-
1
-
-
0023431472
-
Genetic engineering of ethanol production in Escherichia coli.
-
Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., Preston, J. F., Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 1987, 53, 2420-2425.
-
(1987)
Appl. Environ. Microbiol.
, vol.53
, pp. 2420-2425
-
-
Ingram, L.O.1
Conway, T.2
Clark, D.P.3
Sewell, G.W.4
Preston, J.F.5
-
2
-
-
0028953195
-
Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis.
-
Zhang, M., Eddy, C., Deanda, K., Finkestein, M., Picataggio, S., Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 1995, 267, 240-243.
-
(1995)
Science
, vol.267
, pp. 240-243
-
-
Zhang, M.1
Eddy, C.2
Deanda, K.3
Finkestein, M.4
Picataggio, S.5
-
3
-
-
0026022099
-
Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures.
-
Lacis, L. S., Lawford, H. G., Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures. Appl. Environ. Microbiol. 1991, 57, 579-585.
-
(1991)
Appl. Environ. Microbiol.
, vol.57
, pp. 579-585
-
-
Lacis, L.S.1
Lawford, H.G.2
-
4
-
-
52949139048
-
Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.
-
Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S. et al., Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13769-13774.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 13769-13774
-
-
Shaw, A.J.1
Podkaminer, K.K.2
Desai, S.G.3
Bardsley, J.S.4
-
5
-
-
0031002602
-
Screening for ethanol-producing filamentous fungi.
-
Skory, C. D., Freer, S. N., Bothast, R. J., Screening for ethanol-producing filamentous fungi. Biotechnol. Lett. 1997, 19, 203-206.
-
(1997)
Biotechnol. Lett.
, vol.19
, pp. 203-206
-
-
Skory, C.D.1
Freer, S.N.2
Bothast, R.J.3
-
6
-
-
0021245149
-
Alcoholic fermentation of D-xylose by yeasts.
-
Toivola, A., Yarrow, D., Van den Bosch, E., Van Dijken, J. P., Scheffers, W. A., Alcoholic fermentation of D-xylose by yeasts. Appl. Environ. Microbiol. 1984, 47, 1221-1223.
-
(1984)
Appl. Environ. Microbiol.
, vol.47
, pp. 1221-1223
-
-
Toivola, A.1
Yarrow, D.2
Van den Bosch, E.3
Van Dijken, J.P.4
Scheffers, W.A.5
-
7
-
-
34548789083
-
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae.
-
Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., Gorwa-Grauslund, M. F., Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng./Biotechnol. 2007, 108, 147-177.
-
(2007)
Adv. Biochem. Eng./Biotechnol.
, vol.108
, pp. 147-177
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Jeppsson, M.3
Gorwa-Grauslund, M.F.4
-
8
-
-
67649757165
-
Yeast metabolic engineering for hemicellulosic ethanol production.
-
Van Vleet, J. H., Jeffries, T. W., Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 2009, 20, 300-306.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 300-306
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
-
9
-
-
33751208021
-
Bio-ethanol - the fuel of tomorrow from the residues of today.
-
Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., Zacchi, G., Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549-556.
-
(2006)
Trends Biotechnol.
, vol.24
, pp. 549-556
-
-
Hahn-Hägerdal, B.1
Galbe, M.2
Gorwa-Grauslund, M.F.3
Lidén, G.4
Zacchi, G.5
-
10
-
-
77949874216
-
Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
-
Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M. J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851-4861.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 4851-4861
-
-
Alvira, P.1
Tomás-Pejó, E.2
Ballesteros, M.3
Negro, M.J.4
-
11
-
-
34249883824
-
Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.
-
Modig, T., Granath, K., Adler, L., Lidén, G., Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl. Microbiol. Biotechnol. 2007, 75, 289-296.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.75
, pp. 289-296
-
-
Modig, T.1
Granath, K.2
Adler, L.3
Lidén, G.4
-
12
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae.
-
Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hägerdal, B. et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340-349.
-
(2007)
J. Chem. Technol. Biotechnol.
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hahn-Hägerdal, B.4
-
13
-
-
34547785594
-
Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion.
-
Martín, C., Klinke, H. B., Marcet, M., García, L. et al., Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 2007, 61, 483-487.
-
(2007)
Holzforschung
, vol.61
, pp. 483-487
-
-
Martín, C.1
Klinke, H.B.2
Marcet, M.3
García, L.4
-
14
-
-
45149107626
-
A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks.
-
Olofsson, K., Bertilsson, M., Lidén, G., A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol.Biofuels 2008, 1, 7.
-
(2008)
Biotechnol.Biofuels
, vol.1
, pp. 7
-
-
Olofsson, K.1
Bertilsson, M.2
Lidén, G.3
-
15
-
-
71249083129
-
Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
-
Ding, J., Huang, X., Zhang, L., Zhao, N. et al., Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 85, 253-263.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 253-263
-
-
Ding, J.1
Huang, X.2
Zhang, L.3
Zhao, N.4
-
16
-
-
34247197573
-
Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process.
-
Schell, D. J., Dowe, N., Ibsen, K. N., Riley, C. J. et al., Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour. Technol. 2007, 98, 2942-2948.
-
(2007)
Bioresour. Technol.
, vol.98
, pp. 2942-2948
-
-
Schell, D.J.1
Dowe, N.2
Ibsen, K.N.3
Riley, C.J.4
-
17
-
-
34548728610
-
Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component.
-
van Maris, A. J., Winkler, A. A., Kuyper, M., de Laat, W. T. et al., Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Adv. Biochem. Eng./Biotechnol. 2007, 108, 179-204.
-
(2007)
Adv. Biochem. Eng./Biotechnol.
, vol.108
, pp. 179-204
-
-
van Maris, A.J.1
Winkler, A.A.2
Kuyper, M.3
de Laat, W.T.4
-
18
-
-
21344472162
-
Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
-
Pitkänen, J. P., Rintala, E., Aristidou, A., Ruohonen, L., Penttilä, M., Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl. Microbiol. Biotechnol. 2005, 67, 827-837.
-
(2005)
Appl. Microbiol. Biotechnol.
, vol.67
, pp. 827-837
-
-
Pitkänen, J.P.1
Rintala, E.2
Aristidou, A.3
Ruohonen, L.4
Penttilä, M.5
-
19
-
-
12444258773
-
Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054.
-
Wahlbom, C. F., van Zyl, W. H., Jönsson, L. J., Hahn-Hägerdal, B., Otero, R. R., Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. 2003, 3, 319-326.
-
(2003)
FEMS Yeast Res.
, vol.3
, pp. 319-326
-
-
Wahlbom, C.F.1
van Zyl, W.H.2
Jönsson, L.J.3
Hahn-Hägerdal, B.4
Otero, R.R.5
-
20
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose.
-
Sonderegger, M., Sauer, U., Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69, 1990-1998.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
21
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
-
Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A. et al., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005, 5, 925-934.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
-
22
-
-
0347297600
-
Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
-
Wahlbom, C. F., Otero, R. R. C., van Zyl, W. H., Hahn-Hägerdal, B., Jönsson, L. J., Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 2003, 69, 740-746.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 740-746
-
-
Wahlbom, C.F.1
Otero, R.R.C.2
van Zyl, W.H.3
Hahn-Hägerdal, B.4
Jönsson, L.J.5
-
23
-
-
68349115041
-
Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400.
-
Karhumaa, K., Pahlman, A. K., Hahn-Hägerdal, B., Levander, F., Gorwa-Grauslund, M. F., Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 2009, 26, 371-382.
-
(2009)
Yeast
, vol.26
, pp. 371-382
-
-
Karhumaa, K.1
Pahlman, A.K.2
Hahn-Hägerdal, B.3
Levander, F.4
Gorwa-Grauslund, M.F.5
-
24
-
-
58149347653
-
Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering.
-
Bengtsson, O., Jeppsson, M., Sonderegger, M., Parachin, N. S. et al., Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 2008, 25, 835-847.
-
(2008)
Yeast
, vol.25
, pp. 835-847
-
-
Bengtsson, O.1
Jeppsson, M.2
Sonderegger, M.3
Parachin, N.S.4
-
25
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae.
-
Kötter, P., Ciriacy, M., Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 38, 776-783.
-
(1993)
Appl. Microbiol. Biotechnol.
, vol.38
, pp. 776-783
-
-
Kötter, P.1
Ciriacy, M.2
-
26
-
-
0037375880
-
Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae.
-
Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 2003, 3, 167-175.
-
(2003)
FEMS Yeast Res.
, vol.3
, pp. 167-175
-
-
Jeppsson, M.1
Träff, K.2
Johansson, B.3
Hahn-Hägerdal, B.4
Gorwa-Grauslund, M.F.5
-
27
-
-
1642315441
-
Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle.
-
Kuyper, M., Winkler, A. A., van Dijken, J. P., Pronk, J. T., Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res. 2004, 4, 655-664.
-
(2004)
FEMS Yeast Res.
, vol.4
, pp. 655-664
-
-
Kuyper, M.1
Winkler, A.A.2
van Dijken, J.P.3
Pronk, J.T.4
-
28
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.
-
Jin, Y. S., Ni, H. Y., Laplaza, J. M., Jeffries, T. W., Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 2003, 69, 495-503.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.Y.2
Laplaza, J.M.3
Jeffries, T.W.4
-
29
-
-
0032077442
-
The danger of metabolic pathways with turbo design.
-
Teusink, B., Walsh, M. C., van Dam, K., Westerhoff, H. V., The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 1998, 23, 162-169.
-
(1998)
Trends Biochem. Sci.
, vol.23
, pp. 162-169
-
-
Teusink, B.1
Walsh, M.C.2
van Dam, K.3
Westerhoff, H.V.4
-
30
-
-
0035458838
-
Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
-
Johansson, B., Christensson, C., Hobley, T., Hahn-Hägerdal, B., Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 2001, 67, 4249-4255.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 4249-4255
-
-
Johansson, B.1
Christensson, C.2
Hobley, T.3
Hahn-Hägerdal, B.4
-
31
-
-
0034010524
-
Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae.
-
Eliasson, A., Boles, E., Johansson, B., Österberg, M. et al., Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2000, 53, 376-382.
-
(2000)
Appl. Microbiol. Biotechnol.
, vol.53
, pp. 376-382
-
-
Eliasson, A.1
Boles, E.2
Johansson, B.3
Österberg, M.4
-
32
-
-
0033107539
-
In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae.
-
Vaseghi, S., Baumeister, A., Rizzi, M., Reuss, M., In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1999, 1, 128-140.
-
(1999)
Metab. Eng.
, vol.1
, pp. 128-140
-
-
Vaseghi, S.1
Baumeister, A.2
Rizzi, M.3
Reuss, M.4
-
33
-
-
0019226130
-
Growth of yeasts on D-xylulose.
-
Wang, P. Y., Schneider, H., Growth of yeasts on D-xylulose. Can. J. Microbiol. 1980, 26, 1165-1168.
-
(1980)
Can. J. Microbiol.
, vol.26
, pp. 1165-1168
-
-
Wang, P.Y.1
Schneider, H.2
-
34
-
-
0036053504
-
The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
-
Johansson, B., Hahn-Hägerdal, B., The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002, 2, 277-282.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 277-282
-
-
Johansson, B.1
Hahn-Hägerdal, B.2
-
35
-
-
17644373035
-
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
-
Karhumaa, K., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 2005, 22, 359-368.
-
(2005)
Yeast
, vol.22
, pp. 359-368
-
-
Karhumaa, K.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
36
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
-
Kuyper, M., Hartog, M. M., Toirkens, M. J., Almering, M. J. et al., Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005, 5, 399-409.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.2
Toirkens, M.J.3
Almering, M.J.4
-
37
-
-
65549125857
-
Hexose and pentose transport in ascomycetous yeasts: An overview.
-
Leandro, M. J., Fonseca, C., Goncalves, P., Hexose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Res. 2009, 9, 511-525.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 511-525
-
-
Leandro, M.J.1
Fonseca, C.2
Goncalves, P.3
-
38
-
-
0038363853
-
Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae.
-
Gárdónyi, M., Jeppsson, M., Lidén, G., Gorwa-Grauslund, M. F., Hahn-Hägerdal, B., Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2003, 82, 818-824.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 818-824
-
-
Gárdónyi, M.1
Jeppsson, M.2
Lidén, G.3
Gorwa-Grauslund, M.F.4
Hahn-Hägerdal, B.5
-
39
-
-
58549084602
-
Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae.
-
Runquist, D., Fonseca, C., Rådström, P., Spencer-Martins, I., Hahn-Hägerdal, B., Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 82, 123-130.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 123-130
-
-
Runquist, D.1
Fonseca, C.2
Rådström, P.3
Spencer-Martins, I.4
Hahn-Hägerdal, B.5
-
40
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
-
Jeppsson, M., Johansson, B., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 2002, 68, 1604-1609.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
41
-
-
55649111344
-
Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
-
Matsushika, A., Watanabe, S., Kodaki, T., Makino, K. et al., Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81, 243-255.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 243-255
-
-
Matsushika, A.1
Watanabe, S.2
Kodaki, T.3
Makino, K.4
-
42
-
-
15544372361
-
Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc.
-
Watanabe, S., Kodaki, T., Makino, K., Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 2005, 280, 10340-10349.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10340-10349
-
-
Watanabe, S.1
Kodaki, T.2
Makino, K.3
-
43
-
-
33644879465
-
The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
-
Jeppsson, M., Bengtsson, O., Franke, K., Lee, H. et al., The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 665-673.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
Lee, H.4
-
44
-
-
34948882785
-
Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
-
Watanabe, S., Abu Saleh, A., Pack, S. P., Annaluru, N. et al., Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007, 153, 3044-3054.
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
Abu Saleh, A.2
Pack, S.P.3
Annaluru, N.4
-
45
-
-
66749091546
-
Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant
-
Bengtsson, O., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2009, 2, 9.
-
(2009)
Saccharomyces cerevisiae. Biotechnol. Biofuels
, vol.2
, pp. 9
-
-
Bengtsson, O.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
46
-
-
70449428931
-
Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae.
-
Runquist, D., Hahn-Hägerdal, B., Bettiga, M., Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb. Cell Fact. 2009, 8, 49.
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 49
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
47
-
-
42049123423
-
Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae.
-
Wiedemann, B., Boles, E., Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74, 2043-2050.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 2043-2050
-
-
Wiedemann, B.1
Boles, E.2
-
48
-
-
0037962155
-
A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol.
-
Becker, J., Boles, E., A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 2003, 69, 4144-4150.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 4144-4150
-
-
Becker, J.1
Boles, E.2
-
49
-
-
0021959310
-
Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis.
-
Verduyn, C., Vankleef, R., Frank, J., Schreuder, H. et al., Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 1985, 226, 669-677.
-
(1985)
Biochem. J.
, vol.226
, pp. 669-677
-
-
Verduyn, C.1
Vankleef, R.2
Frank, J.3
Schreuder, H.4
-
50
-
-
0000043675
-
Xylose fermentation by yeasts. 4.Purification and kinetic-studies of xylose reductase from Pichia stipitis.
-
Rizzi, M., Erlemann, P., Buithanh, N. A., Dellweg, H., Xylose fermentation by yeasts. 4.Purification and kinetic-studies of xylose reductase from Pichia stipitis. Appl. Microbiol. Biotechnol. 1988, 29, 148-154.
-
(1988)
Appl. Microbiol. Biotechnol.
, vol.29
, pp. 148-154
-
-
Rizzi, M.1
Erlemann, P.2
Buithanh, N.A.3
Dellweg, H.4
-
51
-
-
33646569083
-
Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains.
-
Karhumaa, K., Wiedemann, B., Hahn-Hägerdal, B., Boles, E., Gorwa-Grauslund, M. F., Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact. 2006, 5, 18.
-
(2006)
Microb. Cell Fact.
, vol.5
, pp. 18
-
-
Karhumaa, K.1
Wiedemann, B.2
Hahn-Hägerdal, B.3
Boles, E.4
Gorwa-Grauslund, M.F.5
-
52
-
-
77953368385
-
Improved xylose and arabinose utilisation by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering.
-
Garcia Sanchez, R., Karhumaa, K., Fonseca, C., Sànchez Nogué, V. et al., Improved xylose and arabinose utilisation by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. 2010, Biotechnol. Biofuels. 3, 13.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 13
-
-
Garcia Sanchez, R.1
Karhumaa, K.2
Fonseca, C.3
Sànchez Nogué, V.4
-
53
-
-
56449084752
-
Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.
-
Bettiga, M., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol. Biofuels 2008, 1, 16.
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 16
-
-
Bettiga, M.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
54
-
-
34547752339
-
Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
-
Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M., Winkler, A. A. et al., Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl. Environ. Microbiol. 2007, 73, 4881-4891.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 4881-4891
-
-
Wisselink, H.W.1
Toirkens, M.J.2
del Rosario Franco Berriel, M.3
Winkler, A.A.4
-
55
-
-
59949093124
-
Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.
-
Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., van Maris, A. J., Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 2009, 75, 907-914.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 907-914
-
-
Wisselink, H.W.1
Toirkens, M.J.2
Wu, Q.3
Pronk, J.T.4
van Maris, A.J.5
-
56
-
-
0037375506
-
Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway.
-
Richard, P., Verho, R., Putkonen, M., Londesborough, J., Penttilä, M., Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res. 2003, 3, 185-189.
-
(2003)
FEMS Yeast Res.
, vol.3
, pp. 185-189
-
-
Richard, P.1
Verho, R.2
Putkonen, M.3
Londesborough, J.4
Penttilä, M.5
-
57
-
-
2442438033
-
A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast.
-
Verho, R., Putkonen, M., Londesborough, J., Penttilä, M., Richard, P., A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast. J. Biolo. Chem. 2004, 279, 14746-14751.
-
(2004)
J. Biolo. Chem.
, vol.279
, pp. 14746-14751
-
-
Verho, R.1
Putkonen, M.2
Londesborough, J.3
Penttilä, M.4
Richard, P.5
-
58
-
-
68949213819
-
Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway.
-
Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb. Cell Fact. 2009, 8, 40.
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 40
-
-
Bettiga, M.1
Bengtsson, O.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
59
-
-
0033527357
-
Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli.
-
Zaldivar, J., Martinez, A., Ingram, L. O., Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 1999, 65, 24-33.
-
(1999)
Biotechnol. Bioeng.
, vol.65
, pp. 24-33
-
-
Zaldivar, J.1
Martinez, A.2
Ingram, L.O.3
-
60
-
-
64849104184
-
Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain.
-
Heer, D., Sauer, U., Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 2008, 1, 497-506.
-
(2008)
Microb. Biotechnol.
, vol.1
, pp. 497-506
-
-
Heer, D.1
Sauer, U.2
-
61
-
-
0033938545
-
Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae.
-
Taherzadeh, M. J., Gustafsson, L., Niklasson, C., Lidén, G., Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2000, 53, 701-708.
-
(2000)
Appl. Microbiol. Biotechnol.
, vol.53
, pp. 701-708
-
-
Taherzadeh, M.J.1
Gustafsson, L.2
Niklasson, C.3
Lidén, G.4
-
62
-
-
0001274267
-
Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae.
-
Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., Jönsson, L. J., Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2000, 84-86, 617-632.
-
(2000)
Appl. Biochem. Biotechnol.
, vol.84-86
, pp. 617-632
-
-
Larsson, S.1
Quintana-Sainz, A.2
Reimann, A.3
Nilvebrant, N.O.4
Jönsson, L.J.5
-
63
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass.
-
Klinke, H. B., Thomsen, A. B., Ahring, B. K., Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10-26.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.66
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
64
-
-
0036566476
-
Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.
-
Modig, T., Liden, G., Taherzadeh, M. J., Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002, 363, 769-776.
-
(2002)
Biochem. J.
, vol.363
, pp. 769-776
-
-
Modig, T.1
Liden, G.2
Taherzadeh, M.J.3
-
65
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae.
-
Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z. et al., Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 2010, 3, 2.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
Mccaffery, J.M.3
Cai, Z.4
-
66
-
-
0019519729
-
Inhibition of glycolysis by furfural in Saccharomyces cerevisiae.
-
Banerjee, N., Bhatnagar, R., Viswanathan, L., Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1981, 11, 226-228.
-
(1981)
Appl. Microbiol. Biotechnol.
, vol.11
, pp. 226-228
-
-
Banerjee, N.1
Bhatnagar, R.2
Viswanathan, L.3
-
67
-
-
0028519066
-
Mechanisms of resistance of whole cells to toxic organic solvents.
-
Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., De Bont, J. A. M., Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 1994, 12, 409-415.
-
(1994)
Trends Biotechnol.
, vol.12
, pp. 409-415
-
-
Heipieper, H.J.1
Weber, F.J.2
Sikkema, J.3
Keweloh, H.4
De Bont, J.A.M.5
-
68
-
-
85042587851
-
Metabolic effects of furaldehydes and impacts on biotechnological processes.
-
Almeida, J. R. M., Bertilsson, M., Gorwa-Grauslund, M. F., Gorsich, S., Lidén, G., Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 2009, 82, 625-638.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 625-638
-
-
Almeida, J.R.M.1
Bertilsson, M.2
Gorwa-Grauslund, M.F.3
Gorsich, S.4
Lidén, G.5
-
69
-
-
0030586862
-
Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae.
-
Delgenes, J. P., Moletta, R., Navarro, J. M., Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 1996, 19, 220-225.
-
(1996)
Enzyme Microb. Technol.
, vol.19
, pp. 220-225
-
-
Delgenes, J.P.1
Moletta, R.2
Navarro, J.M.3
-
70
-
-
45149104923
-
Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
-
Endo, A., Nakamura, T., Ando, A., Tokuyasu, K., Shima, J., Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 2008, 1, 3.
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 3
-
-
Endo, A.1
Nakamura, T.2
Ando, A.3
Tokuyasu, K.4
Shima, J.5
-
71
-
-
0036182468
-
Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: Relevance in aldehyde reduction.
-
Larroy, C., Fernández, M. R., González, E., Parés, X., Biosca, J. A., Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: Relevance in aldehyde reduction. Biochem. J. 2002, 361, 163-172.
-
(2002)
Biochem. J.
, vol.361
, pp. 163-172
-
-
Larroy, C.1
Fernández, M.R.2
González, E.3
Parés, X.4
Biosca, J.A.5
-
72
-
-
4644229547
-
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
-
Liu, Z. L., Slininger, P. J., Dien, B. S., Berhow, M. A. et al., Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 2004, 31, 345-352.
-
(2004)
J. Ind. Microbiol. Biotechnol.
, vol.31
, pp. 345-352
-
-
Liu, Z.L.1
Slininger, P.J.2
Dien, B.S.3
Berhow, M.A.4
-
73
-
-
0027048930
-
Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae.
-
Villa, G. P., Bartroli, R., López, R., Guerra, M. et al., Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 1992, 12, 509-512.
-
(1992)
Acta Biotechnol.
, vol.12
, pp. 509-512
-
-
Villa, G.P.1
Bartroli, R.2
López, R.3
Guerra, M.4
-
74
-
-
0027590958
-
Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria.
-
Boopathy, R., Bokang, H., Daniels, L., Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. 1993, 11, 147-150.
-
(1993)
J. Ind. Microbiol.
, vol.11
, pp. 147-150
-
-
Boopathy, R.1
Bokang, H.2
Daniels, L.3
-
75
-
-
73249132552
-
Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
-
Heer, D., Heine, D., Sauer, U., Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl. Environ. Microbiol. 2009, 75, 7631-7638.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 7631-7638
-
-
Heer, D.1
Heine, D.2
Sauer, U.3
-
76
-
-
71249132746
-
Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors.
-
Alriksson, B., Horváth, I. S., Jönsson, L. J., Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem. 2010, 45, 264-271.
-
(2010)
Process Biochem.
, vol.45
, pp. 264-271
-
-
Alriksson, B.1
Horváth, I.S.2
Jönsson, L.J.3
-
77
-
-
77950431784
-
Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14.
-
Koopman, F., Wierckx, N., de Winde, J. H., Ruijssenaars, H. J., Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc. Natl. Acad. Sci. USA 2010, 107, 4919-4924.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 4919-4924
-
-
Koopman, F.1
Wierckx, N.2
de Winde, J.H.3
Ruijssenaars, H.J.4
-
78
-
-
33750310028
-
Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.
-
Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M. et al., Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 2006, 126, 488-498.
-
(2006)
J. Biotechnol.
, vol.126
, pp. 488-498
-
-
Öhgren, K.1
Bengtsson, O.2
Gorwa-Grauslund, M.F.3
Galbe, M.4
-
79
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
-
Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2007, 73, 1039-1046.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
80
-
-
0021040193
-
The role of redox balances in the anaerobic fermentation of xylose by yeasts.
-
Bruinenberg, P. M., Debot, P. H. M., van Dijken, J. P., Scheffers, W. A., The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. Biotechnol. 1983, 18, 287-292.
-
(1983)
Eur. J. Appl. Microbiol. Biotechnol.
, vol.18
, pp. 287-292
-
-
Bruinenberg, P.M.1
Debot, P.H.M.2
van Dijken, J.P.3
Scheffers, W.A.4
-
81
-
-
0037140422
-
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
-
Wahlbom, C. F., Hahn-Hägerdal, B., Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2002, 78, 172-178.
-
(2002)
Biotechnol. Bioeng.
, vol.78
, pp. 172-178
-
-
Wahlbom, C.F.1
Hahn-Hägerdal, B.2
-
82
-
-
69949160038
-
Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
-
Almeida, J. R. M., Bertilsson, M., Hahn-Hägerdal, B., Lidén, G., Gorwa-Grauslund, M. F., Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl. Microbiol. Biotechnol. 2009, 84, 751-761.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 751-761
-
-
Almeida, J.R.M.1
Bertilsson, M.2
Hahn-Hägerdal, B.3
Lidén, G.4
Gorwa-Grauslund, M.F.5
-
83
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition.
-
Palmqvist, E., Hahn-Hägerdal, B., Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25-33.
-
(2000)
Bioresour. Technol.
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
84
-
-
66149164727
-
Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
-
Lu, Y., Warner, R., Sedlak, M., Ho, N., Mosier, N. S., Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol. Prog. 2009, 25, 349-356.
-
(2009)
Biotechnol. Prog.
, vol.25
, pp. 349-356
-
-
Lu, Y.1
Warner, R.2
Sedlak, M.3
Ho, N.4
Mosier, N.S.5
-
85
-
-
0242320927
-
A bioethanol process development unit: Initial operating experiences and results with a corn fiber feedstock.
-
Schell, D. J., Riley, C. J., Dowe, N., Farmer, J. et al., A bioethanol process development unit: Initial operating experiences and results with a corn fiber feedstock. Bioresour. Technol. 2004, 91, 179-188.
-
(2004)
Bioresour. Technol.
, vol.91
, pp. 179-188
-
-
Schell, D.J.1
Riley, C.J.2
Dowe, N.3
Farmer, J.4
-
86
-
-
0035046617
-
Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.
-
Narendranath, N. V., Thomas, K. C., Ingledew, W. M., Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 2001, 26, 171-177.
-
(2001)
J. Ind. Microbiol. Biotechnol.
, vol.26
, pp. 171-177
-
-
Narendranath, N.V.1
Thomas, K.C.2
Ingledew, W.M.3
-
87
-
-
33646438534
-
Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash.
-
Graves, T., Narendranath, N. V., Dawson, K., Power, R., Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J. Ind. Microbiol. Biotechnol. 2006, 33, 469-474.
-
(2006)
J. Ind. Microbiol. Biotechnol.
, vol.33
, pp. 469-474
-
-
Graves, T.1
Narendranath, N.V.2
Dawson, K.3
Power, R.4
-
88
-
-
0036209598
-
Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids.
-
Thomas, K. C., Hynes, S. H., Ingledew, W. M., Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl. Environ. Microbiol. 2002, 68, 1616-1623.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 1616-1623
-
-
Thomas, K.C.1
Hynes, S.H.2
Ingledew, W.M.3
-
89
-
-
0033982072
-
Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae.
-
Pampulha, M. E., Loureiro-Dias, M. C., Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184, 69-72.
-
(2000)
FEMS Microbiol. Lett.
, vol.184
, pp. 69-72
-
-
Pampulha, M.E.1
Loureiro-Dias, M.C.2
-
90
-
-
0026452057
-
Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling.
-
Russell, J., Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling. J. Appl. Bacteriol. 1992, 73, 363-370.
-
(1992)
J. Appl. Bacteriol.
, vol.73
, pp. 363-370
-
-
Russell, J.1
-
91
-
-
0025608322
-
Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid.
-
Pampulha, M. E., Loureiro-Dias, M. C., Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl. Microbiol. Biotechnol. 1990, 34, 375-380.
-
(1990)
Appl. Microbiol. Biotechnol.
, vol.34
, pp. 375-380
-
-
Pampulha, M.E.1
Loureiro-Dias, M.C.2
-
92
-
-
0032479995
-
The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast.
-
Piper, P., Mahe, Y., Thompson, S., Pandjaitan, R. et al., The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 1998, 17, 4257-4265.
-
(1998)
EMBO J.
, vol.17
, pp. 4257-4265
-
-
Piper, P.1
Mahe, Y.2
Thompson, S.3
Pandjaitan, R.4
-
93
-
-
64549126134
-
Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
-
Bellissimi, E., van Dijken, J. P., Pronk, J. T., van Maris, A. J. A., Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009, 9, 358-364.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 358-364
-
-
Bellissimi, E.1
van Dijken, J.P.2
Pronk, J.T.3
van Maris, A.J.A.4
-
94
-
-
77952169542
-
Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
-
Casey, E., Sedlak, M., Ho, N. W. Y., Mosier, N. S., Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10, 385-393.
-
(2010)
FEMS Yeast Res.
, vol.10
, pp. 385-393
-
-
Casey, E.1
Sedlak, M.2
Ho, N.W.Y.3
Mosier, N.S.4
-
95
-
-
0141788811
-
Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae.
-
Helle, S., Cameron, D., Lam, J., White, B., Duff, S., Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb. Technol. 2003, 33, 786-792.
-
(2003)
Enzyme Microb. Technol.
, vol.33
, pp. 786-792
-
-
Helle, S.1
Cameron, D.2
Lam, J.3
White, B.4
Duff, S.5
-
96
-
-
0347601907
-
Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor.
-
Helle, S. S., Murray, A., Lam, J., Cameron, D. R., Duff, S. J., Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour. Technolnol. 2004, 92, 163-171.
-
(2004)
Bioresour. Technolnol.
, vol.92
, pp. 163-171
-
-
Helle, S.S.1
Murray, A.2
Lam, J.3
Cameron, D.R.4
Duff, S.J.5
-
97
-
-
75749134466
-
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
-
Medina, V. G., Almering, M. J. H., van Maris, A. J. A., Pronk, J. T., Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 2010, 76, 190-195.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 190-195
-
-
Medina, V.G.1
Almering, M.J.H.2
van Maris, A.J.A.3
Pronk, J.T.4
-
98
-
-
0027954163
-
Evaluation of bacterial contamination in a fed-batch alcoholic fermentation process.
-
de Oliva-Neto, P., Yokoya, F., Evaluation of bacterial contamination in a fed-batch alcoholic fermentation process. World J. Microbiol. Biotechnol. 1994, 10, 697-699.
-
(1994)
World J. Microbiol. Biotechnol.
, vol.10
, pp. 697-699
-
-
de Oliva-Neto, P.1
Yokoya, F.2
-
99
-
-
10944256640
-
Bacterial contaminants of fuel ethanol production.
-
Skinner, K. A., Leathers, T. D., Bacterial contaminants of fuel ethanol production. J. Ind. Microbiol. Biotechnol. 2004, 31, 401-408.
-
(2004)
J. Ind. Microbiol. Biotechnol.
, vol.31
, pp. 401-408
-
-
Skinner, K.A.1
Leathers, T.D.2
-
100
-
-
0026653581
-
Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.
-
Lindén, T., Peetre, J., Hahn-Hägerdal, B., Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl. Environ. Microbiol. 1992, 58, 1661-1669.
-
(1992)
Appl. Environ. Microbiol.
, vol.58
, pp. 1661-1669
-
-
Lindén, T.1
Peetre, J.2
Hahn-Hägerdal, B.3
-
101
-
-
40149105233
-
Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process.
-
Basílio, A. C. M., de Araújo, P. R. L., de Morais, J. O. F., da Silva Filho, E. A. et al., Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr. Microbiol. 2008, 56, 322-326.
-
(2008)
Curr. Microbiol.
, vol.56
, pp. 322-326
-
-
Basílio, A.C.M.1
de Araújo, P.R.L.2
de Morais, J.O.F.3
da Silva Filho, E.A.4
-
102
-
-
0020607444
-
Carbohydrate metabolism in lactic acid bacteria.
-
Kandler, O., Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 1983, 49, 209-224.
-
(1983)
Antonie Van Leeuwenhoek
, vol.49
, pp. 209-224
-
-
Kandler, O.1
-
103
-
-
47249086391
-
Utilization of ethanol by acetic acid bacteria.
-
Rao, M. R., Stokes, J. L., Utilization of ethanol by acetic acid bacteria. J. Bacteriol. 1953, 66, 634-638.
-
(1953)
J. Bacteriol.
, vol.66
, pp. 634-638
-
-
Rao, M.R.1
Stokes, J.L.2
-
104
-
-
0030657463
-
Effects of lactobacilli on yeast-catalyzed ethanol fermentations.
-
Narendranath, N. V., Hynes, S. H., Thomas, K. C., Ingledew, W. M., Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl. Environ. Microbiol. 1997, 63, 4158-4163.
-
(1997)
Appl. Environ. Microbiol.
, vol.63
, pp. 4158-4163
-
-
Narendranath, N.V.1
Hynes, S.H.2
Thomas, K.C.3
Ingledew, W.M.4
-
105
-
-
33846329451
-
Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation.
-
de Souza Liberal, A. T., Basílio, A. C. M., do Monte Resende, A., Brasileiro, B. T. V. et al., Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J. Appl. Microbiol. 2007, 102, 538-547.
-
(2007)
J. Appl. Microbiol.
, vol.102
, pp. 538-547
-
-
de Souza Liberal, A.T.1
Basílio, A.C.M.2
do Monte Resende, A.3
Brasileiro, B.T.V.4
-
106
-
-
0242659822
-
Beer spoilage bacteria and hop resistance.
-
Sakamoto, K., Konings, W. N., Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105-124.
-
(2003)
Int. J. Food Microbiol.
, vol.89
, pp. 105-124
-
-
Sakamoto, K.1
Konings, W.N.2
-
107
-
-
76149132991
-
Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to Hop Iso-alfa-acids.
-
Hazelwood, L. A., Walsh, M. C., Pronk, J. T., Daran, J. M., Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to Hop Iso-alfa-acids. Appl. Environ. Microbiol. 2010, 76, 318-328.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 318-328
-
-
Hazelwood, L.A.1
Walsh, M.C.2
Pronk, J.T.3
Daran, J.M.4
-
108
-
-
33947430562
-
Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover.
-
Öhgren, K., Bura, R., Saddler, J., Zacchi, G., Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 2007, 98, 2503-2510.
-
(2007)
Bioresour. Technol.
, vol.98
, pp. 2503-2510
-
-
Öhgren, K.1
Bura, R.2
Saddler, J.3
Zacchi, G.4
-
109
-
-
71249111390
-
SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.
-
Carrasco, C., Baudel, H. M., Sendelius, J., Modig, T. et al., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Enzyme Microb. Technol. 2010, 46, 64-73.
-
(2010)
Enzyme Microb. Technol.
, vol.46
, pp. 64-73
-
-
Carrasco, C.1
Baudel, H.M.2
Sendelius, J.3
Modig, T.4
-
110
-
-
77952906131
-
Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw.
-
Remond, C., Aubry, N., Cronier, D., Noel, S. et al., Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour. Technol. 2010, 101, 6712-6717.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 6712-6717
-
-
Remond, C.1
Aubry, N.2
Cronier, D.3
Noel, S.4
-
111
-
-
40949127359
-
Steam inretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production.
-
Linde, M., Jakobsson, E. L., Galbe, M., Zacchi, G., Steam inretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 2008, 32, 326-332.
-
(2008)
Biomass Bioenergy
, vol.32
, pp. 326-332
-
-
Linde, M.1
Jakobsson, E.L.2
Galbe, M.3
Zacchi, G.4
-
112
-
-
33847618375
-
Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration.
-
Linde, M., Galbe, M., Zacchi, G., Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme Microb. Technol. 2007, 40, 1100-1107.
-
(2007)
Enzyme Microb. Technol.
, vol.40
, pp. 1100-1107
-
-
Linde, M.1
Galbe, M.2
Zacchi, G.3
-
113
-
-
79952180204
-
-
Wiselolgel, A., Biomass feedstock resources and composition. in: Wyman, C. (Ed.), Handbook on Bioethanol Production and Utilization, Taylor and Francis, Washington, DC 1996 108-118.
-
Wiselolgel, A., Biomass feedstock resources and composition. in: Wyman, C. (Ed.), Handbook on Bioethanol Production and Utilization, Taylor and Francis, Washington, DC 1996, pp. 108-118.
-
-
-
-
114
-
-
77950080221
-
Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis.
-
Hsu, T. C., Guo, G. L., Chen, W. H., Hwang, W. S., Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 2010, 101, 4907-4913.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 4907-4913
-
-
Hsu, T.C.1
Guo, G.L.2
Chen, W.H.3
Hwang, W.S.4
-
115
-
-
74749103232
-
Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains.
-
Faga, B. A., Wilkins, M. R., Banat, I. M., Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour. Technolnol. 2010, 101, 2273-2279.
-
(2010)
Bioresour. Technolnol.
, vol.101
, pp. 2273-2279
-
-
Faga, B.A.1
Wilkins, M.R.2
Banat, I.M.3
-
116
-
-
18844437254
-
Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol.
-
Sassner, P., Galbe, M., Zacchi, G., Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl. Biochem. Biotechnol. 2005, 121-124, 1101-1117.
-
(2005)
Appl. Biochem. Biotechnol.
, vol.121-124
, pp. 1101-1117
-
-
Sassner, P.1
Galbe, M.2
Zacchi, G.3
-
117
-
-
71149086772
-
Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment.
-
Li, B. Z., Balan, V., Yuan, Y. J., Dale, B. E., Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour. Technol. 2010, 101, 1285-1292.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 1285-1292
-
-
Li, B.Z.1
Balan, V.2
Yuan, Y.J.3
Dale, B.E.4
-
118
-
-
39649107109
-
Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.
-
Olofsson, K., Rudolf, A., Lidén, G., Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J. Biotechnol. 2008, 134, 112-120.
-
(2008)
J. Biotechnol.
, vol.134
, pp. 112-120
-
-
Olofsson, K.1
Rudolf, A.2
Lidén, G.3
-
119
-
-
39549104535
-
Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054.
-
Rudolf, A., Baudel, H., Zacchi, G., Hahn-Hägerdal, B., Lidén, G., Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol. Bioeng. 2008, 99, 783-790.
-
(2008)
Biotechnol. Bioeng.
, vol.99
, pp. 783-790
-
-
Rudolf, A.1
Baudel, H.2
Zacchi, G.3
Hahn-Hägerdal, B.4
Lidén, G.5
-
120
-
-
58649098156
-
Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
-
Matsushika, A., Inoue, H., Murakami, K., Takimura, O., Sawayama, S., Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technolnol. 2009, 100, 2392-2398.
-
(2009)
Bioresour. Technolnol.
, vol.100
, pp. 2392-2398
-
-
Matsushika, A.1
Inoue, H.2
Murakami, K.3
Takimura, O.4
Sawayama, S.5
-
121
-
-
78650327471
-
Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.
-
Runquist, D., Hahn-Hägerdal, B., Bettiga, M., Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76, 7796-7802.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7796-7802
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
|