-
1
-
-
3042588831
-
Molecular regulation of vascular smooth muscle cell differentiation in development and disease
-
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767-801
-
(2004)
Physiol Rev
, vol.84
, pp. 767-801
-
-
Owens, G.K.1
Kumar, M.S.2
Wamhoff, B.R.3
-
2
-
-
0029098078
-
The intima Soil for atherosclerosis and restenosis
-
Schwartz SM, DeBlois D, O'Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ Res. 1995;77:445-465
-
(1995)
Circ Res
, vol.77
, pp. 445-465
-
-
Schwartz, S.M.1
Deblois, D.2
O'Brien, E.R.3
-
3
-
-
0035967868
-
Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor
-
Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001;105:851-862
-
(2001)
Cell
, vol.105
, pp. 851-862
-
-
Wang, D.1
Chang, P.S.2
Wang, Z.3
Sutherland, L.4
Richardson, J.A.5
Small, E.6
Krieg, P.A.7
Olson, E.N.8
-
4
-
-
0036773632
-
Myocardin: A component of a molecular switch for smooth muscle differentiation
-
Chen J, Kitchen CM, Streb JW, Miano JM. Myocardin: A component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol. 2002;34:1345-1356
-
(2002)
J Mol Cell Cardiol
, vol.34
, pp. 1345-1356
-
-
Chen, J.1
Kitchen, C.M.2
Streb, J.W.3
Miano, J.M.4
-
5
-
-
0037968290
-
Myocardin is a key regulator of CArGdependent transcription of multiple smooth muscle marker genes
-
Yoshida T, Sinha S, Dandré F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK. Myocardin is a key regulator of CArGdependent transcription of multiple smooth muscle marker genes. Circ Res. 2003;92:856-864
-
(2003)
Circ Res
, vol.92
, pp. 856-864
-
-
Yoshida, T.1
Sinha, S.2
Dandré, F.3
Wamhoff, B.R.4
Hoofnagle, M.H.5
Kremer, B.E.6
Wang, D.Z.7
Olson, E.N.8
Owens, G.K.9
-
6
-
-
0037379178
-
Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation
-
Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol. 2003;23:2425-2437
-
(2003)
Mol Cell Biol
, vol.23
, pp. 2425-2437
-
-
Du, K.L.1
Ip, H.S.2
Li, J.3
Chen, M.4
Dandre, F.5
Yu, W.6
Lu, M.M.7
Owens, G.K.8
Parmacek, M.S.9
-
7
-
-
0041422285
-
The serum response factor coactivator myocardin is required for vascular smooth muscle development
-
Li S, Wang DZ, Wang Z, Richardson JA, Olson EN. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci U S A. 2003;100:9366-9370
-
(2003)
Proc Natl Acad Sci U S A.
, vol.100
, pp. 9366-9370
-
-
Li, S.1
Wang, D.Z.2
Wang, Z.3
Richardson, J.A.4
Olson, E.N.5
-
8
-
-
29044445074
-
Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression
-
Pipes GC, Sinha S, Qi X, Zhu CH, Gallardo TD, Shelton J, Creemers EE, Sutherland L, Richardson JA, Garry DJ, Wright WE, Owens GK, Olson EN. Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression. Dev Biol. 2005;288:502-513
-
(2005)
Dev Biol
, vol.288
, pp. 502-513
-
-
Pipes, G.C.1
Sinha, S.2
Qi, X.3
Zhu, C.H.4
Gallardo, T.D.5
Shelton, J.6
Creemers, E.E.7
Sutherland, L.8
Richardson, J.A.9
Garry, D.J.10
Wright, W.E.11
Owens, G.K.12
Olson, E.N.13
-
9
-
-
79955766907
-
Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes
-
Hoofnagle MH, Neppl RL, Berzin EL, Teg Pipes GC, Olson EN, Wamhoff BW, Somlyo AV, Owens GK. Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. Am J Physiol Heart Circ Physiol. 2011;300:H1707-H1721
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.300
-
-
Hoofnagle, M.H.1
Neppl, R.L.2
Berzin, E.L.3
Teg Pipes, G.C.4
Olson, E.N.5
Wamhoff, B.W.6
Somlyo, A.V.7
Owens, G.K.8
-
10
-
-
0037069365
-
Potentiation of serum response factor activity by a family of myocardin-related transcription factors
-
Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A. 2002;99:14855-14860
-
(2002)
Proc Natl Acad Sci U S A.
, vol.99
, pp. 14855-14860
-
-
Wang, D.Z.1
Li, S.2
Hockemeyer, D.3
Sutherland, L.4
Wang, Z.5
Schratt, G.6
Richardson, J.A.7
Nordheim, A.8
Olson, E.N.9
-
11
-
-
42149168469
-
Myocardin inhibits cellular proliferation by inhibiting NF-kappaB (p65)-dependent cell cycle progression
-
Tang RH, Zheng XL, Callis TE, Stansfield WE, He J, Baldwin AS, Wang DZ, Selzman CH. Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression. Proc Natl Acad Sci U S A. 2008;105:3362-3367
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, pp. 3362-3367
-
-
Tang, R.H.1
Zheng, X.L.2
Callis, T.E.3
Stansfield, W.E.4
He, J.5
Baldwin, A.S.6
Wang, D.Z.7
Selzman, C.H.8
-
12
-
-
15744367559
-
Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression
-
Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem. 2005;280:9719-9727
-
(2005)
J Biol Chem
, vol.280
, pp. 9719-9727
-
-
Liu, Y.1
Sinha, S.2
McDonald, O.G.3
Shang, Y.4
Hoofnagle, M.H.5
Owens, G.K.6
-
13
-
-
85047690167
-
5' CArG degeneracy in smooth muscle alpha-Actin is required for injury-induced gene suppression in vivo
-
Hendrix JA, Wamhoff BR, McDonald OG, Sinha S, Yoshida T, Owens GK. 5' CArG degeneracy in smooth muscle alpha-Actin is required for injury-induced gene suppression in vivo. J Clin Invest. 2005;115:418-427
-
(2005)
J Clin Invest
, vol.115
, pp. 418-427
-
-
Hendrix, J.A.1
Wamhoff, B.R.2
McDonald, O.G.3
Sinha, S.4
Yoshida, T.5
Owens, G.K.6
-
14
-
-
44849100851
-
Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis
-
Tharp DL, Wamhoff BR, Wulff H, Raman G, Cheong A, Bowles DK. Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol. 2008;28:1084-1089
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 1084-1089
-
-
Tharp, D.L.1
Wamhoff, B.R.2
Wulff, H.3
Raman, G.4
Cheong, A.5
Bowles, D.K.6
-
15
-
-
84870494129
-
Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice
-
Minami T, Kuwahara K, Nakagawa Y, et al. Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice. EMBO J. 2012;31:4428-4440
-
(2012)
EMBO J.
, vol.31
, pp. 4428-4440
-
-
Minami, T.1
Kuwahara, K.2
Nakagawa, Y.3
-
16
-
-
37349018318
-
Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice
-
Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink PJ, Nelson PJ, Biessen EA, Mertens PR, Weber C. Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation. 2007;116:1812-1820
-
(2007)
Circulation
, vol.116
, pp. 1812-1820
-
-
Krohn, R.1
Raffetseder, U.2
Bot, I.3
Zernecke, A.4
Shagdarsuren, E.5
Liehn, E.A.6
Van Santbrink, P.J.7
Nelson, P.J.8
Biessen, E.A.9
Mertens, P.R.10
Weber, C.11
-
17
-
-
85027945031
-
Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis
-
Yu H, Stoneman V, Clarke M, Figg N, Xin HB, Kotlikoff M, Littlewood T, Bennett M. Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:1291-1299
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, pp. 1291-1299
-
-
Yu, H.1
Stoneman, V.2
Clarke, M.3
Figg, N.4
Xin, H.B.5
Kotlikoff, M.6
Littlewood, T.7
Bennett, M.8
-
18
-
-
52449097005
-
Myocardin is sufficient for a smooth muscle-like contractile phenotype
-
Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM. Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol. 2008;28:1505-1510
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 1505-1510
-
-
Long, X.1
Bell, R.D.2
Gerthoffer, W.T.3
Zlokovic, B.V.4
Miano, J.M.5
-
19
-
-
0026062120
-
Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. Association in vivo of platelet-derived growth factor mRNA and protein with cellular proliferation
-
Golden MA, Au YP, Kirkman TR, Wilcox JN, Raines EW, Ross R, Clowes AW. Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. Association in vivo of platelet-derived growth factor mRNA and protein with cellular proliferation. J Clin Invest. 1991;87:406-414
-
(1991)
J Clin Invest
, vol.87
, pp. 406-414
-
-
Golden, M.A.1
Au, Y.P.2
Kirkman, T.R.3
Wilcox, J.N.4
Raines, E.W.5
Ross, R.6
Clowes, A.W.7
-
20
-
-
0026534274
-
Plateletderived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty
-
Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. Plateletderived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 1992;89:507-511
-
(1992)
J Clin Invest
, vol.89
, pp. 507-511
-
-
Jawien, A.1
Bowen-Pope, D.F.2
Lindner, V.3
Schwartz, S.M.4
Clowes, A.W.5
-
21
-
-
84856748072
-
Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility
-
Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30:165-173
-
(2012)
Nat Biotechnol
, vol.30
, pp. 165-173
-
-
Cheung, C.1
Bernardo, A.S.2
Trotter, M.W.3
Pedersen, R.A.4
Sinha, S.5
-
22
-
-
81355123438
-
Evolution of microRNA diversity and regulation in animals
-
Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12:846-860
-
(2011)
Nat Rev Genet
, vol.12
, pp. 846-860
-
-
Berezikov, E.1
-
23
-
-
68449097267
-
MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity
-
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705-710
-
(2009)
Nature
, vol.460
, pp. 705-710
-
-
Cordes, K.R.1
Sheehy, N.T.2
White, M.P.3
Berry, E.C.4
Morton, S.U.5
Muth, A.N.6
Lee, T.H.7
Miano, J.M.8
Ivey, K.N.9
Srivastava, D.10
-
24
-
-
77955664984
-
Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury
-
Song Z, Li G. Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury. J Cardiovasc Transl Res. 2010;3:246-250
-
(2010)
J Cardiovasc Transl Res
, vol.3
, pp. 246-250
-
-
Song, Z.1
Li, G.2
-
25
-
-
77950564432
-
MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro
-
Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13-22
-
(2010)
J Cell Biol
, vol.189
, pp. 13-22
-
-
Quintavalle, M.1
Elia, L.2
Condorelli, G.3
Courtneidge, S.A.4
-
26
-
-
79954985856
-
Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes
-
Park C, Hennig GW, Sanders KM, Cho JH, Hatton WJ, Redelman D, Park JK, Ward SM, Miano JM, Yan W, Ro S. Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes. Gastroenterology. 2011;141:164-175
-
(2011)
Gastroenterology
, vol.141
, pp. 164-175
-
-
Park, C.1
Hennig, G.W.2
Sanders, K.M.3
Cho, J.H.4
Hatton, W.J.5
Redelman, D.6
Park, J.K.7
Ward, S.M.8
Miano, J.M.9
Yan, W.10
Ro, S.11
-
27
-
-
0035210072
-
Mechanisms of angioplasty and stent restenosis: Implications for design of rational therapy
-
Bennett MR, O'Sullivan M. Mechanisms of angioplasty and stent restenosis: Implications for design of rational therapy. Pharmacol Ther. 2001;91: 149-166
-
(2001)
Pharmacol Ther
, vol.91
, pp. 149-166
-
-
Bennett, M.R.1
O'Sullivan, M.2
-
28
-
-
76049107825
-
Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: Current perspective and methods of analysis
-
Bentzon JF, Falk E. Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: Current perspective and methods of analysis. Vascul Pharmacol. 2010;52:11-20
-
(2010)
Vascul Pharmacol
, vol.52
, pp. 11-20
-
-
Bentzon, J.F.1
Falk, E.2
-
29
-
-
22944451474
-
Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin
-
Liu ZP, Wang Z, Yanagisawa H, Olson EN. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Dev Cell. 2005;9:261-270
-
(2005)
Dev Cell
, vol.9
, pp. 261-270
-
-
Liu, Z.P.1
Wang, Z.2
Yanagisawa, H.3
Olson, E.N.4
-
30
-
-
1642297200
-
Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression
-
Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature. 2004;428:185-189
-
(2004)
Nature
, vol.428
, pp. 185-189
-
-
Wang, Z.1
Wang, D.Z.2
Hockemeyer, D.3
McAnally, J.4
Nordheim, A.5
Olson, E.N.6
-
31
-
-
0037015286
-
Smooth muscle progenitor cells in human blood
-
Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood. Circulation. 2002;106:1199-1204
-
(2002)
Circulation
, vol.106
, pp. 1199-1204
-
-
Simper, D.1
Stalboerger, P.G.2
Panetta, C.J.3
Wang, S.4
Caplice, N.M.5
-
32
-
-
0034597798
-
Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors
-
Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92-96
-
(2000)
Nature
, vol.408
, pp. 92-96
-
-
Yamashita, J.1
Itoh, H.2
Hirashima, M.3
Ogawa, M.4
Nishikawa, S.5
Yurugi, T.6
Naito, M.7
Nakao, K.8
Nishikawa, S.9
-
33
-
-
76349093390
-
Molecular basis for antagonism between pdgf and the tgfbeta family of signalling pathways by control of mir-24 expression
-
Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, Lieberman J, Lagna G, Hata A. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29:559-573
-
(2010)
EMBO J.
, vol.29
, pp. 559-573
-
-
Chan, M.C.1
Hilyard, A.C.2
Wu, C.3
Davis, B.N.4
Hill, N.S.5
Lal, A.6
Lieberman, J.7
Lagna, G.8
Hata, A.9
-
34
-
-
34547882714
-
A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-Terminal tail domain of BMP type II receptor
-
Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du K, Lagna G, Hata A. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-Terminal tail domain of BMP type II receptor. Mol Cell Biol. 2007;27:5776-5789
-
(2007)
Mol Cell Biol
, vol.27
, pp. 5776-5789
-
-
Chan, M.C.1
Nguyen, P.H.2
Davis, B.N.3
Ohoka, N.4
Hayashi, H.5
Du, K.6
Lagna, G.7
Hata, A.8
-
35
-
-
80054926880
-
Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation
-
Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol. 2011;31:2370-2377
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, pp. 2370-2377
-
-
Davis-Dusenbery, B.N.1
Wu, C.2
Hata, A.3
-
36
-
-
80054712637
-
New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture
-
Martin K, O'Sullivan JF, Caplice NM. New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture. Curr Opin Cardiol. 2011;26:569-575
-
(2011)
Curr Opin Cardiol
, vol.26
, pp. 569-575
-
-
Martin, K.1
O'Sullivan, J.F.2
Caplice, N.M.3
-
37
-
-
33845317603
-
A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure
-
van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103:18255-18260
-
(2006)
Proc Natl Acad Sci U S A.
, vol.103
, pp. 18255-18260
-
-
Van Rooij, E.1
Sutherland, L.B.2
Liu, N.3
Williams, A.H.4
McAnally, J.5
Gerard, R.D.6
Richardson, J.A.7
Olson, E.N.8
-
38
-
-
79952731167
-
MiR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes
-
Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med. 2011;208:549-560
-
(2011)
J Exp Med
, vol.208
, pp. 549-560
-
-
Qian, L.1
Van Laake, L.W.2
Huang, Y.3
Liu, S.4
Wendland, M.F.5
Srivastava, D.6
-
39
-
-
80051802344
-
MicroRNA-24 regulates vascularity after myocardial infarction
-
Fiedler J, Jazbutyte V, Kirchmaier BC, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124:720-730
-
(2011)
Circulation
, vol.124
, pp. 720-730
-
-
Fiedler, J.1
Jazbutyte, V.2
Kirchmaier, B.C.3
-
40
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027-13032
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, pp. 13027-13032
-
-
Van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
Dimaio, J.M.4
Naseem, R.H.5
Marshall, W.S.6
Hill, J.A.7
Olson, E.N.8
-
41
-
-
78751476297
-
Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis
-
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53:209-218
-
(2011)
Hepatology
, vol.53
, pp. 209-218
-
-
Roderburg, C.1
Urban, G.W.2
Bettermann, K.3
Vucur, M.4
Zimmermann, H.5
Schmidt, S.6
Janssen, J.7
Koppe, C.8
Knolle, P.9
Castoldi, M.10
Tacke, F.11
Trautwein, C.12
Luedde, T.13
-
42
-
-
84856552278
-
Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development
-
Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ, McConnell MV, Dalman RL, Spin JM, Tsao PS. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122:497-506
-
(2012)
J Clin Invest
, vol.122
, pp. 497-506
-
-
Maegdefessel, L.1
Azuma, J.2
Toh, R.3
Merk, D.R.4
Deng, A.5
Chin, J.T.6
Raaz, U.7
Schoelmerich, A.M.8
Raiesdana, A.9
Leeper, N.J.10
McConnell, M.V.11
Dalman, R.L.12
Spin, J.M.13
Tsao, P.S.14
-
43
-
-
34250172419
-
MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation
-
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579-1588
-
(2007)
Circ Res
, vol.100
, pp. 1579-1588
-
-
Ji, R.1
Cheng, Y.2
Yue, J.3
Yang, J.4
Liu, X.5
Chen, H.6
Dean, D.B.7
Zhang, C.8
-
44
-
-
84859632747
-
MiRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay
-
Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012;336:237-240
-
(2012)
Science
, vol.336
, pp. 237-240
-
-
Djuranovic, S.1
Nahvi, A.2
Green, R.3
-
45
-
-
84871681585
-
MicroRNAs mediate gene silencing via multiple different pathways in drosophila
-
Fukaya T, Tomari Y. MicroRNAs mediate gene silencing via multiple different pathways in drosophila. Mol Cell. 2012;48:825-836
-
(2012)
Mol Cell
, vol.48
, pp. 825-836
-
-
Fukaya, T.1
Tomari, Y.2
|