Davies KM, Ferguson BS, Cavasin MA, et al. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am J Physiol Heart Circ Physiol 2014; 307:H252-H258.
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.307
, pp. H252-H258
-
-
Demos-Davies, K.M.1
Ferguson, B.S.2
Cavasin, M.A.3
-
69
-
-
84872166360
-
Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor
-
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013; 339:211-214.
-
(2013)
Science
, vol.339
, pp. 211-214
-
-
Shimazu, T.1
Hirschey, M.D.2
Newman, J.3
-
70
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity. Nature 2009; 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
71
-
-
77249156847
-
Interdependence of AMPK and Sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and Sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010; 11:213-219.
-
(2010)
Cell Metab
, vol.11
, pp. 213-219
-
-
Canto, C.1
Jiang, L.Q.2
Deshmukh, A.S.3
-
72
-
-
84924181684
-
Epigenetics and metabolism
-
Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res 2015; 116:715-736.
-
(2015)
Circ Res
, vol.116
, pp. 715-736
-
-
Keating, S.T.1
El-Osta, A.2
-
73
-
-
84859893371
-
Histone methylation: A dynamic mark in health, disease and inheritance
-
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13:343-357.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 343-357
-
-
Greer, E.L.1
Shi, Y.2
-
74
-
-
58049145427
-
Genome-wide histone methylation profile for heart failure
-
Kaneda R, Takada S, Yamashita Y, et al. Genome-wide histone methylation profile for heart failure. Genes Cells 2009; 14:69-77.
-
(2009)
Genes Cells
, vol.14
, pp. 69-77
-
-
Kaneda, R.1
Takada, S.2
Yamashita, Y.3
-
75
-
-
84890255267
-
Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy
-
Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 2013; 110:20164-20169.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 20164-20169
-
-
Papait, R.1
Cattaneo, P.2
Kunderfranco, P.3
-
76
-
-
84874589977
-
HDAC4 controls histone methylation in response to elevated cardiac load
-
Hohl M, Wagner M, Reil JC, et al. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 2013; 123:1359-1370.
-
(2013)
J Clin Invest
, vol.123
, pp. 1359-1370
-
-
Hohl, M.1
Wagner, M.2
Reil, J.C.3
-
77
-
-
84860215207
-
Molecular mechanisms and potential functions of histone demethylases
-
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13:297-311.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 297-311
-
-
Kooistra, S.M.1
Helin, K.2
-
78
-
-
79959980701
-
Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes
-
Stein AB, Jones TA, Herron TJ, et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 2011; 121:2641-2650.
-
(2011)
J Clin Invest
, vol.121
, pp. 2641-2650
-
-
Stein, A.B.1
Jones, T.A.2
Herron, T.J.3
-
79
-
-
33947513027
-
Regulation of histone methylation by demethylimination and demethylation
-
Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 2007; 8:307-318.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 307-318
-
-
Klose, R.J.1
Zhang, Y.2
-
80
-
-
84902685602
-
Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process
-
Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014; 16:45-65.
-
(2014)
Ageing Res Rev
, vol.16
, pp. 45-65
-
-
Salminen, A.1
Kauppinen, A.2
Hiltunen, M.3
Kaarniranta, K.4
-
81
-
-
33846983276
-
Polycomb/trithorax response elements and epigenetic memory of cell identity
-
Ringrose L, Paro R. Polycomb/trithorax response elements and epigenetic memory of cell identity. Development 2007; 134:223-232.
-
(2007)
Development
, vol.134
, pp. 223-232
-
-
Ringrose, L.1
Paro, R.2
-
82
-
-
77954660029
-
Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. Elegans
-
Greer EL, Maures TJ, Hauswirth AG, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010; 466:383-387.
-
(2010)
Nature
, vol.466
, pp. 383-387
-
-
Greer, E.L.1
Maures, T.J.2
Hauswirth, A.G.3
-
83
-
-
84861194045
-
Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins
-
Wang QT. Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn 2012; 241:1021-1033.
-
(2012)
Dev Dyn
, vol.241
, pp. 1021-1033
-
-
Wang, Q.T.1
-
84
-
-
0038349957
-
Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells
-
Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302-305.
-
(2003)
Nature
, vol.423
, pp. 302-305
-
-
Park, I.K.1
Qian, D.2
Kiel, M.3
-
85
-
-
84924359164
-
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence
-
Gonzalez-Valdes I, Hidalgo I, Bujarrabal A, et al. Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence. Nat Commun 2015; 6:6473.
-
(2015)
Nat Commun
, vol.6
, pp. 6473
-
-
Gonzalez-Valdes, I.1
Hidalgo, I.2
Bujarrabal, A.3
-
86
-
-
0033552813
-
The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus
-
Jacobs JJ, Kieboom K, Marino S, et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397:164-168.
-
(1999)
Nature
, vol.397
, pp. 164-168
-
-
Jacobs, J.J.1
Kieboom, K.2
Marino, S.3
-
87
-
-
79956330964
-
CpG islands and the regulation of transcription
-
Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011; 25:1010-1022.
-
(2011)
Genes Dev
, vol.25
, pp. 1010-1022
-
-
Deaton, A.M.1
Bird, A.2
-
88
-
-
84874194072
-
DNA methylation: Roles in mammalian development
-
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Gen 2013; 14:204-220.
-
(2013)
Nat Rev Gen
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
89
-
-
75749104729
-
DNMT1 maintains progenitor function in self-renewing somatic tissue
-
Sen GL, Reuter JA, Webster DE, et al. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 2010; 463:563-567.
-
(2010)
Nature
, vol.463
, pp. 563-567
-
-
Sen, G.L.1
Reuter, J.A.2
Webster, D.E.3
-
90
-
-
0033615717
-
DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development
-
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development. Cell 1999; 99:247-257.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
91
-
-
84902971042
-
DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2
-
Tao H, Yang JJ, Chen ZW, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 2014; 323:42-50.
-
(2014)
Toxicology
, vol.323
, pp. 42-50
-
-
Tao, H.1
Yang, J.J.2
Chen, Z.W.3
-
92
-
-
84924367822
-
Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease
-
Gilsbach R, Preissl S, Gruning BA, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 2014; 5:5288.
-
(2014)
Nat Commun
, vol.5
, pp. 5288
-
-
Gilsbach, R.1
Preissl, S.2
Gruning, B.A.3
-
93
-
-
84894518920
-
Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats
-
Xiao D, Dasgupta C, Chen M, et al. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res 2014; 101:373-382.
-
(2014)
Cardiovasc Res
, vol.101
, pp. 373-382
-
-
Xiao, D.1
Dasgupta, C.2
Chen, M.3
-
94
-
-
82355180985
-
Distinct epigenomic features in end-stage failing human hearts
-
Movassagh M, Choy MK, Knowles DA, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 2011; 124:2411-2422.
-
(2011)
Circulation
, vol.124
, pp. 2411-2422
-
-
Movassagh, M.1
Choy, M.K.2
Knowles, D.A.3
-
95
-
-
84866839590
-
The landscape of DNA repeat elements in human heart failure
-
Haider S, Cordeddu L, Robinson E, et al. The landscape of DNA repeat elements in human heart failure. Genome Biol 2012; 13:R90.
-
(2012)
Genome Biol
, vol.13
, pp. R90
-
-
Haider, S.1
Cordeddu, L.2
Robinson, E.3
-
96
-
-
84874746425
-
Alterations in cardiac DNA methylation in human dilated cardiomyopathy
-
Haas J, Frese KS, Park YJ, et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 2013; 5:413-429.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 413-429
-
-
Haas, J.1
Frese, K.S.2
Park, Y.J.3
-
97
-
-
77649197044
-
Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure
-
Movassagh M, Choy MK, Goddard M, et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE 2010; 5:e8564.
-
(2010)
PLoS ONE
, vol.5
, pp. e8564
-
-
Movassagh, M.1
Choy, M.K.2
Goddard, M.3
-
98
-
-
84888787152
-
Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis
-
Connelly JJ, Cherepanova OA, Doss JF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet 2013; 22:5107-5120.
-
(2013)
Hum Mol Genet
, vol.22
, pp. 5107-5120
-
-
Connelly, J.J.1
Cherepanova, O.A.2
Doss, J.F.3
-
100
-
-
77955891911
-
The epigenome and the mitochondrion: Bioenergetics and the environment [corrected]
-
Wallace DC. The epigenome and the mitochondrion: bioenergetics and the environment [corrected]. Genes Dev 2010; 24:1571-1573.
-
(2010)
Genes Dev
, vol.24
, pp. 1571-1573
-
-
Wallace, D.C.1
-
101
-
-
84943258103
-
AZT-induced mitochondrial toxicity: An epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress
-
Koczor CA, Jiao Z, Fields E, et al. AZT-induced mitochondrial toxicity: an epigenetic paradigm for dysregulation of gene expression through mitochondrial oxidative stress. Physiol Genomics 2015; 47:447-454.
-
(2015)
Physiol Genomics
, vol.47
, pp. 447-454
-
-
Koczor, C.A.1
Jiao, Z.2
Fields, E.3
-
102
-
-
84943527056
-
Mitochondrial biogenesis and dynamics in the developing and diseased heart
-
Dorn GW 2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 2015; 29:1981-1991.
-
(1981)
Genes Dev
, vol.2015
, pp. 29
-
-
Dorn, G.W.1
Vega, R.B.2
Kelly, D.P.3
-
104
-
-
84911408878
-
Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria
-
Ghosh S, Sengupta S, Scaria V. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 2014; 18:58-62.
-
(2014)
Mitochondrion
, vol.18
, pp. 58-62
-
-
Ghosh, S.1
Sengupta, S.2
Scaria, V.3
-
105
-
-
79952749156
-
DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria
-
Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 2011; 108:3630-3635.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 3630-3635
-
-
Shock, L.S.1
Thakkar, P.V.2
Peterson, E.J.3
-
106
-
-
84891533924
-
Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS
-
Wong M, Gertz B, Chestnut BA, Martin LJ. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 2013; 7:279.
-
(2013)
Front Cell Neurosci
, vol.7
, pp. 279
-
-
Wong, M.1
Gertz, B.2
Chestnut, B.A.3
Martin, L.J.4
-
107
-
-
80555128721
-
The mitochondrial transcription and packaging factor tfam imposes a u-turn on mitochondrial DNA
-
Ngo HB, Kaiser JT, Chan DC. The mitochondrial transcription and packaging factor tfam imposes a u-turn on mitochondrial DNA. Nat Struct Mol Biol 2011; 18:1290-1296.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1290-1296
-
-
Ngo, H.B.1
Kaiser, J.T.2
Chan, D.C.3
-
108
-
-
84926382602
-
Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress
-
Ikeda M, Ide T, Fujino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS ONE 2015; 10:e0119687.
-
(2015)
PLoS ONE
, vol.10
, pp. e0119687
-
-
Ikeda, M.1
Ide, T.2
Fujino, T.3
-
109
-
-
84983071823
-
Platelet mitochondrial DNA methylation: A potential new marker of cardiovascular disease
-
Baccarelli AA, Byun HM. Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenetics 2015; 7:44.
-
(2015)
Clin Epigenetics
, vol.7
, pp. 44
-
-
Baccarelli, A.A.1
Byun, H.M.2
-
110
-
-
0018177462
-
Regulation of carbohydrate metabolism in platelets
-
Akkerman JW. Regulation of carbohydrate metabolism in platelets. A review. Thromb Haemost 1978; 39:712-724.
-
(1978)
A Review. Thromb Haemost
, vol.39
, pp. 712-724
-
-
Akkerman, J.W.1
-
111
-
-
84952715101
-
RNA (epi)genetics in cardiovascular diseases
-
Elia L, Condorelli G. RNA (epi)genetics in cardiovascular diseases. J Mol Cell Cardiol 2015; 89:11-16.
-
(2015)
J Mol Cell Cardiol
, vol.89
, pp. 11-16
-
-
Elia, L.1
Condorelli, G.2
-
112
-
-
36248948593
-
Altered microRNA expression in human heart disease
-
Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics 2007; 31:367-373.
-
(2007)
Physiol Genomics
, vol.31
, pp. 367-373
-
-
Ikeda, S.1
Kong, S.W.2
Lu, J.3
-
113
-
-
84937694780
-
Noncoding RNA in age-related cardiovascular diseases
-
Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 2015; 83:142-155.
-
(2015)
J Mol Cell Cardiol
, vol.83
, pp. 142-155
-
-
Greco, S.1
Gorospe, M.2
Martelli, F.3
-
114
-
-
84901020290
-
MiR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo
-
Das S, Bedja D, Campbell N, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS ONE 2014; 9:e96820.
-
(2014)
PLoS ONE
, vol.9
, pp. e96820
-
-
Das, S.1
Bedja, D.2
Campbell, N.3
-
115
-
-
84940788564
-
MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
-
Wang H, Li J, Chi H, et al. microRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J Cell Mol Med 2015; 19:2084-2097.
-
(2015)
J Cell Mol Med
, vol.19
, pp. 2084-2097
-
-
Wang, H.1
Li, J.2
Chi, H.3
-
116
-
-
84936998888
-
MicroRNA-340-5p functions downstream of cardiotrophin-1 to regulate cardiac eccentric hypertrophy and heart failure via target gene dystrophin
-
Zhou J, Gao J, Zhang X, et al. microRNA-340-5p functions downstream of cardiotrophin-1 to regulate cardiac eccentric hypertrophy and heart failure via target gene dystrophin. Int Heart J 2015; 56:454-458.
-
(2015)
Int Heart J
, vol.56
, pp. 454-458
-
-
Zhou, J.1
Gao, J.2
Zhang, X.3
-
117
-
-
84884818765
-
Identification of micro-RNA networks in endstage heart failure because of dilated cardiomyopathy
-
Zhu X, Wang H, Liu F, et al. Identification of micro-RNA networks in endstage heart failure because of dilated cardiomyopathy. J Cell Mol Med 2013; 17:1173-1187.
-
(2013)
J Cell Mol Med
, vol.17
, pp. 1173-1187
-
-
Zhu, X.1
Wang, H.2
Liu, F.3
-
118
-
-
84928390077
-
MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis
-
DuanQ, Yang L, Gong W, et al. microRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 2015; 230:1964-1973.
-
(1964)
J Cell Physiol
, vol.2015
, pp. 230
-
-
DuanQ Yang, L.1
Gong, W.2
-
120
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3:1078.
-
(2012)
Nat Commun
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
-
121
-
-
80053567152
-
Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure
-
Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124:1537-1547.
-
(2011)
Circulation
, vol.124
, pp. 1537-1547
-
-
Montgomery, R.L.1
Hullinger, T.G.2
Semus, H.M.3
-
122
-
-
84915754365
-
MiRNAs as biomarkers of myocardial infarction: A step forward towards personalized medicine?
-
Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med 2014; 20:716-725.
-
(2014)
Trends Mol Med
, vol.20
, pp. 716-725
-
-
Goretti, E.1
Wagner, D.R.2
Devaux, Y.3
-
123
-
-
84908462087
-
MicroRNA-539 is upregulated in failing heart, and suppresses O-GlcNAcase expression
-
Muthusamy S, DeMartino AM, Watson LJ, et al. microRNA-539 is upregulated in failing heart, and suppresses O-GlcNAcase expression. J Biol Chem 2014; 289:29665-29676.
-
(2014)
J Biol Chem
, vol.289
, pp. 29665-29676
-
-
Muthusamy, S.1
DeMartino, A.M.2
Watson, L.J.3
-
124
-
-
84940001131
-
MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis
-
Su M, Wang J, Wang C, et al. microRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 2015; 22:986-999.
-
(2015)
Cell Death Differ
, vol.22
, pp. 986-999
-
-
Su, M.1
Wang, J.2
Wang, C.3
-
125
-
-
84867903854
-
Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function
-
Bernardo BC, Gao XM, Winbanks CE, et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA 2012; 109:17615-17620.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 17615-17620
-
-
Bernardo, B.C.1
Gao, X.M.2
Winbanks, C.E.3
-
126
-
-
84874700585
-
MicroRNA-34a regulates cardiac ageing and function
-
Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013; 495:107-110.
-
(2013)
Nature
, vol.495
, pp. 107-110
-
-
Boon, R.A.1
Iekushi, K.2
Lechner, S.3
-
127
-
-
84888131014
-
Elevated microRNA-34a in obesity reduces NAD+ levels and Sirt1 activity by directly targeting NAMPT
-
Choi SE, Fu T, Seok S, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and Sirt1 activity by directly targeting NAMPT. Aging Cell 2013; 12:1062-1072.
-
(2013)
Aging Cell
, vol.12
, pp. 1062-1072
-
-
Choi, S.E.1
Fu, T.2
Seok, S.3
-
128
-
-
78649843756
-
MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling
-
da Costa Martins PA, Salic K, Gladka MM, et al. microRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol 2010; 12:1220-1227.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 1220-1227
-
-
Da Costa Martins, P.A.1
Salic, K.2
Gladka, M.M.3
-
129
-
-
84861891920
-
MicroRNA dysregulation in diabetic ischemic heart failure patients
-
Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012; 61:1633-1641.
-
(2012)
Diabetes
, vol.61
, pp. 1633-1641
-
-
Greco, S.1
Fasanaro, P.2
Castelvecchio, S.3
-
130
-
-
84937524134
-
Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice
-
Zheng D, Ma J, Yu Y, et al. Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia 2015; 58:1949-1958.
-
(1949)
Diabetologia
, vol.2015
, pp. 58
-
-
Zheng, D.1
Ma, J.2
Yu, Y.3
-
131
-
-
84922104763
-
MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway
-
Kuwabara Y, Horie T, Baba O, et al. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res 2015; 116:279-288.
-
(2015)
Circ Res
, vol.116
, pp. 279-288
-
-
Kuwabara, Y.1
Horie, T.2
Baba, O.3
-
132
-
-
84905014949
-
Regulation of cardiac expression of the diabetic marker microRNA miR-29
-
Arnold N, Koppula PR, Gul R, et al. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One 2014; 9:e103284.
-
(2014)
PLoS One
, vol.9
, pp. e103284
-
-
Arnold, N.1
Koppula, P.R.2
Gul, R.3
-
133
-
-
84895521111
-
Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy
-
Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2014; 63:920-927.
-
(2014)
J Am Coll Cardiol
, vol.63
, pp. 920-927
-
-
Roncarati, R.1
Viviani Anselmi, C.2
Losi, M.A.3
-
134
-
-
84885034083
-
Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta
-
Talasila A, Yu H, Ackers-Johnson M, et al. Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta. Arterioscler Thromb Vasc Biol 2013; 33:2355-2365.
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 2355-2365
-
-
Talasila, A.1
Yu, H.2
Ackers-Johnson, M.3
-
135
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008; 105:13027-13032.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 13027-13032
-
-
Van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
-
136
-
-
59849128881
-
MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling
-
Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009; 104:170-178.
-
(2009)
Circ Res
, vol.104
, pp. 170-178
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
-
137
-
-
84941360761
-
Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension
-
Potus F, Ruffenach G, Dahou A, et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132:932-943.
-
(2015)
Circulation
, vol.132
, pp. 932-943
-
-
Potus, F.1
Ruffenach, G.2
Dahou, A.3
-
138
-
-
84887251900
-
NFAT and miR-25 cooperate to reactivate the transcription factor HAND2 in heart failure
-
Dirkx E, Gladka MM, Philippen LE, et al. NFAT and miR-25 cooperate to reactivate the transcription factor HAND2 in heart failure. Nat Cell Biol 2013; 15:1282-1293.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1282-1293
-
-
Dirkx, E.1
Gladka, M.M.2
Philippen, L.E.3
-
139
-
-
84899482237
-
Inhibition of miR-25 improves cardiac contractility in the failing heart
-
Wahlquist C, Jeong D, Rojas-Munoz A, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508:531-535.
-
(2014)
Nature
, vol.508
, pp. 531-535
-
-
Wahlquist, C.1
Jeong, D.2
Rojas-Munoz, A.3
-
140
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care A, Catalucci D, Felicetti F, et al. microRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13:613-618.
-
(2007)
Nat Med
, vol.13
, pp. 613-618
-
-
Care, A.1
Catalucci, D.2
Felicetti, F.3
-
141
-
-
84894577814
-
Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
-
Chen S, Puthanveetil P, Feng B, et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 2014; 18:415-421.
-
(2014)
J Cell Mol Med
, vol.18
, pp. 415-421
-
-
Chen, S.1
Puthanveetil, P.2
Feng, B.3
-
142
-
-
57749121689
-
MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008; 22:3242-3254.
-
(2008)
Genes Dev
, vol.22
, pp. 3242-3254
-
-
Liu, N.1
Bezprozvannaya, S.2
Williams, A.H.3
-
143
-
-
84928953471
-
microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats
-
Sang HQ, Jiang ZM, Zhao QP, Xin F. microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomed Pharmacother 2015; 71:185-189.
-
(2015)
Biomed Pharmacother
, vol.71
, pp. 185-189
-
-
Sang, H.Q.1
Jiang, Z.M.2
Zhao, Q.P.3
Xin, F.4
-
144
-
-
64649094112
-
MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes
-
Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 2009; 29:2193-2204.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2193-2204
-
-
Ikeda, S.1
He, A.2
Kong, S.W.3
-
145
-
-
84877947272
-
An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart
-
Tritsch E, Mallat Y, Lefebvre F, et al. An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart. Cardiovasc Res 2013; 98:372-380.
-
(2013)
Cardiovasc Res
, vol.98
, pp. 372-380
-
-
Tritsch, E.1
Mallat, Y.2
Lefebvre, F.3
-
146
-
-
84941584725
-
Yu CM. Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure
-
Lai KB, Sanderson JE, Izzat MB, Yu CM. micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int J Cardiol 2015; 199:79-83.
-
(2015)
Int J Cardiol
, vol.199
, pp. 79-83
-
-
Lai, K.B.1
Sanderson, J.E.2
Izzat, M.B.3
-
147
-
-
84929026082
-
The prognostic value of circulating microRNAs in heart failure: Preliminary results from a genomewide expression study
-
Cakmak HA, Coskunpinar E, Ikitimur B, et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genomewide expression study. J Cardiovasc Med 2015; 16:431-437.
-
(2015)
J Cardiovasc Med
, vol.16
, pp. 431-437
-
-
Cakmak, H.A.1
Coskunpinar, E.2
Ikitimur, B.3
-
148
-
-
84943584023
-
Circulating microRNAs in obese and lean heart failure patients: A case-control study with computational target prediction analysis
-
Thome JG, Mendoza MR, Cheuiche AV, et al. Circulating microRNAs in obese and lean heart failure patients: a case-control study with computational target prediction analysis. Gene 2015; 574:1-10.
-
(2015)
Gene
, vol.574
, pp. 1-10
-
-
Thome, J.G.1
Mendoza, M.R.2
Cheuiche, A.V.3
-
149
-
-
84859942977
-
The expression of microRNA and microRNA clusters in the aging heart
-
Zhang X, Azhar G, Wei JY. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 2012; 7:e34688.
-
(2012)
PLoS One
, vol.7
, pp. e34688
-
-
Zhang, X.1
Azhar, G.2
Wei, J.Y.3
-
150
-
-
84925362344
-
Circulating microRNAs in response to exercise
-
Xu T, Liu Q, Yao J, et al. Circulating microRNAs in response to exercise. Scand J Med Sci Sports 2015; 25:e149-e154.
-
(2015)
Scand J Med Sci Sports
, vol.25
, pp. e149-e154
-
-
Xu, T.1
Liu, Q.2
Yao, J.3
-
151
-
-
84884862516
-
Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients
-
Ellis KL, Cameron VA, Troughton RW, et al. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 2013; 15:1138-1147.
-
(2013)
Eur J Heart Fail
, vol.15
, pp. 1138-1147
-
-
Ellis, K.L.1
Cameron, V.A.2
Troughton, R.W.3
-
152
-
-
84905560635
-
Can microRNAs emerge as biomarkers in distinguishing HFPEF versus HFREF?
-
Nair N, Gupta S, Collier IX, et al. Can microRNAs emerge as biomarkers in distinguishing HFPEF versus HFREF? Int J Cardiol 2014; 175:395-399.
-
(2014)
Int J Cardiol
, vol.175
, pp. 395-399
-
-
Nair, N.1
Gupta, S.2
Collier, I.X.3
-
153
-
-
84926151941
-
MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure
-
Watson CJ, Gupta SK, O'Connell E, et al. microRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 2015; 17:405-415.
-
(2015)
Eur J Heart Fail
, vol.17
, pp. 405-415
-
-
Watson, C.J.1
Gupta, S.K.2
O'Connell, E.3
-
154
-
-
84964270351
-
Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction
-
Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 2015; 17:393-404.
-
(2015)
Eur J Heart Fail
, vol.17
, pp. 393-404
-
-
Wong, L.L.1
Armugam, A.2
Sepramaniam, S.3
-
155
-
-
84863534997
-
Metabolic regulation of epigenetics
-
Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 2012; 16:9-17.
-
(2012)
Cell Metab
, vol.16
, pp. 9-17
-
-
Lu, C.1
Thompson, C.B.2
-
156
-
-
84875755814
-
Influence of metabolism on epigenetics and disease
-
Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013; 153:56-69.
-
(2013)
Cell
, vol.153
, pp. 56-69
-
-
Kaelin, W.G.1
McKnight, S.L.2
|