메뉴 건너뛰기




Volumn 13, Issue 3, 2013, Pages 312-321

Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis

Author keywords

Ethanol fermentation; Metabolic engineering; Pentose sugars; Yeast

Indexed keywords

ALCOHOL; ALDEHYDE REDUCTASE; GLUCOSE; OXIDOREDUCTASE; UNCLASSIFIED DRUG; XYLITOL DEHYDROGENASE; XYLOSE; XYLULOKINASE;

EID: 84876090690     PISSN: 15671356     EISSN: 15671364     Source Type: Journal    
DOI: 10.1111/1567-1364.12036     Document Type: Article
Times cited : (40)

References (57)
  • 2
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Available at
    • Bengtsson O, Hahn-Hägerdal B & Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2: Available at http://dx.doi.org/10.1186/1754-6834-2-9
    • (2009) Biotechnol Biofuels , vol.2
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 3
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D, Boles E & Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75: 2304-2311.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 4
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J & Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8: 102-111.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 5
    • 0034214335 scopus 로고    scopus 로고
    • An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
    • van Dijken JP, Bauer J, Brambilla L et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706-714.
    • (2000) Enzyme Microb Technol , vol.26 , pp. 706-714
    • van Dijken, J.P.1    Bauer, J.2    Brambilla, L.3
  • 6
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF & Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66: 3381-3386.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 7
    • 0035812350 scopus 로고    scopus 로고
    • The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
    • Eliasson A, Hofmeyr J-HS, Pedler S & Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29: 288-297.
    • (2001) Enzyme Microb Technol , vol.29 , pp. 288-297
    • Eliasson, A.1    Hofmeyr, J.-H.2    Pedler, S.3    Hahn-Hägerdal, B.4
  • 8
    • 34247580875 scopus 로고    scopus 로고
    • 25 Yeast genetic strain and plasmid collections
    • (Stansfield I & Stark MJR, eds) -. Academic Press, London.
    • Entian K-D & Kötter P (2007) 25 Yeast genetic strain and plasmid collections. Methods in Microbiology, Vol. 36 (Stansfield I & Stark MJR, eds), pp. 629-666. Academic Press, London.
    • (2007) Methods in Microbiology , vol.36 , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 9
    • 82455209009 scopus 로고    scopus 로고
    • Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
    • Ha S-J, Kim SR, Choi J-H, Park M & Jin Y-S (2011) Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl Microbiol Biotechnol 92: 77-84.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 77-84
    • Ha, S.-J.1    Kim, S.R.2    Choi, J.-H.3    Park, M.4    Jin, Y.-S.5
  • 10
    • 34248559599 scopus 로고    scopus 로고
    • Gene splicing and mutagenesis by PCR-driven overlap extension
    • Heckman KL & Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protocols 2: 924-932.
    • (2007) Nat Protocols , vol.2 , pp. 924-932
    • Heckman, K.L.1    Pease, L.R.2
  • 11
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
    • Ho NWY, Chen Z & Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64: 1852-1859.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 1852-1859
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3
  • 12
    • 0032607356 scopus 로고    scopus 로고
    • Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol
    • Ho NW, Chen Z, Brainard AP & Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65: 163-192.
    • (1999) Adv Biochem Eng Biotechnol , vol.65 , pp. 163-192
    • Ho, N.W.1    Chen, Z.2    Brainard, A.P.3    Sedlak, M.4
  • 13
    • 0008406693 scopus 로고
    • Enzymatic isomerization of D-xylose to D-xylulose
    • Hochster RM & Watson RW (1954) Enzymatic isomerization of D-xylose to D-xylulose. Arch Biochem Biophys 48: 120-129.
    • (1954) Arch Biochem Biophys , vol.48 , pp. 120-129
    • Hochster, R.M.1    Watson, R.W.2
  • 14
    • 0026548118 scopus 로고
    • A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
    • Hosaka K, Nikawa J-I, Kodaki T & Yamashita S (1992) A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111: 352-358.
    • (1992) J Biochem , vol.111 , pp. 352-358
    • Hosaka, K.1    Nikawa, J.-I.2    Kodaki, T.3    Yamashita, S.4
  • 15
    • 62949084480 scopus 로고    scopus 로고
    • Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Hou J, Vemuri GN, Bao X & Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82: 909-919.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 909-919
    • Hou, J.1    Vemuri, G.N.2    Bao, X.3    Olsson, L.4
  • 17
    • 0038748280 scopus 로고    scopus 로고
    • Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Jin YS & Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 106: 277-286.
    • (2003) Appl Biochem Biotechnol , vol.106 , pp. 277-286
    • Jin, Y.S.1    Jeffries, T.W.2
  • 18
    • 0033826838 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis
    • Jin YS, Lee TH, Choi YD, Ryu YW & Seo JH (2000) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. J Micorbiol Biotechnol 10: 564-567.
    • (2000) J Micorbiol Biotechnol , vol.10 , pp. 564-567
    • Jin, Y.S.1    Lee, T.H.2    Choi, Y.D.3    Ryu, Y.W.4    Seo, J.H.5
  • 19
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • Jin YS, Ni H, Laplaza JM & Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69: 495-503.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 20
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin YS, Laplaza JM & Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70: 6816-6825.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 21
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin YS, Alper H, Yang YT & Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71: 8249-8256.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 8249-8256
    • Jin, Y.S.1    Alper, H.2    Yang, Y.T.3    Stephanopoulos, G.4
  • 22
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
    • Johansson B, Christensson C, Hobley T & Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67: 4249-4255.
    • (2001) Appl Environ Microbiol , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hägerdal, B.4
  • 23
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa K, Hahn-Hägerdal B & Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 24
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Available at
    • Karhumaa K, Sanchez RG, Hahn-Hägerdal B & Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6: Available at http://dx.doi.org/10.1186/1475-2859-6-5
    • (2007) Microb Cell Fact , vol.6
    • Karhumaa, K.1    Sanchez, R.G.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 25
    • 0036842385 scopus 로고    scopus 로고
    • Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae
    • Kim MD, Jeun YS, Kim SG, Ryu YW & Seo JH (2002) Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzyme Microb Technol 31: 862-866.
    • (2002) Enzyme Microb Technol , vol.31 , pp. 862-866
    • Kim, M.D.1    Jeun, Y.S.2    Kim, S.G.3    Ryu, Y.W.4    Seo, J.H.5
  • 26
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim SR, Ha S-J, Kong II & Jin Y-S (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14: 336-343.
    • (2012) Metab Eng , vol.14 , pp. 336-343
    • Kim, S.R.1    Ha, S.-J.2    Kong, I.I.3    Jin, Y.-S.4
  • 27
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kötter P & Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 776-783.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 28
    • 0025633861 scopus 로고
    • Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
    • Kötter P, Amore R, Hollenberg CP & Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18: 493-500.
    • (1990) Curr Genet , vol.18 , pp. 493-500
    • Kötter, P.1    Amore, R.2    Hollenberg, C.P.3    Ciriacy, M.4
  • 29
    • 84859499872 scopus 로고    scopus 로고
    • Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae
    • Krahulec S, Klimacek M & Nidetzky B (2012) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158: 192-202.
    • (2012) J Biotechnol , vol.158 , pp. 192-202
    • Krahulec, S.1    Klimacek, M.2    Nidetzky, B.3
  • 32
    • 0001288994 scopus 로고
    • The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol
    • Ligthelm ME, Prior BA & du Preez JC (1988) The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol. Appl Microbiol Biotechnol 28: 63-68.
    • (1988) Appl Microbiol Biotechnol , vol.28 , pp. 63-68
    • Ligthelm, M.E.1    Prior, B.A.2    du Preez, J.C.3
  • 33
    • 0242669383 scopus 로고    scopus 로고
    • Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
    • Lönn A, Träff-Bjerre KL, Cordero Otero RR, Van Zyl WH & Hahn-Hägerdal B (2003) Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 32: 567-573.
    • (2003) Enzyme Microb Technol , vol.32 , pp. 567-573
    • Lönn, A.1    Träff-Bjerre, K.L.2    Cordero Otero, R.R.3    Van Zyl, W.H.4    Hahn-Hägerdal, B.5
  • 34
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS & Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82: 1067-1078.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6    Fukuda, H.7    Bisaria, V.S.8    Kondo, A.9
  • 35
    • 0033118507 scopus 로고    scopus 로고
    • Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1
    • Meinander NQ, Boels I & Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68: 79-87.
    • (1999) Bioresour Technol , vol.68 , pp. 79-87
    • Meinander, N.Q.1    Boels, I.2    Hahn-Hägerdal, B.3
  • 36
    • 80052037221 scopus 로고    scopus 로고
    • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
    • Parachin NS, Bergdahl B, van Niel EWJ & Gorwa-Grauslund MF (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 13: 508-517.
    • (2011) Metab Eng , vol.13 , pp. 508-517
    • Parachin, N.S.1    Bergdahl, B.2    van Niel, E.W.J.3    Gorwa-Grauslund, M.F.4
  • 37
    • 26844452043 scopus 로고    scopus 로고
    • Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions
    • Petschacher B & Nidetzky B (2005) Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71: 6390-6393.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 6390-6393
    • Petschacher, B.1    Nidetzky, B.2
  • 38
    • 0032769768 scopus 로고    scopus 로고
    • Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase
    • Richard P, Toivari MH & Penttilä M (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457: 135-138.
    • (1999) FEBS Lett , vol.457 , pp. 135-138
    • Richard, P.1    Toivari, M.H.2    Penttilä, M.3
  • 39
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist D, Hahn-Hägerdal B & Bettiga M (2010a) Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 76: 7796-7802.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 40
    • 2442641770 scopus 로고    scopus 로고
    • Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    • Sonderegger M, Jeppsson M, Hahn-Hägerdal B & Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70: 2307-2317.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2307-2317
    • Sonderegger, M.1    Jeppsson, M.2    Hahn-Hägerdal, B.3    Sauer, U.4
  • 42
    • 38849117875 scopus 로고    scopus 로고
    • Development and characterisation of a recombinant Saccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties
    • Thanvanthri Gururajan V, Van Rensburg P, Hahn-Hägerdal B, Pretorius IS & Cordero Otero RR (2007) Development and characterisation of a recombinant Saccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties. Ann Microbiol 57: 599-607.
    • (2007) Ann Microbiol , vol.57 , pp. 599-607
    • Thanvanthri Gururajan, V.1    Van Rensburg, P.2    Hahn-Hägerdal, B.3    Pretorius, I.S.4    Cordero Otero, R.R.5
  • 43
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
    • Toivari MH, Aristidou A, Ruohonen L & Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3: 236-249.
    • (2001) Metab Eng , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttilä, M.4
  • 45
    • 0036799466 scopus 로고    scopus 로고
    • Putative xylose and arabinose reductases in Saccharomyces cerevisiae
    • Träff KL, Jönsson LJ & Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19: 1233-1241.
    • (2002) Yeast , vol.19 , pp. 1233-1241
    • Träff, K.L.1    Jönsson, L.J.2    Hahn-Hägerdal, B.3
  • 46
    • 0035650510 scopus 로고    scopus 로고
    • Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
    • Träff-Bjerre KL, Cordero RRO, Van Zyl WH & Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67: 5668-5674.
    • (2001) Appl Environ Microbiol , vol.67 , pp. 5668-5674
    • Träff-Bjerre, K.L.1    Cordero, R.R.O.2    Van Zyl, W.H.3    Hahn-Hägerdal, B.4
  • 47
    • 1242284461 scopus 로고    scopus 로고
    • Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae
    • Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B & Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21: 141-150.
    • (2004) Yeast , vol.21 , pp. 141-150
    • Träff-Bjerre, K.L.1    Jeppsson, M.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 48
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
    • Van Vleet JH, Jeffries TW & Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab Eng 10: 360-369.
    • (2008) Metab Eng , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 49
    • 0027300732 scopus 로고
    • Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae
    • Van Zyl C, Prior BA, Kilian SG & Brandt EV (1993) Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol 59: 1487-1494.
    • (1993) Appl Environ Microbiol , vol.59 , pp. 1487-1494
    • Van Zyl, C.1    Prior, B.A.2    Kilian, S.G.3    Brandt, E.V.4
  • 50
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R, Londesborough J, Penttilä M & Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69: 5892-5897.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 51
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom CF, Cordero Otero RR, Van Zyl WH, Hahn-Hägerdal B & Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69: 740-746.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    Van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jönsson, L.J.5
  • 52
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M, Hallborn J, Penttila M, Keranen S & Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61: 4184-4190.
    • (1995) Appl Environ Microbiol , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttila, M.3    Keranen, S.4    Hahn-Hägerdal, B.5
  • 53
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L & Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62: 4648-4651.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bülow, L.5    Hahn-Hägerdal, B.6
  • 54
    • 0030772483 scopus 로고    scopus 로고
    • Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation
    • Walfridsson M, Anderlund M, Bao X & Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48: 218-224.
    • (1997) Appl Microbiol Biotechnol , vol.48 , pp. 218-224
    • Walfridsson, M.1    Anderlund, M.2    Bao, X.3    Hahn-Hägerdal, B.4
  • 55
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
    • Watanabe S, Kodaki T & Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280: 10340-10349.
    • (2005) J Biol Chem , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3
  • 56
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
    • Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T & Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153: 3044-3054.
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 57
    • 84863182778 scopus 로고    scopus 로고
    • Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase
    • Zhang GC, Liu JJ & Ding WT (2012) Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 78: 1081-1086.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 1081-1086
    • Zhang, G.C.1    Liu, J.J.2    Ding, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.