메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages

Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation

Author keywords

Adaptive evolution; Alistipes; Bacteroides; Bacteroidetes; Cellulosic ethanol; Mammal gut; Microbe; Saccharomyces cerevisiae; Xylose fermentation; Xylose isomerase

Indexed keywords

XYLOSE ISOMERASE; ISOMERASE;

EID: 84929429110     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-015-0253-1     Document Type: Article
Times cited : (57)

References (31)
  • 1
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv. 2013;31:851-61.
    • (2013) Biotechnol Adv , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 2
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69:2671-90.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 3
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol. 2004;63:495-509.
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 4
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hagerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol. 1996;62:4648-51.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bulow, L.5    Hahn-Hagerdal, B.6
  • 5
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol. 2000;66:3381-6.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hägerdal, B.4
  • 6
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae
    • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res. 2003;4:69-78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3    Winkler, A.A.4    Jetten, M.S.5    de Laat, W.T.6
  • 7
    • 84870994085 scopus 로고    scopus 로고
    • An efficient xylosefermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
    • Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X. An efficient xylosefermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol. 2012;96:1079-91.
    • (2012) Appl Microbiol Biotechnol , vol.96 , pp. 1079-1091
    • Shen, Y.1    Chen, X.2    Peng, B.3    Chen, L.4    Hou, J.5    Bao, X.6
  • 8
    • 84859480640 scopus 로고    scopus 로고
    • Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylosemetabolizing recombinant Saccharomyces cerevisiae
    • Lee S-H, Kodaki T, Park Y-C, Seo J-H. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylosemetabolizing recombinant Saccharomyces cerevisiae. J Biotechnol. 2012;158:184-91.
    • (2012) J Biotechnol , vol.158 , pp. 184-191
    • Lee, S.-H.1    Kodaki, T.2    Park, Y.-C.3    Seo, J.-H.4
  • 9
    • 84855362753 scopus 로고    scopus 로고
    • A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw
    • Olofsson K, Runquist D, Hahn-Hagerdal B, Liden G. A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express. 2011;1:4.
    • (2011) AMB Express , vol.1 , pp. 4
    • Olofsson, K.1    Runquist, D.2    Hahn-Hagerdal, B.3    Liden, G.4
  • 10
    • 84855419323 scopus 로고    scopus 로고
    • Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
    • Peng B, Shen Y, Li X, Chen X, Hou J, Bao X. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng. 2012;14:9-18.
    • (2012) Metab Eng , vol.14 , pp. 9-18
    • Peng, B.1    Shen, Y.2    Li, X.3    Chen, X.4    Hou, J.5    Bao, X.6
  • 11
    • 84877357931 scopus 로고    scopus 로고
    • Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPHdependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase
    • Khattab SM, Saimura M, Kodaki T. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPHdependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol. 2013;165:153-6.
    • (2013) J Biotechnol , vol.165 , pp. 153-156
    • Khattab, S.M.1    Saimura, M.2    Kodaki, T.3
  • 13
    • 0024508349 scopus 로고
    • The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast
    • Amore R, Wilhelm M, Hollenberg CP. The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol. 1989;30:351-7.
    • (1989) Appl Microbiol Biotechnol , vol.30 , pp. 351-357
    • Amore, R.1    Wilhelm, M.2    Hollenberg, C.P.3
  • 14
    • 0037415332 scopus 로고    scopus 로고
    • The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae
    • Gárdonyi M, Hahn-Hägerdal B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym Microb Tech. 2003;32:252-9.
    • (2003) Enzym Microb Tech , vol.32 , pp. 252-259
    • Gárdonyi, M.1    Hahn-Hägerdal, B.2
  • 15
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng. 2012;14:611-22.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5
  • 16
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol. 2009;82:1067-78.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6
  • 18
    • 82455209009 scopus 로고    scopus 로고
    • Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
    • Ha S-J, Kim SR, Choi J-H, Park MS, Jin Y-S. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl Microbiol Biotechnol. 2011;92:77-84.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 77-84
    • Ha, S.-J.1    Kim, S.R.2    Choi, J.-H.3    Park, M.S.4    Jin, Y.-S.5
  • 19
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:2304-11.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 21
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of Dxylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of Dxylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels. 2013;6:84.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 84
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Mertens, J.A.4
  • 22
    • 0027239580 scopus 로고
    • The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase
    • Meng M, Bagdasarian M, Zeikus JG. The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase. Proc Natl Acad Sci U S A. 1993;90:8459-63.
    • (1993) Proc Natl Acad Sci U S A , vol.90 , pp. 8459-8463
    • Meng, M.1    Bagdasarian, M.2    Zeikus, J.G.3
  • 24
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu C, Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2007;73:6072-7.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 25
    • 0023067403 scopus 로고
    • Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae
    • Dumont ME, Ernst JF, Hampsey DM, Sherman F. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 1987;6:235-41.
    • (1987) EMBO J , vol.6 , pp. 235-241
    • Dumont, M.E.1    Ernst, J.F.2    Hampsey, D.M.3    Sherman, F.4
  • 27
    • 0029360727 scopus 로고
    • Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR
    • Liu YG, Mitsukawa N, Oosumi T, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995;8:457-63.
    • (1995) Plant J , vol.8 , pp. 457-463
    • Liu, Y.G.1    Mitsukawa, N.2    Oosumi, T.3    Whittier, R.F.4
  • 28
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/singlestranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. Transformation of yeast by lithium acetate/singlestranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 30
    • 79955563999 scopus 로고    scopus 로고
    • Isolation of xylose isomerases by sequence-and function-based screening from a soil metagenomic library
    • Parachin NS, Gorwa-Grauslund MF. Isolation of xylose isomerases by sequence-and function-based screening from a soil metagenomic library. Biotechnol Biofuels. 2011;4:9.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 9
    • Parachin, N.S.1    Gorwa-Grauslund, M.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.