-
1
-
-
0036125088
-
Stage I non-small cell lung carcinoma: really an early stage?
-
Rena O, Oliaro A, Cavallo A, et al. Stage I non-small cell lung carcinoma: really an early stage? Eur J Cardiothorac Surg 2002;21:514-9.
-
(2002)
Eur J Cardiothorac Surg
, vol.21
, pp. 514-519
-
-
Rena, O.1
Oliaro, A.2
Cavallo, A.3
-
2
-
-
84926472185
-
Personalized treatment of early-stage non-small-cell lung cancer:the challenging role of EGFR inhibitors
-
Santarpia M, Altavilla G, Pitini V, et al. Personalized treatment of early-stage non-small-cell lung cancer:the challenging role of EGFR inhibitors. Future Oncol 2015;11:1259-74.
-
(2015)
Future Oncol
, vol.11
, pp. 1259-1274
-
-
Santarpia, M.1
Altavilla, G.2
Pitini, V.3
-
3
-
-
84882977045
-
Genetics and biomarkers in personalisation of lung cancer treatment
-
Rosell R, Bivona TG, Karachaliou N. Genetics and biomarkers in personalisation of lung cancer treatment. Lancet 2013;382:720-31.
-
(2013)
Lancet
, vol.382
, pp. 720-731
-
-
Rosell, R.1
Bivona, T.G.2
Karachaliou, N.3
-
4
-
-
84933524565
-
Strategies to overcome resistance to tyrosine kinase inhibitors in non-small-cell lung cancer
-
Santarpia M, Gil N, Rosell R. Strategies to overcome resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Expert Rev Clin Pharmacol 2015;8:461-77.
-
(2015)
Expert Rev Clin Pharmacol
, vol.8
, pp. 461-477
-
-
Santarpia, M.1
Gil, N.2
Rosell, R.3
-
5
-
-
84858766182
-
The blockade of immune checkpoints in cancer immunotherapy
-
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 252-264
-
-
Pardoll, D.M.1
-
7
-
-
84936871442
-
The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment
-
Pennock GK, Chow LQ. The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment. Oncologist 2015;20:812-22.
-
(2015)
Oncologist
, vol.20
, pp. 812-822
-
-
Pennock, G.K.1
Chow, L.Q.2
-
8
-
-
79956329617
-
Tumorinfiltrating CD8+ lymphocytes predict clinical outcome in breast cancer
-
Mahmoud SM, Paish EC, Powe DG, et al. Tumorinfiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 2011;29:1949-55.
-
(2011)
J Clin Oncol
, vol.29
, pp. 1949-1955
-
-
Mahmoud, S.M.1
Paish, E.C.2
Powe, D.G.3
-
9
-
-
84864059882
-
Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma
-
Azimi F, Scolyer RA, Rumcheva P, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 2012;30:2678-83.
-
(2012)
J Clin Oncol
, vol.30
, pp. 2678-2683
-
-
Azimi, F.1
Scolyer, R.A.2
Rumcheva, P.3
-
10
-
-
0037448353
-
Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer
-
Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203-13.
-
(2003)
N Engl J Med
, vol.348
, pp. 203-213
-
-
Zhang, L.1
Conejo-Garcia, J.R.2
Katsaros, D.3
-
11
-
-
70350225838
-
Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype
-
Ogino S, Nosho K, Irahara N, et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res 2009;15:6412-20.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 6412-6420
-
-
Ogino, S.1
Nosho, K.2
Irahara, N.3
-
12
-
-
84875722651
-
Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98
-
Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013;31:860-7.
-
(2013)
J Clin Oncol
, vol.31
, pp. 860-867
-
-
Loi, S.1
Sirtaine, N.2
Piette, F.3
-
13
-
-
82155168544
-
A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma
-
Hamid O, Schmidt H, Nissan A, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 2011;9:204.
-
(2011)
J Transl Med
, vol.9
, pp. 204
-
-
Hamid, O.1
Schmidt, H.2
Nissan, A.3
-
14
-
-
84886698315
-
Innate and adaptive immune cells in the tumor microenvironment
-
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013;14:1014-22.
-
(2013)
Nat Immunol
, vol.14
, pp. 1014-1022
-
-
Gajewski, T.F.1
Schreiber, H.2
Fu, Y.X.3
-
15
-
-
78650199162
-
Dendritic cells and immunity against cancer
-
Palucka K, Ueno H, Fay J, et al. Dendritic cells and immunity against cancer. J Intern Med 2011;269:64-73.
-
(2011)
J Intern Med
, vol.269
, pp. 64-73
-
-
Palucka, K.1
Ueno, H.2
Fay, J.3
-
17
-
-
84884561907
-
Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy
-
Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res 2013;19:4917-24.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 4917-4924
-
-
Nirschl, C.J.1
Drake, C.G.2
-
18
-
-
79953151458
-
Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion
-
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion. Science 2011;331:1565-70.
-
(2011)
Science
, vol.331
, pp. 1565-1570
-
-
Schreiber, R.D.1
Old, L.J.2
Smyth, M.J.3
-
19
-
-
33646755569
-
Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity
-
Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006;90:1-50.
-
(2006)
Adv Immunol
, vol.90
, pp. 1-50
-
-
Smyth, M.J.1
Dunn, G.P.2
Schreiber, R.D.3
-
21
-
-
65349119978
-
CD28 and CTLA-4 coreceptor expression and signal transduction
-
Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009;229:12-26.
-
(2009)
Immunol Rev
, vol.229
, pp. 12-26
-
-
Rudd, C.E.1
Taylor, A.2
Schneider, H.3
-
22
-
-
0037015055
-
Modulation of TCRinduced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors
-
Riley JL, Mao M, Kobayashi S, et al. Modulation of TCRinduced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci U S A 2002;99:11790-5.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 11790-11795
-
-
Riley, J.L.1
Mao, M.2
Kobayashi, S.3
-
23
-
-
33749038866
-
Reversal of the TCR stop signal by CTLA-4
-
Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science 2006;313:1972-5.
-
(2006)
Science
, vol.313
, pp. 1972-1975
-
-
Schneider, H.1
Downey, J.2
Smith, A.3
-
24
-
-
0033662376
-
The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A
-
Chuang E, Fisher TS, Morgan RW, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000;13:313-22.
-
(2000)
Immunity
, vol.13
, pp. 313-322
-
-
Chuang, E.1
Fisher, T.S.2
Morgan, R.W.3
-
25
-
-
27144496045
-
CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
-
Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-53.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9543-9553
-
-
Parry, R.V.1
Chemnitz, J.M.2
Frauwirth, K.A.3
-
26
-
-
0026700235
-
Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death
-
Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-95.
-
(1992)
EMBO J
, vol.11
, pp. 3887-3895
-
-
Ishida, Y.1
Agata, Y.2
Shibahara, K.3
-
27
-
-
0034596948
-
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
-
Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027-34.
-
(2000)
J Exp Med
, vol.192
, pp. 1027-1034
-
-
Freeman, G.J.1
Long, A.J.2
Iwai, Y.3
-
28
-
-
33645846313
-
Tissue expression of PD-L1 mediates peripheral T cell tolerance
-
Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006;203:883-95.
-
(2006)
J Exp Med
, vol.203
, pp. 883-895
-
-
Keir, M.E.1
Liang, S.C.2
Guleria, I.3
-
29
-
-
18544380239
-
Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion
-
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793-800.
-
(2002)
Nat Med
, vol.8
, pp. 793-800
-
-
Dong, H.1
Strome, S.E.2
Salomao, D.R.3
-
30
-
-
42649125225
-
PD-1 and its ligands in tolerance and immunity
-
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677-704.
-
(2008)
Annu Rev Immunol
, vol.26
, pp. 677-704
-
-
Keir, M.E.1
Butte, M.J.2
Freeman, G.J.3
-
31
-
-
0032736029
-
B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion
-
Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5:1365-9.
-
(1999)
Nat Med
, vol.5
, pp. 1365-1369
-
-
Dong, H.1
Zhu, G.2
Tamada, K.3
-
32
-
-
5844264920
-
PD-L2 is a second ligand for PD-1 and inhibits T cell activation
-
Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-8.
-
(2001)
Nat Immunol
, vol.2
, pp. 261-268
-
-
Latchman, Y.1
Wood, C.R.2
Chernova, T.3
-
33
-
-
3142688997
-
SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation
-
Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004;173:945-54.
-
(2004)
J Immunol
, vol.173
, pp. 945-954
-
-
Chemnitz, J.M.1
Parry, R.V.2
Nichols, K.E.3
-
34
-
-
84864324543
-
Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2
-
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012;209:1201-17.
-
(2012)
J Exp Med
, vol.209
, pp. 1201-1217
-
-
Yokosuka, T.1
Takamatsu, M.2
Kobayashi-Imanishi, W.3
-
35
-
-
84862859820
-
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
-
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-54.
-
(2012)
N Engl J Med
, vol.366
, pp. 2443-2454
-
-
Topalian, S.L.1
Hodi, F.S.2
Brahmer, J.R.3
-
36
-
-
84936749833
-
Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer
-
Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 2015;33:2004-12.
-
(2015)
J Clin Oncol
, vol.33
, pp. 2004-2012
-
-
Gettinger, S.N.1
Horn, L.2
Gandhi, L.3
-
37
-
-
84924901863
-
Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial
-
Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 2015;16:257-65.
-
(2015)
Lancet Oncol
, vol.16
, pp. 257-265
-
-
Rizvi, N.A.1
Mazières, J.2
Planchard, D.3
-
38
-
-
84936791837
-
Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer
-
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med 2015;373:123-35.
-
(2015)
N Engl J Med
, vol.373
, pp. 123-135
-
-
Brahmer, J.1
Reckamp, K.L.2
Baas, P.3
-
39
-
-
84944937210
-
Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer
-
Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med 2015;373:1627-39.
-
(2015)
N Engl J Med
, vol.373
, pp. 1627-1639
-
-
Borghaei, H.1
Paz-Ares, L.2
Horn, L.3
-
40
-
-
84929481480
-
Pembrolizumab for the treatment of non-small-cell lung cancer
-
Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018-28.
-
(2015)
N Engl J Med
, vol.372
, pp. 2018-2028
-
-
Garon, E.B.1
Rizvi, N.A.2
Hui, R.3
-
41
-
-
34447646310
-
Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses
-
Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007;27:111-22.
-
(2007)
Immunity
, vol.27
, pp. 111-122
-
-
Butte, M.J.1
Keir, M.E.2
Phamduy, T.B.3
-
42
-
-
84862903106
-
Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
-
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366:2455-65.
-
(2012)
N Engl J Med
, vol.366
, pp. 2455-2465
-
-
Brahmer, J.R.1
Tykodi, S.S.2
Chow, L.Q.3
-
43
-
-
84907651084
-
Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC
-
Brahmer JR, Rizvi NA, Lutzky J, et al. Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. J Clin Oncol 2014;32:5s.
-
(2014)
J Clin Oncol
, vol.32
, pp. 5s
-
-
Brahmer, J.R.1
Rizvi, N.A.2
Lutzky, J.3
-
44
-
-
84880709088
-
Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC)
-
abstr
-
Spigel DR, Gettinger SN, Horn L, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 2013;31:abstr 8008.
-
(2013)
J Clin Oncol
, vol.31
, pp. 8008
-
-
Spigel, D.R.1
Gettinger, S.N.2
Horn, L.3
-
45
-
-
84899048777
-
Clinical activity, safety, and biomarkers of PD-L1 blockade in non-small cell lung cancer (NSCLC): Additional analyses from a clinical study of the engineered antibody MPDL3280A (anti-PDL1)
-
abstr
-
Soria JC, Cruz C, Bahleda R, et al. Clinical activity, safety, and biomarkers of PD-L1 blockade in non-small cell lung cancer (NSCLC): Additional analyses from a clinical study of the engineered antibody MPDL3280A (anti-PDL1). European J Cancer 2013;49:abstr 3408.
-
(2013)
European J Cancer
, vol.49
, pp. 3408
-
-
Soria, J.C.1
Cruz, C.2
Bahleda, R.3
-
46
-
-
84904024273
-
Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy
-
Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014;20:5064-74.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 5064-5074
-
-
Taube, J.M.1
Klein, A.2
Brahmer, J.R.3
-
47
-
-
33846118474
-
Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma
-
Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007;13:84-8.
-
(2007)
Nat Med
, vol.13
, pp. 84-88
-
-
Parsa, A.T.1
Waldron, J.S.2
Panner, A.3
-
48
-
-
58549102319
-
Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)
-
Marzec M, Zhang Q, Goradia A, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A 2008;105:20852-7.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20852-20857
-
-
Marzec, M.1
Zhang, Q.2
Goradia, A.3
-
49
-
-
84903831602
-
Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma
-
Atefi M, Avramis E, Lassen A, et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 2014;20:3446-57.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 3446-3457
-
-
Atefi, M.1
Avramis, E.2
Lassen, A.3
-
50
-
-
84920956735
-
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
-
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014;515:563-7.
-
(2014)
Nature
, vol.515
, pp. 563-567
-
-
Herbst, R.S.1
Soria, J.C.2
Kowanetz, M.3
-
51
-
-
84920956732
-
PD-1 blockade induces responses by inhibiting adaptive immune resistance
-
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515:568-71.
-
(2014)
Nature
, vol.515
, pp. 568-571
-
-
Tumeh, P.C.1
Harview, C.L.2
Yearley, J.H.3
-
52
-
-
84928761118
-
Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
-
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124-8.
-
(2015)
Science
, vol.348
, pp. 124-128
-
-
Rizvi, N.A.1
Hellmann, M.D.2
Snyder, A.3
-
53
-
-
84923251407
-
Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression
-
Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 2014;5:5241.
-
(2014)
Nat Commun
, vol.5
, pp. 5241
-
-
Chen, L.1
Gibbons, D.L.2
Goswami, S.3
-
54
-
-
34848857434
-
Transforming growth factor-beta and the immune response: implications for anticancer therapy
-
Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 2007;13:5262-70.
-
(2007)
Clin Cancer Res
, vol.13
, pp. 5262-5270
-
-
Wrzesinski, S.H.1
Wan, Y.Y.2
Flavell, R.A.3
-
55
-
-
84866985855
-
Targeting the TGFβ signalling pathway in disease
-
Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012;11:790-811.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 790-811
-
-
Akhurst, R.J.1
Hata, A.2
-
56
-
-
57049158952
-
-
editors, New York: Cold Spring Harbor Laboratory Press
-
Derynck R, Miyazono K, editors. The TGF-β Family. New York: Cold Spring Harbor Laboratory Press, 2008.
-
(2008)
The TGF-β Family
-
-
Derynck, R.1
Miyazono, K.2
-
57
-
-
0038682002
-
Mechanisms of TGF-beta signaling from cell membrane to the nucleus
-
Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685-700.
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.1
Massagué, J.2
-
58
-
-
0142104985
-
Smad-dependent and Smadindependent pathways in TGF-beta family signalling
-
Derynck R, Zhang YE. Smad-dependent and Smadindependent pathways in TGF-beta family signalling. Nature 2003;425:577-84.
-
(2003)
Nature
, vol.425
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
59
-
-
47549090432
-
TGFbeta in Cancer
-
Massagué J. TGFbeta in Cancer. Cell 2008;134:215-30.
-
(2008)
Cell
, vol.134
, pp. 215-230
-
-
Massagué, J.1
-
60
-
-
79960364782
-
Exploring anti-TGF-β therapies in cancer and fibrosis
-
Hawinkels LJ, Ten Dijke P. Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors 2011;29:140-52.
-
(2011)
Growth Factors
, vol.29
, pp. 140-152
-
-
Hawinkels, L.J.1
Ten Dijke, P.2
-
61
-
-
33749246730
-
Mutations of TGFbeta signaling molecules in human disease
-
Harradine KA, Akhurst RJ. Mutations of TGFbeta signaling molecules in human disease. Ann Med 2006;38:403-14.
-
(2006)
Ann Med
, vol.38
, pp. 403-414
-
-
Harradine, K.A.1
Akhurst, R.J.2
-
62
-
-
77954951446
-
The polarization of immune cells in the tumour environment by TGFbeta
-
Flavell RA, Sanjabi S, Wrzesinski SH, et al. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010;10:554-67.
-
(2010)
Nat Rev Immunol
, vol.10
, pp. 554-567
-
-
Flavell, R.A.1
Sanjabi, S.2
Wrzesinski, S.H.3
-
63
-
-
84857746620
-
Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma
-
Erdag G, Schaefer JT, Smolkin ME, et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 2012;72:1070-80.
-
(2012)
Cancer Res
, vol.72
, pp. 1070-1080
-
-
Erdag, G.1
Schaefer, J.T.2
Smolkin, M.E.3
-
64
-
-
0034770605
-
Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells
-
Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118-22.
-
(2001)
Nat Med
, vol.7
, pp. 1118-1122
-
-
Gorelik, L.1
Flavell, R.A.2
-
65
-
-
1642317058
-
Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation
-
McKarns SC, Schwartz RH, Kaminski NE. Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol 2004;172:4275-84.
-
(2004)
J Immunol
, vol.172
, pp. 4275-4284
-
-
McKarns, S.C.1
Schwartz, R.H.2
Kaminski, N.E.3
-
66
-
-
1542314236
-
Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element
-
Frederick JP, Liberati NT, Waddell DS, et al. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004;24:2546-59.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 2546-2559
-
-
Frederick, J.P.1
Liberati, N.T.2
Waddell, D.S.3
-
67
-
-
27644457376
-
TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance
-
Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005;8:369-80.
-
(2005)
Cancer Cell
, vol.8
, pp. 369-380
-
-
Thomas, D.A.1
Massagué, J.2
-
68
-
-
84908015217
-
Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression
-
Stephen TL, Rutkowski MR, Allegrezza MJ, et al. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 2014;41:427-39.
-
(2014)
Immunity
, vol.41
, pp. 427-439
-
-
Stephen, T.L.1
Rutkowski, M.R.2
Allegrezza, M.J.3
-
69
-
-
33746599842
-
Regulatory T cells in cancer
-
Beyer M, Schultze JL. Regulatory T cells in cancer. Blood 2006;108:804-11.
-
(2006)
Blood
, vol.108
, pp. 804-811
-
-
Beyer, M.1
Schultze, J.L.2
-
70
-
-
65549123867
-
Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?
-
Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009;30:626-35.
-
(2009)
Immunity
, vol.30
, pp. 626-635
-
-
Curotto de Lafaille, M.A.1
Lafaille, J.J.2
-
71
-
-
84858768465
-
Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression
-
Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 2012;40:186-204.
-
(2012)
Toxicol Pathol
, vol.40
, pp. 186-204
-
-
Peterson, R.A.1
-
72
-
-
0347785480
-
Control of regulatory T cell development by the transcription factor Foxp3
-
Hori S, Nomura T, Sakaguchi S. et al. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057-61.
-
(2003)
Science
, vol.299
, pp. 1057-1061
-
-
Hori, S.1
Nomura, T.2
Sakaguchi, S.3
-
73
-
-
33745832286
-
Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells
-
Lim HW, Broxmeyer HE, Kim CH. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol 2006;177:840-51.
-
(2006)
J Immunol
, vol.177
, pp. 840-851
-
-
Lim, H.W.1
Broxmeyer, H.E.2
Kim, C.H.3
-
74
-
-
65549136983
-
Mechanisms of foxp3+ T regulatory cellmediated suppression
-
Shevach EM. Mechanisms of foxp3+ T regulatory cellmediated suppression. Immunity 2009;30:636-45.
-
(2009)
Immunity
, vol.30
, pp. 636-645
-
-
Shevach, E.M.1
-
75
-
-
84953363027
-
TGF-β1-induced regulatory T cells
-
Hadaschik EN, Enk AH. TGF-β1-induced regulatory T cells. Hum Immunol 2015;76:561-4.
-
(2015)
Hum Immunol
, vol.76
, pp. 561-564
-
-
Hadaschik, E.N.1
Enk, A.H.2
-
76
-
-
0348223787
-
Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3
-
Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875-86.
-
(2003)
J Exp Med
, vol.198
, pp. 1875-1886
-
-
Chen, W.1
Jin, W.2
Hardegen, N.3
-
77
-
-
38349095578
-
Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer
-
Tone Y, Furuuchi K, Kojima Y, et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2008;9:194-202.
-
(2008)
Nat Immunol
, vol.9
, pp. 194-202
-
-
Tone, Y.1
Furuuchi, K.2
Kojima, Y.3
-
78
-
-
78650309487
-
Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3
-
Maruyama T, Li J, Vaque JP, et al. Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3. Nat Immunol 2011;12:86-95.
-
(2011)
Nat Immunol
, vol.12
, pp. 86-95
-
-
Maruyama, T.1
Li, J.2
Vaque, J.P.3
-
79
-
-
4644237613
-
Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival
-
Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942-9.
-
(2004)
Nat Med
, vol.10
, pp. 942-949
-
-
Curiel, T.J.1
Coukos, G.2
Zou, L.3
-
80
-
-
64649088372
-
FOXP3 expression and overall survival in breast cancer
-
Merlo A, Casalini P, Carcangiu ML, et al. FOXP3 expression and overall survival in breast cancer. J Clin Oncol 2009;27:1746-52.
-
(2009)
J Clin Oncol
, vol.27
, pp. 1746-1752
-
-
Merlo, A.1
Casalini, P.2
Carcangiu, M.L.3
-
81
-
-
33845590308
-
Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients
-
Petersen RP, Campa MJ, Sperlazza J, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006;107:2866-72.
-
(2006)
Cancer
, vol.107
, pp. 2866-2872
-
-
Petersen, R.P.1
Campa, M.J.2
Sperlazza, J.3
-
82
-
-
33646560950
-
Transforming growth factor-beta induces development of the T(H)17 lineage
-
Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441:231-4.
-
(2006)
Nature
, vol.441
, pp. 231-234
-
-
Mangan, P.R.1
Harrington, L.E.2
O'Quinn, D.B.3
-
83
-
-
79952771167
-
Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation
-
Gutcher I, Donkor MK, Ma Q, et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 2011;34:396-408.
-
(2011)
Immunity
, vol.34
, pp. 396-408
-
-
Gutcher, I.1
Donkor, M.K.2
Ma, Q.3
-
84
-
-
77958584113
-
Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling
-
Ghoreschi K, Laurence A, Yang XP, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature 2010;467:967-71.
-
(2010)
Nature
, vol.467
, pp. 967-971
-
-
Ghoreschi, K.1
Laurence, A.2
Yang, X.P.3
-
85
-
-
34848837386
-
Taking dendritic cells into medicine
-
Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419-26.
-
(2007)
Nature
, vol.449
, pp. 419-426
-
-
Steinman, R.M.1
Banchereau, J.2
-
86
-
-
70349690426
-
Tumour-derived prostaglandin E and transforming growth factor-beta synergize to inhibit plasmacytoid dendritic cellderived interferon-alpha
-
Bekeredjian-Ding I, Schäfer M, Hartmann E, et al. Tumour-derived prostaglandin E and transforming growth factor-beta synergize to inhibit plasmacytoid dendritic cellderived interferon-alpha. Immunology 2009;128:439-50.
-
(2009)
Immunology
, vol.128
, pp. 439-450
-
-
Bekeredjian-Ding, I.1
Schäfer, M.2
Hartmann, E.3
-
87
-
-
69549103141
-
Feedback control of regulatory T cell homeostasis by dendritic cells in vivo
-
Darrasse-Jèze G, Deroubaix S, Mouquet H, et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med 2009;206:1853-62.
-
(2009)
J Exp Med
, vol.206
, pp. 1853-1862
-
-
Darrasse-Jèze, G.1
Deroubaix, S.2
Mouquet, H.3
-
88
-
-
33847301982
-
Dendritic cells with TGF-beta1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells
-
Luo X, Tarbell KV, Yang H, et al. Dendritic cells with TGF-beta1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2007;104:2821-6.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 2821-2826
-
-
Luo, X.1
Tarbell, K.V.2
Yang, H.3
-
89
-
-
64849114869
-
Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells
-
Dumitriu IE, Dunbar DR, Howie SE, et al. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 2009;182:2795-807.
-
(2009)
J Immunol
, vol.182
, pp. 2795-2807
-
-
Dumitriu, I.E.1
Dunbar, D.R.2
Howie, S.E.3
-
90
-
-
84863496897
-
TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation
-
Ni XY, Sui HX, Liu Y, et al. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 2012;28:615-21.
-
(2012)
Oncol Rep
, vol.28
, pp. 615-621
-
-
Ni, X.Y.1
Sui, H.X.2
Liu, Y.3
-
91
-
-
84896374641
-
Dendritic cells with an increased PD-L1 by TGF-β induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells
-
Song S, Yuan P, Wu H, et al. Dendritic cells with an increased PD-L1 by TGF-β induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol 2014;20:117-23.
-
(2014)
Int Immunopharmacol
, vol.20
, pp. 117-123
-
-
Song, S.1
Yuan, P.2
Wu, H.3
-
92
-
-
20644472421
-
Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma
-
Laouar Y, Sutterwala FS, Gorelik L, et al. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005;6:600-7.
-
(2005)
Nat Immunol
, vol.6
, pp. 600-607
-
-
Laouar, Y.1
Sutterwala, F.S.2
Gorelik, L.3
-
93
-
-
0037388134
-
Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NKmediated killing of dendritic cells
-
Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NKmediated killing of dendritic cells. Proc Natl Acad Sci U S A 2003;100:4120-5.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 4120-4125
-
-
Castriconi, R.1
Cantoni, C.2
Della Chiesa, M.3
-
94
-
-
2942588777
-
Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients
-
Lee JC, Lee KM, Kim DW, et al. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004;172:7335-40.
-
(2004)
J Immunol
, vol.172
, pp. 7335-7340
-
-
Lee, J.C.1
Lee, K.M.2
Kim, D.W.3
-
95
-
-
65049084189
-
Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation
-
Mantovani A, Sica A, Allavena P, et al. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009;70:325-30.
-
(2009)
Hum Immunol
, vol.70
, pp. 325-330
-
-
Mantovani, A.1
Sica, A.2
Allavena, P.3
-
96
-
-
56749174940
-
Exploring the full spectrum of macrophage activation
-
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958-69.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 958-969
-
-
Mosser, D.M.1
Edwards, J.P.2
-
97
-
-
84897556094
-
The M1 and M2 paradigm of macrophage activation: time for reassessment
-
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014;6:13.
-
(2014)
F1000Prime Rep
, vol.6
, pp. 13
-
-
Martinez, F.O.1
Gordon, S.2
-
98
-
-
37849026347
-
TGFbeta is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction
-
Byrne SN, Knox MC, Halliday GM. TGFbeta is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. Immunol Cell Biol 2008;86:92-7.
-
(2008)
Immunol Cell Biol
, vol.86
, pp. 92-97
-
-
Byrne, S.N.1
Knox, M.C.2
Halliday, G.M.3
-
99
-
-
0029994311
-
Transforming growth factor-beta 1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium
-
Smith WB, Noack L, Khew-Goodall Y, et al. Transforming growth factor-beta 1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J Immunol 1996;157:360-8.
-
(1996)
J Immunol
, vol.157
, pp. 360-368
-
-
Smith, W.B.1
Noack, L.2
Khew-Goodall, Y.3
-
100
-
-
34250198676
-
Inhibition of human neutrophil degranulation by transforming growth factorbeta1
-
Shen L, Smith JM, Shen Z, et al. Inhibition of human neutrophil degranulation by transforming growth factorbeta1. Clin Exp Immunol 2007;149:155-61.
-
(2007)
Clin Exp Immunol
, vol.149
, pp. 155-161
-
-
Shen, L.1
Smith, J.M.2
Shen, Z.3
-
101
-
-
69249222379
-
Polarization of tumorassociated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN
-
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumorassociated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 2009;16:183-94.
-
(2009)
Cancer Cell
, vol.16
, pp. 183-194
-
-
Fridlender, Z.G.1
Sun, J.2
Kim, S.3
-
102
-
-
61349100687
-
Myeloid-derived suppressor cells as regulators of the immune system
-
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9:162-74.
-
(2009)
Nat Rev Immunol
, vol.9
, pp. 162-174
-
-
Gabrilovich, D.I.1
Nagaraj, S.2
-
103
-
-
84863338694
-
Myeloid suppressor cells and immune modulation in lung cancer
-
Srivastava MK, Andersson Å, Zhu L, et al. Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy 2012;4:291-304.
-
(2012)
Immunotherapy
, vol.4
, pp. 291-304
-
-
Srivastava, M.K.1
Å, A.2
Zhu, L.3
-
104
-
-
5444225991
-
Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumorbearing host directly promotes tumor angiogenesis
-
Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumorbearing host directly promotes tumor angiogenesis. Cancer Cell 2004;6:409-21.
-
(2004)
Cancer Cell
, vol.6
, pp. 409-421
-
-
Yang, L.1
DeBusk, L.M.2
Fukuda, K.3
-
105
-
-
84891486024
-
Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly
-
Serafini P. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol Res 2013;57:172-84.
-
(2013)
Immunol Res
, vol.57
, pp. 172-184
-
-
Serafini, P.1
-
106
-
-
30944444113
-
Alterations in components of the TGFbeta superfamily signaling pathways in human cancer
-
Levy L, Hill CS. Alterations in components of the TGFbeta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 2006;17:41-58.
-
(2006)
Cytokine Growth Factor Rev
, vol.17
, pp. 41-58
-
-
Levy, L.1
Hill, C.S.2
-
107
-
-
0042307513
-
The two faces of transforming growth factor beta in carcinogenesis
-
Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 2003;100:8621-3.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 8621-8623
-
-
Roberts, A.B.1
Wakefield, L.M.2
-
108
-
-
0242285692
-
TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression
-
Tang B, Vu M, Booker T, et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003;112:1116-24.
-
(2003)
J Clin Invest
, vol.112
, pp. 1116-1124
-
-
Tang, B.1
Vu, M.2
Booker, T.3
-
109
-
-
0036467496
-
TGF-beta signaling: positive and negative effects on tumorigenesis
-
Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22-9.
-
(2002)
Curr Opin Genet Dev
, vol.12
, pp. 22-29
-
-
Wakefield, L.M.1
Roberts, A.B.2
-
110
-
-
0036595629
-
Epithelial-mesenchymal transitions in tumour progression
-
Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442-54.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 442-454
-
-
Thiery, J.P.1
-
111
-
-
43049165453
-
The epithelialmesenchymal transition generates cells with properties of stem cells
-
Mani SA, Guo W, Liao MJ, et al. The epithelialmesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15.
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
Guo, W.2
Liao, M.J.3
-
112
-
-
84929365744
-
Association of epithelialmesenchymal transition status with PD1/PDL1 expression and a distinct immunophenotype in non-small cell lung cancer: Implications for immunotherapy biomarkers
-
Lou Y, Diao L, Byers LA, et al. Association of epithelialmesenchymal transition status with PD1/PDL1 expression and a distinct immunophenotype in non-small cell lung cancer: Implications for immunotherapy biomarkers. J Clin Oncol 2014;32:5s.
-
(2014)
J Clin Oncol
, vol.32
, pp. 5s
-
-
Lou, Y.1
Diao, L.2
Byers, L.A.3
-
113
-
-
80054769985
-
Hypoxiadependent inhibition of tumor cell susceptibility to CTLmediated lysis involves NANOG induction in target cells
-
Hasmim M, Noman MZ, Lauriol J, et al. Hypoxiadependent inhibition of tumor cell susceptibility to CTLmediated lysis involves NANOG induction in target cells. J Immunol 2011;187:4031-9.
-
(2011)
J Immunol
, vol.187
, pp. 4031-4039
-
-
Hasmim, M.1
Noman, M.Z.2
Lauriol, J.3
-
114
-
-
84890378536
-
Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-β1
-
Hasmim M, Noman MZ, Messai Y, et al. Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-β1. J Immunol 2013;191:5802-6.
-
(2013)
J Immunol
, vol.191
, pp. 5802-5806
-
-
Hasmim, M.1
Noman, M.Z.2
Messai, Y.3
|