메뉴 건너뛰기




Volumn 108, Issue 8, 2011, Pages 1776-1787

Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance

Author keywords

DNA microarray; Ethanol stress; Ethanol tolerance; Mutagenesis; SPT15

Indexed keywords

CONTROL STRAIN; DELETION MUTANTS; DNA MICRO-ARRAY; ETHANOL FERMENTATION; ETHANOL PRODUCTION; ETHANOL STRESS; ETHANOL TOLERANCE; ETHANOL YIELD; GENE KNOCKOUT; INDUSTRIAL SCALE; MUTANT ALLELES; MUTANT LIBRARIES; RICH MEDIAS; S.CEREVISIAE; SACCHAROMYCES CEREVISIAE STRAINS; SELECTED STRAINS; SPT15; TATA-BINDING PROTEINS; TRANSCRIPTIONAL MACHINERY; YEAST STRAIN;

EID: 79959248684     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.23141     Document Type: Article
Times cited : (59)

References (37)
  • 1
    • 0035370872 scopus 로고    scopus 로고
    • Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae
    • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin S. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae FEBS Lett 498: 98-103.
    • (2001) FEBS Lett , vol.498 , pp. 98-103
    • Alexandre, H.1    Ansanay-Galeote, V.2    Dequin, S.3    Blondin, S.4
  • 2
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568.
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 3
    • 70349410320 scopus 로고    scopus 로고
    • Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT 15-300 allele of the TATA-binding protein gene
    • Baerends RJ, Qiu JL, Rasmussen S, Nielsen HB, Brandt A. 2009. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT 15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75: 6055-6061.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 6055-6061
    • Baerends, R.J.1    Qiu, J.L.2    Rasmussen, S.3    Nielsen, H.B.4    Brandt, A.5
  • 4
    • 0033486113 scopus 로고    scopus 로고
    • A new regulatory domain on the TATA-binding protein
    • Cang Y, Auble DT, Prelich G. 1999. A new regulatory domain on the TATA-binding protein. EMBO J 18: 6662-6671.
    • (1999) EMBO J , vol.18 , pp. 6662-6671
    • Cang, Y.1    Auble, D.T.2    Prelich, G.3
  • 5
    • 33751311724 scopus 로고    scopus 로고
    • A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae
    • Chandler M, Stanley GA, Rogers P, Chambers P. 2004. A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae Ann Microbiol 54: 427-454.
    • (2004) Ann Microbiol , vol.54 , pp. 427-454
    • Chandler, M.1    Stanley, G.A.2    Rogers, P.3    Chambers, P.4
  • 8
    • 0024465866 scopus 로고
    • SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo
    • Eisenmann DM, Dollard C, Winston F. 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58: 1183-1191.
    • (1989) Cell , vol.58 , pp. 1183-1191
    • Eisenmann, D.M.1    Dollard, C.2    Winston, F.3
  • 9
    • 33745886222 scopus 로고    scopus 로고
    • The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols
    • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. 2006. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6: 744-750.
    • (2006) FEMS Yeast Res , vol.6 , pp. 744-750
    • Fujita, K.1    Matsuyama, A.2    Kobayashi, Y.3    Iwahashi, H.4
  • 11
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 12
    • 28244500972 scopus 로고    scopus 로고
    • Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae
    • He XJ, Fassler JS. 2005. Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae Mol Microbiol 58: 1454-1467.
    • (2005) Mol Microbiol , vol.58 , pp. 1454-1467
    • He, X.J.1    Fassler, J.S.2
  • 13
    • 34447281116 scopus 로고    scopus 로고
    • Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis
    • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S. 2007. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131: 34-44.
    • (2007) J Biotechnol , vol.131 , pp. 34-44
    • Hirasawa, T.1    Yoshikawa, K.2    Nakakura, Y.3    Nagahisa, K.4    Furusawa, C.5    Katakura, Y.6    Shimizu, H.7    Shioya, S.8
  • 14
    • 77955430660 scopus 로고    scopus 로고
    • Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering
    • Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM, Kweon DH, Park JC, Jin YS. 2010. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149: 52-59.
    • (2010) J Biotechnol , vol.149 , pp. 52-59
    • Hong, M.E.1    Lee, K.S.2    Yu, B.J.3    Sung, Y.J.4    Park, S.M.5    Koo, H.M.6    Kweon, D.H.7    Park, J.C.8    Jin, Y.S.9
  • 15
    • 65049084532 scopus 로고    scopus 로고
    • Novel methods of genome shuffling in Saccharomyces cerevisiae
    • Hou L. 2009. Novel methods of genome shuffling in Saccharomyces cerevisiae Biotechnol Lett 31: 671-677.
    • (2009) Biotechnol Lett , vol.31 , pp. 671-677
    • Hou, L.1
  • 16
    • 67249161275 scopus 로고    scopus 로고
    • Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains
    • Hou L, Cao X, Wang C, Lu M. 2009. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Lett Appl Microbiol 49: 14-19.
    • (2009) Lett Appl Microbiol , vol.49 , pp. 14-19
    • Hou, L.1    Cao, X.2    Wang, C.3    Lu, M.4
  • 18
    • 77955663173 scopus 로고    scopus 로고
    • Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
    • Ma M, Liu ZL. 2010a. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae Appl Microbiol Biotechnol 87: 829-845.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 829-845
    • Ma, M.1    Liu, Z.L.2
  • 19
    • 77953254169 scopus 로고    scopus 로고
    • Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae
    • Ma M, Liu ZL. 2010b. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae BMC Microbiol 10: 169-188.
    • (2010) BMC Microbiol , vol.10 , pp. 169-188
    • Ma, M.1    Liu, Z.L.2
  • 21
    • 1542270166 scopus 로고    scopus 로고
    • Autoregulation of the HAC1 gene is required for sustained activation of the yeast unfolded protein response
    • Ogawa N, Mori K. 2004. Autoregulation of the HAC1 gene is required for sustained activation of the yeast unfolded protein response. Genes Cells 9: 95-104.
    • (2004) Genes Cells , vol.9 , pp. 95-104
    • Ogawa, N.1    Mori, K.2
  • 23
    • 19944427636 scopus 로고    scopus 로고
    • Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation for transcript profiling
    • Oh KS, Kwon O, Oh YW, Sohn MJ, Jung S, Kim YK, Kim MG, Rhee SK, Gellissen G, Kang HA. 2004. Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation for transcript profiling. J Microbiol Biotechnol 14: 1239-1248.
    • (2004) J Microbiol Biotechnol , vol.14 , pp. 1239-1248
    • Oh, K.S.1    Kwon, O.2    Oh, Y.W.3    Sohn, M.J.4    Jung, S.5    Kim, Y.K.6    Kim, M.G.7    Rhee, S.K.8    Gellissen, G.9    Kang, H.A.10
  • 24
    • 35148875056 scopus 로고    scopus 로고
    • Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems
    • Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gellissen G, Kang HA. 2007. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 73: 5990-6000.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 5990-6000
    • Park, J.N.1    Sohn, M.J.2    Oh, D.B.3    Kwon, O.4    Rhee, S.K.5    Hur, C.G.6    Lee, S.Y.7    Gellissen, G.8    Kang, H.A.9
  • 26
    • 0346882674 scopus 로고    scopus 로고
    • Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation
    • Rossignol T, Dulau L, Julien A, Blondin B. 2003. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20: 1369-1385.
    • (2003) Yeast , vol.20 , pp. 1369-1385
    • Rossignol, T.1    Dulau, L.2    Julien, A.3    Blondin, B.4
  • 28
    • 33847206730 scopus 로고    scopus 로고
    • Genome-wide expression profiles of sake brewing yeast under shaking and static conditions
    • Shobayashi M, Ukena E, Fujii T, Iefuji H. 2007. Genome-wide expression profiles of sake brewing yeast under shaking and static conditions. Biosci Biotechnol Biochem 71: 323-335.
    • (2007) Biosci Biotechnol Biochem , vol.71 , pp. 323-335
    • Shobayashi, M.1    Ukena, E.2    Fujii, T.3    Iefuji, H.4
  • 29
    • 70149116132 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol
    • Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I. 2009. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75: 5761-5772.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 5761-5772
    • Teixeira, M.C.1    Raposo, L.R.2    Mira, N.P.3    Lourenco, A.B.4    Sa-Correia, I.5
  • 30
    • 33646336879 scopus 로고    scopus 로고
    • Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress
    • van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23: 351-359.
    • (2006) Yeast , vol.23 , pp. 351-359
    • van Voorst, F.1    Houghton-Larsen, J.2    Jonson, L.3    Kielland-Brandt, M.C.4    Brandt, A.5
  • 31
    • 17644369252 scopus 로고    scopus 로고
    • Quantitative analysis of wine yeast gene expression profiles under winemaking conditions
    • Varela CJ, Cardenas J, Melo F, Agosin E. 2005. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22: 369-383.
    • (2005) Yeast , vol.22 , pp. 369-383
    • Varela, C.J.1    Cardenas, J.2    Melo, F.3    Agosin, E.4
  • 32
    • 35348934778 scopus 로고    scopus 로고
    • Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11
    • Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H. 2007. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 104: 163-170.
    • (2007) J Biosci Bioeng , vol.104 , pp. 163-170
    • Watanabe, M.1    Tamura, K.2    Magbanua, J.P.3    Takano, K.4    Kitamoto, K.5    Kitagaki, H.6    Akao, T.7    Shimoi, H.8
  • 34
    • 47049121708 scopus 로고    scopus 로고
    • Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae
    • Yamamoto N, Maeda Y, Ikeda A, Sakurai H. 2008. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae Eukaryot Cell 7: 783-790.
    • (2008) Eukaryot Cell , vol.7 , pp. 783-790
    • Yamamoto, N.1    Maeda, Y.2    Ikeda, A.3    Sakurai, H.4
  • 35
    • 34447530234 scopus 로고    scopus 로고
    • Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae
    • Yazawa H, Iwahashi H, Uemura H. 2007. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae Yeast 24: 551-560.
    • (2007) Yeast , vol.24 , pp. 551-560
    • Yazawa, H.1    Iwahashi, H.2    Uemura, H.3
  • 36
    • 58149337066 scopus 로고    scopus 로고
    • Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
    • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. 2009. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae FEMS Yeast Res 9: 32-44.
    • (2009) FEMS Yeast Res , vol.9 , pp. 32-44
    • Yoshikawa, K.1    Tanaka, T.2    Furusawa, C.3    Nagahisa, K.4    Hirasawa, T.5    Shimizu, H.6
  • 37
    • 70349775063 scopus 로고    scopus 로고
    • Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
    • Zhao XQ, Bai FW. 2009. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144: 23-30.
    • (2009) J Biotechnol , vol.144 , pp. 23-30
    • Zhao, X.Q.1    Bai, F.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.