메뉴 건너뛰기




Volumn 8, Issue 6, 2015, Pages 999-1005

Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; GLUCOSE; LIGNOCELLULOSE; LIGNOCELLULOSIC HYDROLYSATE; UNCLASSIFIED DRUG; VANILLIN; XYLOSE; CULTURE MEDIUM; GROWTH INHIBITOR; LIGNIN;

EID: 84945492016     PISSN: 17517907     EISSN: 17517915     Source Type: Journal    
DOI: 10.1111/1751-7915.12280     Document Type: Article
Times cited : (33)

References (25)
  • 1
    • 69949160038 scopus 로고    scopus 로고
    • Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction
    • Almeida, J.R.M., Bertilsson, M., Hahn-Hägerdal, B., Lidén, G., and Gorwa-Grauslund, M.F. (2009) Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl Microbiol Biotechnol 84: 751-761.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 751-761
    • Almeida, J.R.M.1    Bertilsson, M.2    Hahn-Hägerdal, B.3    Lidén, G.4    Gorwa-Grauslund, M.F.5
  • 2
    • 77949874216 scopus 로고    scopus 로고
    • Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
    • Alvira, P., Tomás-Pejó, E., Ballesteros, M., and Negro, M.J. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101: 4851-4861.
    • (2010) Bioresour Technol , vol.101 , pp. 4851-4861
    • Alvira, P.1    Tomás-Pejó, E.2    Ballesteros, M.3    Negro, M.J.4
  • 3
    • 84890284546 scopus 로고    scopus 로고
    • Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
    • Ask, M., Bettiga, M., Duraiswamy, V.R., and Olsson, L. (2013) Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuel 6: 181.
    • (2013) Biotechnol Biofuel , vol.6 , pp. 181
    • Ask, M.1    Bettiga, M.2    Duraiswamy, V.R.3    Olsson, L.4
  • 5
    • 84901422880 scopus 로고    scopus 로고
    • Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
    • Gonçalves, D.L., Matsushika, A., de Sales, B.B., Goshima, T., Bon, E.P.S., and Stambuk, B.U. (2014) Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 63: 13-20.
    • (2014) Enzyme Microb Technol , vol.63 , pp. 13-20
    • Gonçalves, D.L.1    Matsushika, A.2    de Sales, B.B.3    Goshima, T.4    Bon, E.P.S.5    Stambuk, B.U.6
  • 6
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson, M., Johansson, B., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.F. (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68: 1604-1609.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 7
    • 84880978562 scopus 로고    scopus 로고
    • Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress
    • Kim, D., and Hahn, J.S. (2013) Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol 79: 5069-5077.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 5069-5077
    • Kim, D.1    Hahn, J.S.2
  • 8
    • 33749258716 scopus 로고    scopus 로고
    • Genome-wide expression analyses of adaptive response against medadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377
    • Kim, I., Yun, H., Iwahashi, H., and Jin, I. (2006) Genome-wide expression analyses of adaptive response against medadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem 41: 2305-2313.
    • (2006) Process Biochem , vol.41 , pp. 2305-2313
    • Kim, I.1    Yun, H.2    Iwahashi, H.3    Jin, I.4
  • 9
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim, S.R., Park, Y.C., Jin, Y.S., and Seo, J.H. (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31: 851-861.
    • (2013) Biotechnol Adv , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 10
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke, H.B., Thomsen, A.B., and Ahring, B.K. (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66: 10-26.
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 11
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • Koppram, R., Albers, E., and Olsson, L. (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuel 5: 32.
    • (2012) Biotechnol Biofuel , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 12
    • 84872135386 scopus 로고    scopus 로고
    • Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales
    • Koppram, R., Nielsen, F., Albers, E., Lambert, A., Wännström, S., Welin, L., etal. (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuel 6: 2.
    • (2013) Biotechnol Biofuel , vol.6 , pp. 2
    • Koppram, R.1    Nielsen, F.2    Albers, E.3    Lambert, A.4    Wännström, S.5    Welin, L.6
  • 13
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method
    • Livak, K.J., and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 14
    • 33846667838 scopus 로고    scopus 로고
    • Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
    • Martín, C., Marcet, M., Almazán, O., and Jönsson, L.J. (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98: 1767-1773.
    • (2007) Bioresour Technol , vol.98 , pp. 1767-1773
    • Martín, C.1    Marcet, M.2    Almazán, O.3    Jönsson, L.J.4
  • 15
    • 77958169154 scopus 로고    scopus 로고
    • Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
    • Mira, N.P., Becker, J.D., and Sá-Correia, I. (2010) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS A J of Integr Biol 14: 587-601.
    • (2010) OMICS A J of Integr Biol , vol.14 , pp. 587-601
    • Mira, N.P.1    Becker, J.D.2    Sá-Correia, I.3
  • 16
    • 84887366049 scopus 로고    scopus 로고
    • Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation
    • Moreno, A.D., Tomás-Pejó, E., Ibarra, D., Ballesteros, M., and Olsson, L. (2013) Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Biotechnol Biofuel 6: 160.
    • (2013) Biotechnol Biofuel , vol.6 , pp. 160
    • Moreno, A.D.1    Tomás-Pejó, E.2    Ibarra, D.3    Ballesteros, M.4    Olsson, L.5
  • 17
    • 84890116560 scopus 로고    scopus 로고
    • Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
    • Nguyen, T.T.M., Iwaki, A., Ohya, Y., and Izawa, S. (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng 117: 33-38.
    • (2014) J Biosci Bioeng , vol.117 , pp. 33-38
    • Nguyen, T.T.M.1    Iwaki, A.2    Ohya, Y.3    Izawa, S.4
  • 18
    • 34248176321 scopus 로고    scopus 로고
    • Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11
    • Okuda, N., Ninomiya, K., Takao, M., Katakura, Y., and Shioya, S. (2007) Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. J Biosci Bioeng 103: 350-357.
    • (2007) J Biosci Bioeng , vol.103 , pp. 350-357
    • Okuda, N.1    Ninomiya, K.2    Takao, M.3    Katakura, Y.4    Shioya, S.5
  • 19
    • 79955012346 scopus 로고    scopus 로고
    • Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae
    • Park, S.E., Koo, H.M., Park, Y.K., Park, S.M., Park, J.C., Lee, O.K., etal. (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102: 6033-6038.
    • (2011) Bioresour Technol , vol.102 , pp. 6033-6038
    • Park, S.E.1    Koo, H.M.2    Park, Y.K.3    Park, S.M.4    Park, J.C.5    Lee, O.K.6
  • 20
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • Petersson, A., Almeida, J.R.M., Modig, T., Karhumaa, K., Hahn-Hägerdal, B., Gorwa-Grauslund, M.F., and Lidén, G. (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23: 455-464.
    • (2006) Yeast , vol.23 , pp. 455-464
    • Petersson, A.1    Almeida, J.R.M.2    Modig, T.3    Karhumaa, K.4    Hahn-Hägerdal, B.5    Gorwa-Grauslund, M.F.6    Lidén, G.7
  • 21
    • 0035039153 scopus 로고    scopus 로고
    • Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation
    • Tao, H., Gonzalez, R., Martinez, A., Rodriguez, M., Ingram, L.O., Preston, J.F., and Shanmugam, K.T. (2001) Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183: 2979-2988.
    • (2001) J Bacteriol , vol.183 , pp. 2979-2988
    • Tao, H.1    Gonzalez, R.2    Martinez, A.3    Rodriguez, M.4    Ingram, L.O.5    Preston, J.F.6    Shanmugam, K.T.7
  • 22
    • 84892016697 scopus 로고    scopus 로고
    • Fermenting microorganisms for 2nd generation bioethanol production
    • In Min-Tze, L. (ed.). New York, USA: Nova publishers
    • Tomás-Pejó, E. (2011) Fermenting microorganisms for 2nd generation bioethanol production. In Bioprocess Science and Technology. Min-Tze, L. (ed.). New York, USA: Nova publishers, pp. 107-208.
    • (2011) Bioprocess Science and Technology , pp. 107-208
    • Tomás-Pejó, E.1
  • 23
    • 78149415548 scopus 로고    scopus 로고
    • Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes
    • Tomás-Pejó, E., Ballesteros, M., Oliva, J.M., and Olsson, L. (2010) Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol 37: 1211-1220.
    • (2010) J Ind Microbiol Biotechnol , vol.37 , pp. 1211-1220
    • Tomás-Pejó, E.1    Ballesteros, M.2    Oliva, J.M.3    Olsson, L.4
  • 24
    • 84908596985 scopus 로고    scopus 로고
    • Industrial yeasts strains for biorefinery solutions: constructing and selecting efficient barcoded xylose fermenting strains for ethanol
    • Tomás-Pejó, E., Bonander, N., and Olsson, L. (2014) Industrial yeasts strains for biorefinery solutions: constructing and selecting efficient barcoded xylose fermenting strains for ethanol. Biofuel Bioprod Bior 8: 626-634.
    • (2014) Biofuel Bioprod Bior , vol.8 , pp. 626-634
    • Tomás-Pejó, E.1    Bonander, N.2    Olsson, L.3
  • 25
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn, C., Postma, E., Scheffers, W.A., and Van Dijken, J.P. (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136: 395-403.
    • (1990) J Gen Microbiol , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.