메뉴 건너뛰기




Volumn 6, Issue 3, 2011, Pages 286-299

Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae

Author keywords

Contamination; Ethanol; Inhibitors; Pentose fermentation; Saccharomyces cerevisiae

Indexed keywords

AGRICULTURAL RESIDUE; ENERGY CROPS; ETHANOL PRODUCTION; FOREST RESIDUE; GENETIC MODIFICATIONS; HEMICELLULOSE FRACTION; INDUSTRIAL PROCESSS; INHIBITORS; INHIBITORY EFFECT; LIGNOCELLULOSIC FEEDSTOCKS; MICROBIOTAS; PENTOSE FERMENTATION; PHENOLICS; S.CEREVISIAE; SACCHAROMYCES CEREVISIAE; WEAK ACIDS; YEAST SACCHAROMYCES CEREVISIAE;

EID: 79952181277     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201000301     Document Type: Review
Times cited : (100)

References (121)
  • 2
    • 0028953195 scopus 로고
    • Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis.
    • Zhang, M., Eddy, C., Deanda, K., Finkestein, M., Picataggio, S., Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995, 267, 240-243.
    • (1995) Science , vol.267 , pp. 240-243
    • Zhang, M.1    Eddy, C.2    Deanda, K.3    Finkestein, M.4    Picataggio, S.5
  • 3
    • 0026022099 scopus 로고
    • Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures.
    • Lacis, L. S., Lawford, H. G., Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures. Appl. Environ. Microbiol. 1991, 57, 579-585.
    • (1991) Appl. Environ. Microbiol. , vol.57 , pp. 579-585
    • Lacis, L.S.1    Lawford, H.G.2
  • 4
    • 52949139048 scopus 로고    scopus 로고
    • Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.
    • Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S. et al., Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13769-13774.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 13769-13774
    • Shaw, A.J.1    Podkaminer, K.K.2    Desai, S.G.3    Bardsley, J.S.4
  • 5
    • 0031002602 scopus 로고    scopus 로고
    • Screening for ethanol-producing filamentous fungi.
    • Skory, C. D., Freer, S. N., Bothast, R. J., Screening for ethanol-producing filamentous fungi. Biotechnol. Lett. 1997, 19, 203-206.
    • (1997) Biotechnol. Lett. , vol.19 , pp. 203-206
    • Skory, C.D.1    Freer, S.N.2    Bothast, R.J.3
  • 8
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production.
    • Van Vleet, J. H., Jeffries, T. W., Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 2009, 20, 300-306.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 10
    • 77949874216 scopus 로고    scopus 로고
    • Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    • Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M. J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851-4861.
    • (2010) Bioresour. Technol. , vol.101 , pp. 4851-4861
    • Alvira, P.1    Tomás-Pejó, E.2    Ballesteros, M.3    Negro, M.J.4
  • 11
    • 34249883824 scopus 로고    scopus 로고
    • Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.
    • Modig, T., Granath, K., Adler, L., Lidén, G., Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl. Microbiol. Biotechnol. 2007, 75, 289-296.
    • (2007) Appl. Microbiol. Biotechnol. , vol.75 , pp. 289-296
    • Modig, T.1    Granath, K.2    Adler, L.3    Lidén, G.4
  • 12
    • 33947286326 scopus 로고    scopus 로고
    • Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae.
    • Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hägerdal, B. et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340-349.
    • (2007) J. Chem. Technol. Biotechnol. , vol.82 , pp. 340-349
    • Almeida, J.R.M.1    Modig, T.2    Petersson, A.3    Hahn-Hägerdal, B.4
  • 13
    • 34547785594 scopus 로고    scopus 로고
    • Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion.
    • Martín, C., Klinke, H. B., Marcet, M., García, L. et al., Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 2007, 61, 483-487.
    • (2007) Holzforschung , vol.61 , pp. 483-487
    • Martín, C.1    Klinke, H.B.2    Marcet, M.3    García, L.4
  • 14
    • 45149107626 scopus 로고    scopus 로고
    • A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks.
    • Olofsson, K., Bertilsson, M., Lidén, G., A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol.Biofuels 2008, 1, 7.
    • (2008) Biotechnol.Biofuels , vol.1 , pp. 7
    • Olofsson, K.1    Bertilsson, M.2    Lidén, G.3
  • 15
    • 71249083129 scopus 로고    scopus 로고
    • Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
    • Ding, J., Huang, X., Zhang, L., Zhao, N. et al., Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 85, 253-263.
    • (2009) Appl. Microbiol. Biotechnol. , vol.85 , pp. 253-263
    • Ding, J.1    Huang, X.2    Zhang, L.3    Zhao, N.4
  • 16
    • 34247197573 scopus 로고    scopus 로고
    • Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process.
    • Schell, D. J., Dowe, N., Ibsen, K. N., Riley, C. J. et al., Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour. Technol. 2007, 98, 2942-2948.
    • (2007) Bioresour. Technol. , vol.98 , pp. 2942-2948
    • Schell, D.J.1    Dowe, N.2    Ibsen, K.N.3    Riley, C.J.4
  • 17
    • 34548728610 scopus 로고    scopus 로고
    • Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component.
    • van Maris, A. J., Winkler, A. A., Kuyper, M., de Laat, W. T. et al., Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Adv. Biochem. Eng./Biotechnol. 2007, 108, 179-204.
    • (2007) Adv. Biochem. Eng./Biotechnol. , vol.108 , pp. 179-204
    • van Maris, A.J.1    Winkler, A.A.2    Kuyper, M.3    de Laat, W.T.4
  • 18
    • 21344472162 scopus 로고    scopus 로고
    • Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    • Pitkänen, J. P., Rintala, E., Aristidou, A., Ruohonen, L., Penttilä, M., Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl. Microbiol. Biotechnol. 2005, 67, 827-837.
    • (2005) Appl. Microbiol. Biotechnol. , vol.67 , pp. 827-837
    • Pitkänen, J.P.1    Rintala, E.2    Aristidou, A.3    Ruohonen, L.4    Penttilä, M.5
  • 19
    • 12444258773 scopus 로고    scopus 로고
    • Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054.
    • Wahlbom, C. F., van Zyl, W. H., Jönsson, L. J., Hahn-Hägerdal, B., Otero, R. R., Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. 2003, 3, 319-326.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 319-326
    • Wahlbom, C.F.1    van Zyl, W.H.2    Jönsson, L.J.3    Hahn-Hägerdal, B.4    Otero, R.R.5
  • 20
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose.
    • Sonderegger, M., Sauer, U., Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69, 1990-1998.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 21
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
    • Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A. et al., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5, 925-934.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4
  • 22
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
    • Wahlbom, C. F., Otero, R. R. C., van Zyl, W. H., Hahn-Hägerdal, B., Jönsson, L. J., Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 2003, 69, 740-746.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Otero, R.R.C.2    van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jönsson, L.J.5
  • 24
    • 58149347653 scopus 로고    scopus 로고
    • Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering.
    • Bengtsson, O., Jeppsson, M., Sonderegger, M., Parachin, N. S. et al., Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 2008, 25, 835-847.
    • (2008) Yeast , vol.25 , pp. 835-847
    • Bengtsson, O.1    Jeppsson, M.2    Sonderegger, M.3    Parachin, N.S.4
  • 25
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae.
    • Kötter, P., Ciriacy, M., Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 38, 776-783.
    • (1993) Appl. Microbiol. Biotechnol. , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 26
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae.
    • Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 2003, 3, 167-175.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 167-175
    • Jeppsson, M.1    Träff, K.2    Johansson, B.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 27
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle.
    • Kuyper, M., Winkler, A. A., van Dijken, J. P., Pronk, J. T., Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res. 2004, 4, 655-664.
    • (2004) FEMS Yeast Res. , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    van Dijken, J.P.3    Pronk, J.T.4
  • 28
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.
    • Jin, Y. S., Ni, H. Y., Laplaza, J. M., Jeffries, T. W., Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69, 495-503.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.Y.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 30
    • 0035458838 scopus 로고    scopus 로고
    • Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    • Johansson, B., Christensson, C., Hobley, T., Hahn-Hägerdal, B., Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 2001, 67, 4249-4255.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 4249-4255
    • Johansson, B.1    Christensson, C.2    Hobley, T.3    Hahn-Hägerdal, B.4
  • 31
    • 0034010524 scopus 로고    scopus 로고
    • Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae.
    • Eliasson, A., Boles, E., Johansson, B., Österberg, M. et al., Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2000, 53, 376-382.
    • (2000) Appl. Microbiol. Biotechnol. , vol.53 , pp. 376-382
    • Eliasson, A.1    Boles, E.2    Johansson, B.3    Österberg, M.4
  • 32
    • 0033107539 scopus 로고    scopus 로고
    • In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae.
    • Vaseghi, S., Baumeister, A., Rizzi, M., Reuss, M., In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1999, 1, 128-140.
    • (1999) Metab. Eng. , vol.1 , pp. 128-140
    • Vaseghi, S.1    Baumeister, A.2    Rizzi, M.3    Reuss, M.4
  • 33
    • 0019226130 scopus 로고
    • Growth of yeasts on D-xylulose.
    • Wang, P. Y., Schneider, H., Growth of yeasts on D-xylulose. Can. J. Microbiol. 1980, 26, 1165-1168.
    • (1980) Can. J. Microbiol. , vol.26 , pp. 1165-1168
    • Wang, P.Y.1    Schneider, H.2
  • 34
    • 0036053504 scopus 로고    scopus 로고
    • The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    • Johansson, B., Hahn-Hägerdal, B., The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002, 2, 277-282.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 277-282
    • Johansson, B.1    Hahn-Hägerdal, B.2
  • 35
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    • Karhumaa, K., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005, 22, 359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 36
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    • Kuyper, M., Hartog, M. M., Toirkens, M. J., Almering, M. J. et al., Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005, 5, 399-409.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4
  • 37
    • 65549125857 scopus 로고    scopus 로고
    • Hexose and pentose transport in ascomycetous yeasts: An overview.
    • Leandro, M. J., Fonseca, C., Goncalves, P., Hexose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Res. 2009, 9, 511-525.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 511-525
    • Leandro, M.J.1    Fonseca, C.2    Goncalves, P.3
  • 39
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae.
    • Runquist, D., Fonseca, C., Rådström, P., Spencer-Martins, I., Hahn-Hägerdal, B., Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 82, 123-130.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Rådström, P.3    Spencer-Martins, I.4    Hahn-Hägerdal, B.5
  • 40
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
    • Jeppsson, M., Johansson, B., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 2002, 68, 1604-1609.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 41
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    • Matsushika, A., Watanabe, S., Kodaki, T., Makino, K. et al., Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81, 243-255.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 243-255
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4
  • 42
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc.
    • Watanabe, S., Kodaki, T., Makino, K., Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 2005, 280, 10340-10349.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3
  • 43
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    • Jeppsson, M., Bengtsson, O., Franke, K., Lee, H. et al., The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 665-673.
    • (2006) Biotechnol. Bioeng. , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4
  • 44
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
    • Watanabe, S., Abu Saleh, A., Pack, S. P., Annaluru, N. et al., Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007, 153, 3044-3054.
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.P.3    Annaluru, N.4
  • 45
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant
    • Bengtsson, O., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2, 9.
    • (2009) Saccharomyces cerevisiae. Biotechnol. Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 46
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae.
    • Runquist, D., Hahn-Hägerdal, B., Bettiga, M., Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb. Cell Fact. 2009, 8, 49.
    • (2009) Microb. Cell Fact. , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 47
    • 42049123423 scopus 로고    scopus 로고
    • Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae.
    • Wiedemann, B., Boles, E., Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74, 2043-2050.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2043-2050
    • Wiedemann, B.1    Boles, E.2
  • 48
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol.
    • Becker, J., Boles, E., A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 2003, 69, 4144-4150.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 49
    • 0021959310 scopus 로고
    • Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis.
    • Verduyn, C., Vankleef, R., Frank, J., Schreuder, H. et al., Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 1985, 226, 669-677.
    • (1985) Biochem. J. , vol.226 , pp. 669-677
    • Verduyn, C.1    Vankleef, R.2    Frank, J.3    Schreuder, H.4
  • 50
    • 0000043675 scopus 로고
    • Xylose fermentation by yeasts. 4.Purification and kinetic-studies of xylose reductase from Pichia stipitis.
    • Rizzi, M., Erlemann, P., Buithanh, N. A., Dellweg, H., Xylose fermentation by yeasts. 4.Purification and kinetic-studies of xylose reductase from Pichia stipitis. Appl. Microbiol. Biotechnol. 1988, 29, 148-154.
    • (1988) Appl. Microbiol. Biotechnol. , vol.29 , pp. 148-154
    • Rizzi, M.1    Erlemann, P.2    Buithanh, N.A.3    Dellweg, H.4
  • 51
    • 33646569083 scopus 로고    scopus 로고
    • Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains.
    • Karhumaa, K., Wiedemann, B., Hahn-Hägerdal, B., Boles, E., Gorwa-Grauslund, M. F., Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact. 2006, 5, 18.
    • (2006) Microb. Cell Fact. , vol.5 , pp. 18
    • Karhumaa, K.1    Wiedemann, B.2    Hahn-Hägerdal, B.3    Boles, E.4    Gorwa-Grauslund, M.F.5
  • 52
    • 77953368385 scopus 로고    scopus 로고
    • Improved xylose and arabinose utilisation by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering.
    • Garcia Sanchez, R., Karhumaa, K., Fonseca, C., Sànchez Nogué, V. et al., Improved xylose and arabinose utilisation by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. 2010, Biotechnol. Biofuels. 3, 13.
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 13
    • Garcia Sanchez, R.1    Karhumaa, K.2    Fonseca, C.3    Sànchez Nogué, V.4
  • 53
    • 56449084752 scopus 로고    scopus 로고
    • Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.
    • Bettiga, M., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol. Biofuels 2008, 1, 16.
    • (2008) Biotechnol. Biofuels , vol.1 , pp. 16
    • Bettiga, M.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 54
    • 34547752339 scopus 로고    scopus 로고
    • Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    • Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M., Winkler, A. A. et al., Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl. Environ. Microbiol. 2007, 73, 4881-4891.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 4881-4891
    • Wisselink, H.W.1    Toirkens, M.J.2    del Rosario Franco Berriel, M.3    Winkler, A.A.4
  • 55
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.
    • Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., van Maris, A. J., Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 2009, 75, 907-914.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    van Maris, A.J.5
  • 56
    • 0037375506 scopus 로고    scopus 로고
    • Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway.
    • Richard, P., Verho, R., Putkonen, M., Londesborough, J., Penttilä, M., Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res. 2003, 3, 185-189.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 185-189
    • Richard, P.1    Verho, R.2    Putkonen, M.3    Londesborough, J.4    Penttilä, M.5
  • 57
    • 2442438033 scopus 로고    scopus 로고
    • A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast.
    • Verho, R., Putkonen, M., Londesborough, J., Penttilä, M., Richard, P., A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast. J. Biolo. Chem. 2004, 279, 14746-14751.
    • (2004) J. Biolo. Chem. , vol.279 , pp. 14746-14751
    • Verho, R.1    Putkonen, M.2    Londesborough, J.3    Penttilä, M.4    Richard, P.5
  • 58
    • 68949213819 scopus 로고    scopus 로고
    • Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway.
    • Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb. Cell Fact. 2009, 8, 40.
    • (2009) Microb. Cell Fact. , vol.8 , pp. 40
    • Bettiga, M.1    Bengtsson, O.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 59
    • 0033527357 scopus 로고    scopus 로고
    • Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli.
    • Zaldivar, J., Martinez, A., Ingram, L. O., Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 1999, 65, 24-33.
    • (1999) Biotechnol. Bioeng. , vol.65 , pp. 24-33
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 60
    • 64849104184 scopus 로고    scopus 로고
    • Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain.
    • Heer, D., Sauer, U., Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 2008, 1, 497-506.
    • (2008) Microb. Biotechnol. , vol.1 , pp. 497-506
    • Heer, D.1    Sauer, U.2
  • 62
    • 0001274267 scopus 로고    scopus 로고
    • Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae.
    • Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., Jönsson, L. J., Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2000, 84-86, 617-632.
    • (2000) Appl. Biochem. Biotechnol. , vol.84-86 , pp. 617-632
    • Larsson, S.1    Quintana-Sainz, A.2    Reimann, A.3    Nilvebrant, N.O.4    Jönsson, L.J.5
  • 63
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass.
    • Klinke, H. B., Thomsen, A. B., Ahring, B. K., Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10-26.
    • (2004) Appl. Microbiol. Biotechnol. , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 64
    • 0036566476 scopus 로고    scopus 로고
    • Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.
    • Modig, T., Liden, G., Taherzadeh, M. J., Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002, 363, 769-776.
    • (2002) Biochem. J. , vol.363 , pp. 769-776
    • Modig, T.1    Liden, G.2    Taherzadeh, M.J.3
  • 65
    • 76749140881 scopus 로고    scopus 로고
    • Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae.
    • Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z. et al., Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 2010, 3, 2.
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 2
    • Allen, S.A.1    Clark, W.2    Mccaffery, J.M.3    Cai, Z.4
  • 69
    • 0030586862 scopus 로고    scopus 로고
    • Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae.
    • Delgenes, J. P., Moletta, R., Navarro, J. M., Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 1996, 19, 220-225.
    • (1996) Enzyme Microb. Technol. , vol.19 , pp. 220-225
    • Delgenes, J.P.1    Moletta, R.2    Navarro, J.M.3
  • 70
    • 45149104923 scopus 로고    scopus 로고
    • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    • Endo, A., Nakamura, T., Ando, A., Tokuyasu, K., Shima, J., Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 2008, 1, 3.
    • (2008) Biotechnol. Biofuels , vol.1 , pp. 3
    • Endo, A.1    Nakamura, T.2    Ando, A.3    Tokuyasu, K.4    Shima, J.5
  • 71
    • 0036182468 scopus 로고    scopus 로고
    • Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: Relevance in aldehyde reduction.
    • Larroy, C., Fernández, M. R., González, E., Parés, X., Biosca, J. A., Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: Relevance in aldehyde reduction. Biochem. J. 2002, 361, 163-172.
    • (2002) Biochem. J. , vol.361 , pp. 163-172
    • Larroy, C.1    Fernández, M.R.2    González, E.3    Parés, X.4    Biosca, J.A.5
  • 72
    • 4644229547 scopus 로고    scopus 로고
    • Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    • Liu, Z. L., Slininger, P. J., Dien, B. S., Berhow, M. A. et al., Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 2004, 31, 345-352.
    • (2004) J. Ind. Microbiol. Biotechnol. , vol.31 , pp. 345-352
    • Liu, Z.L.1    Slininger, P.J.2    Dien, B.S.3    Berhow, M.A.4
  • 73
    • 0027048930 scopus 로고
    • Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae.
    • Villa, G. P., Bartroli, R., López, R., Guerra, M. et al., Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 1992, 12, 509-512.
    • (1992) Acta Biotechnol. , vol.12 , pp. 509-512
    • Villa, G.P.1    Bartroli, R.2    López, R.3    Guerra, M.4
  • 74
    • 0027590958 scopus 로고
    • Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria.
    • Boopathy, R., Bokang, H., Daniels, L., Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. 1993, 11, 147-150.
    • (1993) J. Ind. Microbiol. , vol.11 , pp. 147-150
    • Boopathy, R.1    Bokang, H.2    Daniels, L.3
  • 75
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
    • Heer, D., Heine, D., Sauer, U., Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl. Environ. Microbiol. 2009, 75, 7631-7638.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 76
    • 71249132746 scopus 로고    scopus 로고
    • Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors.
    • Alriksson, B., Horváth, I. S., Jönsson, L. J., Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem. 2010, 45, 264-271.
    • (2010) Process Biochem. , vol.45 , pp. 264-271
    • Alriksson, B.1    Horváth, I.S.2    Jönsson, L.J.3
  • 77
    • 77950431784 scopus 로고    scopus 로고
    • Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14.
    • Koopman, F., Wierckx, N., de Winde, J. H., Ruijssenaars, H. J., Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc. Natl. Acad. Sci. USA 2010, 107, 4919-4924.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4919-4924
    • Koopman, F.1    Wierckx, N.2    de Winde, J.H.3    Ruijssenaars, H.J.4
  • 78
    • 33750310028 scopus 로고    scopus 로고
    • Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.
    • Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M. et al., Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 2006, 126, 488-498.
    • (2006) J. Biotechnol. , vol.126 , pp. 488-498
    • Öhgren, K.1    Bengtsson, O.2    Gorwa-Grauslund, M.F.3    Galbe, M.4
  • 79
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    • Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2007, 73, 1039-1046.
    • (2007) Appl. Microbiol. Biotechnol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 81
    • 0037140422 scopus 로고    scopus 로고
    • Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
    • Wahlbom, C. F., Hahn-Hägerdal, B., Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2002, 78, 172-178.
    • (2002) Biotechnol. Bioeng. , vol.78 , pp. 172-178
    • Wahlbom, C.F.1    Hahn-Hägerdal, B.2
  • 82
    • 69949160038 scopus 로고    scopus 로고
    • Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    • Almeida, J. R. M., Bertilsson, M., Hahn-Hägerdal, B., Lidén, G., Gorwa-Grauslund, M. F., Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl. Microbiol. Biotechnol. 2009, 84, 751-761.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 751-761
    • Almeida, J.R.M.1    Bertilsson, M.2    Hahn-Hägerdal, B.3    Lidén, G.4    Gorwa-Grauslund, M.F.5
  • 83
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition.
    • Palmqvist, E., Hahn-Hägerdal, B., Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25-33.
    • (2000) Bioresour. Technol. , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 84
    • 66149164727 scopus 로고    scopus 로고
    • Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    • Lu, Y., Warner, R., Sedlak, M., Ho, N., Mosier, N. S., Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol. Prog. 2009, 25, 349-356.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 349-356
    • Lu, Y.1    Warner, R.2    Sedlak, M.3    Ho, N.4    Mosier, N.S.5
  • 85
    • 0242320927 scopus 로고    scopus 로고
    • A bioethanol process development unit: Initial operating experiences and results with a corn fiber feedstock.
    • Schell, D. J., Riley, C. J., Dowe, N., Farmer, J. et al., A bioethanol process development unit: Initial operating experiences and results with a corn fiber feedstock. Bioresour. Technol. 2004, 91, 179-188.
    • (2004) Bioresour. Technol. , vol.91 , pp. 179-188
    • Schell, D.J.1    Riley, C.J.2    Dowe, N.3    Farmer, J.4
  • 86
    • 0035046617 scopus 로고    scopus 로고
    • Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.
    • Narendranath, N. V., Thomas, K. C., Ingledew, W. M., Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 2001, 26, 171-177.
    • (2001) J. Ind. Microbiol. Biotechnol. , vol.26 , pp. 171-177
    • Narendranath, N.V.1    Thomas, K.C.2    Ingledew, W.M.3
  • 87
    • 33646438534 scopus 로고    scopus 로고
    • Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash.
    • Graves, T., Narendranath, N. V., Dawson, K., Power, R., Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J. Ind. Microbiol. Biotechnol. 2006, 33, 469-474.
    • (2006) J. Ind. Microbiol. Biotechnol. , vol.33 , pp. 469-474
    • Graves, T.1    Narendranath, N.V.2    Dawson, K.3    Power, R.4
  • 88
    • 0036209598 scopus 로고    scopus 로고
    • Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids.
    • Thomas, K. C., Hynes, S. H., Ingledew, W. M., Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl. Environ. Microbiol. 2002, 68, 1616-1623.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1616-1623
    • Thomas, K.C.1    Hynes, S.H.2    Ingledew, W.M.3
  • 89
    • 0033982072 scopus 로고    scopus 로고
    • Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae.
    • Pampulha, M. E., Loureiro-Dias, M. C., Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184, 69-72.
    • (2000) FEMS Microbiol. Lett. , vol.184 , pp. 69-72
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 90
    • 0026452057 scopus 로고
    • Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling.
    • Russell, J., Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling. J. Appl. Bacteriol. 1992, 73, 363-370.
    • (1992) J. Appl. Bacteriol. , vol.73 , pp. 363-370
    • Russell, J.1
  • 91
    • 0025608322 scopus 로고
    • Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid.
    • Pampulha, M. E., Loureiro-Dias, M. C., Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl. Microbiol. Biotechnol. 1990, 34, 375-380.
    • (1990) Appl. Microbiol. Biotechnol. , vol.34 , pp. 375-380
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 92
    • 0032479995 scopus 로고    scopus 로고
    • The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast.
    • Piper, P., Mahe, Y., Thompson, S., Pandjaitan, R. et al., The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 1998, 17, 4257-4265.
    • (1998) EMBO J. , vol.17 , pp. 4257-4265
    • Piper, P.1    Mahe, Y.2    Thompson, S.3    Pandjaitan, R.4
  • 93
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
    • Bellissimi, E., van Dijken, J. P., Pronk, J. T., van Maris, A. J. A., Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009, 9, 358-364.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 358-364
    • Bellissimi, E.1    van Dijken, J.P.2    Pronk, J.T.3    van Maris, A.J.A.4
  • 94
    • 77952169542 scopus 로고    scopus 로고
    • Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    • Casey, E., Sedlak, M., Ho, N. W. Y., Mosier, N. S., Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10, 385-393.
    • (2010) FEMS Yeast Res. , vol.10 , pp. 385-393
    • Casey, E.1    Sedlak, M.2    Ho, N.W.Y.3    Mosier, N.S.4
  • 95
    • 0141788811 scopus 로고    scopus 로고
    • Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae.
    • Helle, S., Cameron, D., Lam, J., White, B., Duff, S., Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb. Technol. 2003, 33, 786-792.
    • (2003) Enzyme Microb. Technol. , vol.33 , pp. 786-792
    • Helle, S.1    Cameron, D.2    Lam, J.3    White, B.4    Duff, S.5
  • 96
    • 0347601907 scopus 로고    scopus 로고
    • Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor.
    • Helle, S. S., Murray, A., Lam, J., Cameron, D. R., Duff, S. J., Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour. Technolnol. 2004, 92, 163-171.
    • (2004) Bioresour. Technolnol. , vol.92 , pp. 163-171
    • Helle, S.S.1    Murray, A.2    Lam, J.3    Cameron, D.R.4    Duff, S.J.5
  • 97
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    • Medina, V. G., Almering, M. J. H., van Maris, A. J. A., Pronk, J. T., Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 2010, 76, 190-195.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 190-195
    • Medina, V.G.1    Almering, M.J.H.2    van Maris, A.J.A.3    Pronk, J.T.4
  • 98
    • 0027954163 scopus 로고
    • Evaluation of bacterial contamination in a fed-batch alcoholic fermentation process.
    • de Oliva-Neto, P., Yokoya, F., Evaluation of bacterial contamination in a fed-batch alcoholic fermentation process. World J. Microbiol. Biotechnol. 1994, 10, 697-699.
    • (1994) World J. Microbiol. Biotechnol. , vol.10 , pp. 697-699
    • de Oliva-Neto, P.1    Yokoya, F.2
  • 100
    • 0026653581 scopus 로고
    • Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.
    • Lindén, T., Peetre, J., Hahn-Hägerdal, B., Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl. Environ. Microbiol. 1992, 58, 1661-1669.
    • (1992) Appl. Environ. Microbiol. , vol.58 , pp. 1661-1669
    • Lindén, T.1    Peetre, J.2    Hahn-Hägerdal, B.3
  • 101
    • 40149105233 scopus 로고    scopus 로고
    • Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process.
    • Basílio, A. C. M., de Araújo, P. R. L., de Morais, J. O. F., da Silva Filho, E. A. et al., Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr. Microbiol. 2008, 56, 322-326.
    • (2008) Curr. Microbiol. , vol.56 , pp. 322-326
    • Basílio, A.C.M.1    de Araújo, P.R.L.2    de Morais, J.O.F.3    da Silva Filho, E.A.4
  • 102
    • 0020607444 scopus 로고
    • Carbohydrate metabolism in lactic acid bacteria.
    • Kandler, O., Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 1983, 49, 209-224.
    • (1983) Antonie Van Leeuwenhoek , vol.49 , pp. 209-224
    • Kandler, O.1
  • 103
    • 47249086391 scopus 로고
    • Utilization of ethanol by acetic acid bacteria.
    • Rao, M. R., Stokes, J. L., Utilization of ethanol by acetic acid bacteria. J. Bacteriol. 1953, 66, 634-638.
    • (1953) J. Bacteriol. , vol.66 , pp. 634-638
    • Rao, M.R.1    Stokes, J.L.2
  • 105
    • 33846329451 scopus 로고    scopus 로고
    • Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation.
    • de Souza Liberal, A. T., Basílio, A. C. M., do Monte Resende, A., Brasileiro, B. T. V. et al., Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J. Appl. Microbiol. 2007, 102, 538-547.
    • (2007) J. Appl. Microbiol. , vol.102 , pp. 538-547
    • de Souza Liberal, A.T.1    Basílio, A.C.M.2    do Monte Resende, A.3    Brasileiro, B.T.V.4
  • 106
    • 0242659822 scopus 로고    scopus 로고
    • Beer spoilage bacteria and hop resistance.
    • Sakamoto, K., Konings, W. N., Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105-124.
    • (2003) Int. J. Food Microbiol. , vol.89 , pp. 105-124
    • Sakamoto, K.1    Konings, W.N.2
  • 107
    • 76149132991 scopus 로고    scopus 로고
    • Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to Hop Iso-alfa-acids.
    • Hazelwood, L. A., Walsh, M. C., Pronk, J. T., Daran, J. M., Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to Hop Iso-alfa-acids. Appl. Environ. Microbiol. 2010, 76, 318-328.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 318-328
    • Hazelwood, L.A.1    Walsh, M.C.2    Pronk, J.T.3    Daran, J.M.4
  • 108
    • 33947430562 scopus 로고    scopus 로고
    • Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover.
    • Öhgren, K., Bura, R., Saddler, J., Zacchi, G., Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 2007, 98, 2503-2510.
    • (2007) Bioresour. Technol. , vol.98 , pp. 2503-2510
    • Öhgren, K.1    Bura, R.2    Saddler, J.3    Zacchi, G.4
  • 109
    • 71249111390 scopus 로고    scopus 로고
    • SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.
    • Carrasco, C., Baudel, H. M., Sendelius, J., Modig, T. et al., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Enzyme Microb. Technol. 2010, 46, 64-73.
    • (2010) Enzyme Microb. Technol. , vol.46 , pp. 64-73
    • Carrasco, C.1    Baudel, H.M.2    Sendelius, J.3    Modig, T.4
  • 110
    • 77952906131 scopus 로고    scopus 로고
    • Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw.
    • Remond, C., Aubry, N., Cronier, D., Noel, S. et al., Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour. Technol. 2010, 101, 6712-6717.
    • (2010) Bioresour. Technol. , vol.101 , pp. 6712-6717
    • Remond, C.1    Aubry, N.2    Cronier, D.3    Noel, S.4
  • 111
    • 40949127359 scopus 로고    scopus 로고
    • Steam inretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production.
    • Linde, M., Jakobsson, E. L., Galbe, M., Zacchi, G., Steam inretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 2008, 32, 326-332.
    • (2008) Biomass Bioenergy , vol.32 , pp. 326-332
    • Linde, M.1    Jakobsson, E.L.2    Galbe, M.3    Zacchi, G.4
  • 112
    • 33847618375 scopus 로고    scopus 로고
    • Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration.
    • Linde, M., Galbe, M., Zacchi, G., Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Technol. 2007, 40, 1100-1107.
    • (2007) Enzyme Microb. Technol. , vol.40 , pp. 1100-1107
    • Linde, M.1    Galbe, M.2    Zacchi, G.3
  • 113
    • 79952180204 scopus 로고    scopus 로고
    • Wiselolgel, A., Biomass feedstock resources and composition. in: Wyman, C. (Ed.), Handbook on Bioethanol Production and Utilization, Taylor and Francis, Washington, DC 1996 108-118.
    • Wiselolgel, A., Biomass feedstock resources and composition. in: Wyman, C. (Ed.), Handbook on Bioethanol Production and Utilization, Taylor and Francis, Washington, DC 1996, pp. 108-118.
  • 114
    • 77950080221 scopus 로고    scopus 로고
    • Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis.
    • Hsu, T. C., Guo, G. L., Chen, W. H., Hwang, W. S., Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 2010, 101, 4907-4913.
    • (2010) Bioresour. Technol. , vol.101 , pp. 4907-4913
    • Hsu, T.C.1    Guo, G.L.2    Chen, W.H.3    Hwang, W.S.4
  • 115
    • 74749103232 scopus 로고    scopus 로고
    • Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains.
    • Faga, B. A., Wilkins, M. R., Banat, I. M., Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour. Technolnol. 2010, 101, 2273-2279.
    • (2010) Bioresour. Technolnol. , vol.101 , pp. 2273-2279
    • Faga, B.A.1    Wilkins, M.R.2    Banat, I.M.3
  • 116
    • 18844437254 scopus 로고    scopus 로고
    • Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol.
    • Sassner, P., Galbe, M., Zacchi, G., Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl. Biochem. Biotechnol. 2005, 121-124, 1101-1117.
    • (2005) Appl. Biochem. Biotechnol. , vol.121-124 , pp. 1101-1117
    • Sassner, P.1    Galbe, M.2    Zacchi, G.3
  • 117
    • 71149086772 scopus 로고    scopus 로고
    • Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment.
    • Li, B. Z., Balan, V., Yuan, Y. J., Dale, B. E., Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour. Technol. 2010, 101, 1285-1292.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1285-1292
    • Li, B.Z.1    Balan, V.2    Yuan, Y.J.3    Dale, B.E.4
  • 118
    • 39649107109 scopus 로고    scopus 로고
    • Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.
    • Olofsson, K., Rudolf, A., Lidén, G., Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J. Biotechnol. 2008, 134, 112-120.
    • (2008) J. Biotechnol. , vol.134 , pp. 112-120
    • Olofsson, K.1    Rudolf, A.2    Lidén, G.3
  • 119
    • 39549104535 scopus 로고    scopus 로고
    • Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054.
    • Rudolf, A., Baudel, H., Zacchi, G., Hahn-Hägerdal, B., Lidén, G., Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol. Bioeng. 2008, 99, 783-790.
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 783-790
    • Rudolf, A.1    Baudel, H.2    Zacchi, G.3    Hahn-Hägerdal, B.4    Lidén, G.5
  • 120
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    • Matsushika, A., Inoue, H., Murakami, K., Takimura, O., Sawayama, S., Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technolnol. 2009, 100, 2392-2398.
    • (2009) Bioresour. Technolnol. , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 121
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.
    • Runquist, D., Hahn-Hägerdal, B., Bettiga, M., Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76, 7796-7802.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.