-
1
-
-
0022697977
-
Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae
-
Batt CA, Carvallo S, Easson DD Jr, Akedo M & Sinskey AJ (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28: 549-553.
-
(1986)
Biotechnol Bioeng
, vol.28
, pp. 549-553
-
-
Batt, C.A.1
Carvallo, S.2
Easson Jr, D.D.3
Akedo, M.4
Sinskey, A.J.5
-
2
-
-
66749091546
-
Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
-
Available at
-
Bengtsson O, Hahn-Hägerdal B & Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2: Available at http://dx.doi.org/10.1186/1754-6834-2-9
-
(2009)
Biotechnol Biofuels
, vol.2
-
-
Bengtsson, O.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
3
-
-
64749094343
-
Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
-
Brat D, Boles E & Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75: 2304-2311.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 2304-2311
-
-
Brat, D.1
Boles, E.2
Wiedemann, B.3
-
4
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C, Regenberg B, Förster J & Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8: 102-111.
-
(2006)
Metab Eng
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
5
-
-
0034214335
-
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
-
van Dijken JP, Bauer J, Brambilla L et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706-714.
-
(2000)
Enzyme Microb Technol
, vol.26
, pp. 706-714
-
-
van Dijken, J.P.1
Bauer, J.2
Brambilla, L.3
-
6
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
-
Eliasson A, Christensson C, Wahlbom CF & Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66: 3381-3386.
-
(2000)
Appl Environ Microbiol
, vol.66
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
Hahn-Hägerdal, B.4
-
7
-
-
0035812350
-
The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae
-
Eliasson A, Hofmeyr J-HS, Pedler S & Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29: 288-297.
-
(2001)
Enzyme Microb Technol
, vol.29
, pp. 288-297
-
-
Eliasson, A.1
Hofmeyr, J.-H.2
Pedler, S.3
Hahn-Hägerdal, B.4
-
8
-
-
34247580875
-
25 Yeast genetic strain and plasmid collections
-
(Stansfield I & Stark MJR, eds) -. Academic Press, London.
-
Entian K-D & Kötter P (2007) 25 Yeast genetic strain and plasmid collections. Methods in Microbiology, Vol. 36 (Stansfield I & Stark MJR, eds), pp. 629-666. Academic Press, London.
-
(2007)
Methods in Microbiology
, vol.36
, pp. 629-666
-
-
Entian, K.-D.1
Kötter, P.2
-
9
-
-
82455209009
-
Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
-
Ha S-J, Kim SR, Choi J-H, Park M & Jin Y-S (2011) Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl Microbiol Biotechnol 92: 77-84.
-
(2011)
Appl Microbiol Biotechnol
, vol.92
, pp. 77-84
-
-
Ha, S.-J.1
Kim, S.R.2
Choi, J.-H.3
Park, M.4
Jin, Y.-S.5
-
10
-
-
34248559599
-
Gene splicing and mutagenesis by PCR-driven overlap extension
-
Heckman KL & Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protocols 2: 924-932.
-
(2007)
Nat Protocols
, vol.2
, pp. 924-932
-
-
Heckman, K.L.1
Pease, L.R.2
-
11
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
-
Ho NWY, Chen Z & Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64: 1852-1859.
-
(1998)
Appl Environ Microbiol
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.Y.1
Chen, Z.2
Brainard, A.P.3
-
12
-
-
0032607356
-
Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol
-
Ho NW, Chen Z, Brainard AP & Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65: 163-192.
-
(1999)
Adv Biochem Eng Biotechnol
, vol.65
, pp. 163-192
-
-
Ho, N.W.1
Chen, Z.2
Brainard, A.P.3
Sedlak, M.4
-
13
-
-
0008406693
-
Enzymatic isomerization of D-xylose to D-xylulose
-
Hochster RM & Watson RW (1954) Enzymatic isomerization of D-xylose to D-xylulose. Arch Biochem Biophys 48: 120-129.
-
(1954)
Arch Biochem Biophys
, vol.48
, pp. 120-129
-
-
Hochster, R.M.1
Watson, R.W.2
-
14
-
-
0026548118
-
A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
-
Hosaka K, Nikawa J-I, Kodaki T & Yamashita S (1992) A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111: 352-358.
-
(1992)
J Biochem
, vol.111
, pp. 352-358
-
-
Hosaka, K.1
Nikawa, J.-I.2
Kodaki, T.3
Yamashita, S.4
-
15
-
-
62949084480
-
Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
-
Hou J, Vemuri GN, Bao X & Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82: 909-919.
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 909-919
-
-
Hou, J.1
Vemuri, G.N.2
Bao, X.3
Olsson, L.4
-
17
-
-
0038748280
-
Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
-
Jin YS & Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 106: 277-286.
-
(2003)
Appl Biochem Biotechnol
, vol.106
, pp. 277-286
-
-
Jin, Y.S.1
Jeffries, T.W.2
-
18
-
-
0033826838
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis
-
Jin YS, Lee TH, Choi YD, Ryu YW & Seo JH (2000) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis. J Micorbiol Biotechnol 10: 564-567.
-
(2000)
J Micorbiol Biotechnol
, vol.10
, pp. 564-567
-
-
Jin, Y.S.1
Lee, T.H.2
Choi, Y.D.3
Ryu, Y.W.4
Seo, J.H.5
-
19
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
-
Jin YS, Ni H, Laplaza JM & Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69: 495-503.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.W.4
-
20
-
-
8744293844
-
Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
-
Jin YS, Laplaza JM & Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70: 6816-6825.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 6816-6825
-
-
Jin, Y.S.1
Laplaza, J.M.2
Jeffries, T.W.3
-
21
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin YS, Alper H, Yang YT & Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71: 8249-8256.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 8249-8256
-
-
Jin, Y.S.1
Alper, H.2
Yang, Y.T.3
Stephanopoulos, G.4
-
22
-
-
0035458838
-
Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
-
Johansson B, Christensson C, Hobley T & Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67: 4249-4255.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 4249-4255
-
-
Johansson, B.1
Christensson, C.2
Hobley, T.3
Hahn-Hägerdal, B.4
-
23
-
-
17644373035
-
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
-
Karhumaa K, Hahn-Hägerdal B & Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359-368.
-
(2005)
Yeast
, vol.22
, pp. 359-368
-
-
Karhumaa, K.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
24
-
-
33847202270
-
Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
-
Available at
-
Karhumaa K, Sanchez RG, Hahn-Hägerdal B & Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6: Available at http://dx.doi.org/10.1186/1475-2859-6-5
-
(2007)
Microb Cell Fact
, vol.6
-
-
Karhumaa, K.1
Sanchez, R.G.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
25
-
-
0036842385
-
Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae
-
Kim MD, Jeun YS, Kim SG, Ryu YW & Seo JH (2002) Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzyme Microb Technol 31: 862-866.
-
(2002)
Enzyme Microb Technol
, vol.31
, pp. 862-866
-
-
Kim, M.D.1
Jeun, Y.S.2
Kim, S.G.3
Ryu, Y.W.4
Seo, J.H.5
-
26
-
-
84862231336
-
High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
-
Kim SR, Ha S-J, Kong II & Jin Y-S (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14: 336-343.
-
(2012)
Metab Eng
, vol.14
, pp. 336-343
-
-
Kim, S.R.1
Ha, S.-J.2
Kong, I.I.3
Jin, Y.-S.4
-
27
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kötter P & Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 776-783.
-
(1993)
Appl Microbiol Biotechnol
, vol.38
, pp. 776-783
-
-
Kötter, P.1
Ciriacy, M.2
-
28
-
-
0025633861
-
Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant
-
Kötter P, Amore R, Hollenberg CP & Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18: 493-500.
-
(1990)
Curr Genet
, vol.18
, pp. 493-500
-
-
Kötter, P.1
Amore, R.2
Hollenberg, C.P.3
Ciriacy, M.4
-
29
-
-
84859499872
-
Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae
-
Krahulec S, Klimacek M & Nidetzky B (2012) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158: 192-202.
-
(2012)
J Biotechnol
, vol.158
, pp. 192-202
-
-
Krahulec, S.1
Klimacek, M.2
Nidetzky, B.3
-
30
-
-
12144288423
-
High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
-
Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, De Laat WTAM, Den Ridder JJJ, Op Den Camp HJM, Van Dijken JP & Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4: 69-78.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 69-78
-
-
Kuyper, M.1
Harhangi, H.R.2
Stave, A.K.3
Winkler, A.A.4
Jetten, M.S.M.5
De Laat, W.T.A.M.6
Den Ridder, J.J.J.7
Op Den Camp, H.J.M.8
Van Dijken, J.P.9
Pronk, J.T.10
-
31
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
-
Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, Van Dijken JP & Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5: 399-409.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.P.2
Toirkens, M.J.3
Almering, M.J.H.4
Winkler, A.A.5
Van Dijken, J.P.6
Pronk, J.T.7
-
32
-
-
0001288994
-
The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol
-
Ligthelm ME, Prior BA & du Preez JC (1988) The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol. Appl Microbiol Biotechnol 28: 63-68.
-
(1988)
Appl Microbiol Biotechnol
, vol.28
, pp. 63-68
-
-
Ligthelm, M.E.1
Prior, B.A.2
du Preez, J.C.3
-
33
-
-
0242669383
-
Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
-
Lönn A, Träff-Bjerre KL, Cordero Otero RR, Van Zyl WH & Hahn-Hägerdal B (2003) Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 32: 567-573.
-
(2003)
Enzyme Microb Technol
, vol.32
, pp. 567-573
-
-
Lönn, A.1
Träff-Bjerre, K.L.2
Cordero Otero, R.R.3
Van Zyl, W.H.4
Hahn-Hägerdal, B.5
-
34
-
-
63949086429
-
Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
-
Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS & Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82: 1067-1078.
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 1067-1078
-
-
Madhavan, A.1
Tamalampudi, S.2
Ushida, K.3
Kanai, D.4
Katahira, S.5
Srivastava, A.6
Fukuda, H.7
Bisaria, V.S.8
Kondo, A.9
-
35
-
-
0033118507
-
Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1
-
Meinander NQ, Boels I & Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68: 79-87.
-
(1999)
Bioresour Technol
, vol.68
, pp. 79-87
-
-
Meinander, N.Q.1
Boels, I.2
Hahn-Hägerdal, B.3
-
36
-
-
80052037221
-
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
-
Parachin NS, Bergdahl B, van Niel EWJ & Gorwa-Grauslund MF (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 13: 508-517.
-
(2011)
Metab Eng
, vol.13
, pp. 508-517
-
-
Parachin, N.S.1
Bergdahl, B.2
van Niel, E.W.J.3
Gorwa-Grauslund, M.F.4
-
37
-
-
26844452043
-
Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions
-
Petschacher B & Nidetzky B (2005) Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71: 6390-6393.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 6390-6393
-
-
Petschacher, B.1
Nidetzky, B.2
-
38
-
-
0032769768
-
Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase
-
Richard P, Toivari MH & Penttilä M (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457: 135-138.
-
(1999)
FEBS Lett
, vol.457
, pp. 135-138
-
-
Richard, P.1
Toivari, M.H.2
Penttilä, M.3
-
39
-
-
78650327471
-
Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
-
Runquist D, Hahn-Hägerdal B & Bettiga M (2010a) Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol 76: 7796-7802.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 7796-7802
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
40
-
-
2442641770
-
Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
-
Sonderegger M, Jeppsson M, Hahn-Hägerdal B & Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70: 2307-2317.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 2307-2317
-
-
Sonderegger, M.1
Jeppsson, M.2
Hahn-Hägerdal, B.3
Sauer, U.4
-
42
-
-
38849117875
-
Development and characterisation of a recombinant Saccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties
-
Thanvanthri Gururajan V, Van Rensburg P, Hahn-Hägerdal B, Pretorius IS & Cordero Otero RR (2007) Development and characterisation of a recombinant Saccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties. Ann Microbiol 57: 599-607.
-
(2007)
Ann Microbiol
, vol.57
, pp. 599-607
-
-
Thanvanthri Gururajan, V.1
Van Rensburg, P.2
Hahn-Hägerdal, B.3
Pretorius, I.S.4
Cordero Otero, R.R.5
-
43
-
-
0034878314
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability
-
Toivari MH, Aristidou A, Ruohonen L & Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3: 236-249.
-
(2001)
Metab Eng
, vol.3
, pp. 236-249
-
-
Toivari, M.H.1
Aristidou, A.2
Ruohonen, L.3
Penttilä, M.4
-
45
-
-
0036799466
-
Putative xylose and arabinose reductases in Saccharomyces cerevisiae
-
Träff KL, Jönsson LJ & Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19: 1233-1241.
-
(2002)
Yeast
, vol.19
, pp. 1233-1241
-
-
Träff, K.L.1
Jönsson, L.J.2
Hahn-Hägerdal, B.3
-
46
-
-
0035650510
-
Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
-
Träff-Bjerre KL, Cordero RRO, Van Zyl WH & Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67: 5668-5674.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 5668-5674
-
-
Träff-Bjerre, K.L.1
Cordero, R.R.O.2
Van Zyl, W.H.3
Hahn-Hägerdal, B.4
-
47
-
-
1242284461
-
Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae
-
Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B & Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21: 141-150.
-
(2004)
Yeast
, vol.21
, pp. 141-150
-
-
Träff-Bjerre, K.L.1
Jeppsson, M.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
48
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
-
Van Vleet JH, Jeffries TW & Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab Eng 10: 360-369.
-
(2008)
Metab Eng
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
49
-
-
0027300732
-
Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae
-
Van Zyl C, Prior BA, Kilian SG & Brandt EV (1993) Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol 59: 1487-1494.
-
(1993)
Appl Environ Microbiol
, vol.59
, pp. 1487-1494
-
-
Van Zyl, C.1
Prior, B.A.2
Kilian, S.G.3
Brandt, E.V.4
-
50
-
-
0142136153
-
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
-
Verho R, Londesborough J, Penttilä M & Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69: 5892-5897.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 5892-5897
-
-
Verho, R.1
Londesborough, J.2
Penttilä, M.3
Richard, P.4
-
51
-
-
0347297600
-
Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
-
Wahlbom CF, Cordero Otero RR, Van Zyl WH, Hahn-Hägerdal B & Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69: 740-746.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 740-746
-
-
Wahlbom, C.F.1
Cordero Otero, R.R.2
Van Zyl, W.H.3
Hahn-Hägerdal, B.4
Jönsson, L.J.5
-
52
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson M, Hallborn J, Penttila M, Keranen S & Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61: 4184-4190.
-
(1995)
Appl Environ Microbiol
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttila, M.3
Keranen, S.4
Hahn-Hägerdal, B.5
-
53
-
-
0029909726
-
Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
-
Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L & Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62: 4648-4651.
-
(1996)
Appl Environ Microbiol
, vol.62
, pp. 4648-4651
-
-
Walfridsson, M.1
Bao, X.2
Anderlund, M.3
Lilius, G.4
Bülow, L.5
Hahn-Hägerdal, B.6
-
54
-
-
0030772483
-
Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation
-
Walfridsson M, Anderlund M, Bao X & Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48: 218-224.
-
(1997)
Appl Microbiol Biotechnol
, vol.48
, pp. 218-224
-
-
Walfridsson, M.1
Anderlund, M.2
Bao, X.3
Hahn-Hägerdal, B.4
-
55
-
-
15544372361
-
Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
-
Watanabe S, Kodaki T & Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280: 10340-10349.
-
(2005)
J Biol Chem
, vol.280
, pp. 10340-10349
-
-
Watanabe, S.1
Kodaki, T.2
Makino, K.3
-
56
-
-
34948882785
-
Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
-
Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T & Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153: 3044-3054.
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
Abu Saleh, A.2
Pack, S.P.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
57
-
-
84863182778
-
Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase
-
Zhang GC, Liu JJ & Ding WT (2012) Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 78: 1081-1086.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 1081-1086
-
-
Zhang, G.C.1
Liu, J.J.2
Ding, W.T.3
|