메뉴 건너뛰기




Volumn 5, Issue 1, 2012, Pages

Homologous recombination-enzymes and pathways

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84957625635     PISSN: None     EISSN: 23246200     Source Type: Journal    
DOI: 10.1128/ecosalplus.7.2.7     Document Type: Article
Times cited : (47)

References (482)
  • 1
    • 0002407829 scopus 로고
    • Experimental studies in the physiology of heredity
    • 80-99
    • Bateson W, Saunders GF, et al. 1905. Experimental studies in the physiology of heredity. Rep Evol Comm R Soc 2:1-55, 80-99.
    • (1905) Rep Evol Comm R Soc , vol.2 , pp. 1-55
    • Bateson, W.1    Saunders, G.F.2
  • 2
    • 0000751138 scopus 로고
    • X-ray-induced growth factor requirements in bacteria
    • Gray CH, Tatum EL. 1944. X-ray-induced growth factor requirements in bacteria. Proc Natl Acad Sci USA 30:404-410.
    • (1944) Proc Natl Acad Sci USA , vol.30 , pp. 404-410
    • Gray, C.H.1    Tatum, E.L.2
  • 3
    • 51149212256 scopus 로고
    • Gene recombination in Escherichia coli
    • Lederberg J, Tatum EL. 1946. Gene recombination in Escherichia coli. Nature 158:558.
    • (1946) Nature , vol.158 , pp. 558
    • Lederberg, J.1    Tatum, E.L.2
  • 4
    • 0001277536 scopus 로고
    • Genetic exchange in Salmonella
    • Zinder ND, Lederberg J. 1952. Genetic exchange in Salmonella. J Bacteriol 64:679-699.
    • (1952) J Bacteriol , vol.64 , pp. 679-699
    • Zinder, N.D.1    Lederberg, J.2
  • 5
    • 84920056771 scopus 로고
    • The significance of pneumococcal types
    • Griffith F. 1928. The significance of pneumococcal types. J Hyg 27:113-159.
    • (1928) J Hyg , vol.27 , pp. 113-159
    • Griffith, F.1
  • 6
    • 0024469392 scopus 로고
    • The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants
    • Rayssiguier C, Thaler DS, Radman M. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396-401.
    • (1989) Nature , vol.342 , pp. 396-401
    • Rayssiguier, C.1    Thaler, D.S.2    Radman, M.3
  • 7
    • 0000880652 scopus 로고
    • Isolation and characterization of recombination-deficient mutants of Escherichia coli K12
    • Clark AJ, Margulies AD. 1965. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc Natl Acad Sci USA 53:451-459.
    • (1965) Proc Natl Acad Sci USA , vol.53 , pp. 451-459
    • Clark, A.J.1    Margulies, A.D.2
  • 8
    • 0014085230 scopus 로고
    • Cotransduction with thy of a gene required for genetic recombination in Escherichia coli
    • Emmerson PT, Howard-Flanders P. 1967. Cotransduction with thy of a gene required for genetic recombination in Escherichia coli. J Bacteriol 93:1729-1731.
    • (1967) J Bacteriol , vol.93 , pp. 1729-1731
    • Emmerson, P.T.1    Howard-Flanders, P.2
  • 9
    • 0014326203 scopus 로고
    • Recombination deficient mutants of Escherichia coli K12 that map between thyA and argA
    • Emmerson PT. 1968. Recombination deficient mutants of Escherichia coli K12 that map between thyA and argA. Genetics 60:19-30.
    • (1968) Genetics , vol.60 , pp. 19-30
    • Emmerson, P.T.1
  • 10
    • 0014599009 scopus 로고
    • Genetic analysis of recombination-deficient mutants of Escherichia coli K-12 carrying rec mutations cotransducible with thyA
    • Willetts NS, Mount DW. 1969. Genetic analysis of recombination-deficient mutants of Escherichia coli K-12 carrying rec mutations cotransducible with thyA. J Bacteriol 100:923-934.
    • (1969) J Bacteriol , vol.100 , pp. 923-934
    • Willetts, N.S.1    Mount, D.W.2
  • 11
    • 84959678845 scopus 로고
    • A mechanism for gene conversion in fungi
    • Holliday R. 1964. A mechanism for gene conversion in fungi. Genet Res 5:282-304.
    • (1964) Genet Res , vol.5 , pp. 282-304
    • Holliday, R.1
  • 14
    • 0029863634 scopus 로고    scopus 로고
    • The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair
    • Kogoma T, Cadwell GW, Barnard KG, Asai T. 1996. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol 178:1258-1264.
    • (1996) J Bacteriol , vol.178 , pp. 1258-1264
    • Kogoma, T.1    Cadwell, G.W.2    Barnard, K.G.3    Asai, T.4
  • 15
    • 0029960337 scopus 로고    scopus 로고
    • Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC
    • Sandler SJ, Samra HS, Clark AJ. 1996. Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143:5-13.
    • (1996) Genetics , vol.143 , pp. 5-13
    • Sandler, S.J.1    Samra, H.S.2    Clark, A.J.3
  • 16
    • 0014852123 scopus 로고
    • Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec-mutations
    • Barbour SD, Nagaishi H, Templin A, Clark AJ. 1970. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec-mutations. Proc Natl Acad Sci USA 67:128-135.
    • (1970) Proc Natl Acad Sci USA , vol.67 , pp. 128-135
    • Barbour, S.D.1    Nagaishi, H.2    Templin, A.3    Clark, A.J.4
  • 17
    • 0027376678 scopus 로고
    • Genetic and molecular analyses of the C-terminal region of the RecE gene from the Rac prophage of Escherichia coli K-12 reveal the Rect gene
    • Clark AJ, Sharma V, Brenowitz S, Chu CC, Sandler S, Satin L, Templin A, Berger I, Cohen A. 1993. Genetic and molecular analyses of the C-terminal region of the RecE gene from the Rac prophage of Escherichia coli K-12 reveal the Rect gene. J Bacteriol 175:7673-7682.
    • (1993) J Bacteriol , vol.175 , pp. 7673-7682
    • Clark, A.J.1    Sharma, V.2    Brenowitz, S.3    Chu, C.C.4    Sandler, S.5    Satin, L.6    Templin, A.7    Berger, I.8    Cohen, A.9
  • 18
    • 0027391504 scopus 로고
    • Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA
    • Hall SD, Kane MF, Kolodner RD. 1993. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J Bacteriol 175:277-287.
    • (1993) J Bacteriol , vol.175 , pp. 277-287
    • Hall, S.D.1    Kane, M.F.2    Kolodner, R.D.3
  • 19
    • 0037581065 scopus 로고
    • Isolation of exonuclease VIII: the enzyme associated with sbcA indirect suppressor
    • Kushner SR, Nagaishi H, Clark AJ. 1974. Isolation of exonuclease VIII: the enzyme associated with sbcA indirect suppressor. Proc Natl Acad Sci USA 71:3593-3597.
    • (1974) Proc Natl Acad Sci USA , vol.71 , pp. 3593-3597
    • Kushner, S.R.1    Nagaishi, H.2    Clark, A.J.3
  • 21
    • 0015817690 scopus 로고
    • Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants
    • Horii Z, Clark AJ. 1973. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80:327-344.
    • (1973) J Mol Biol , vol.80 , pp. 327-344
    • Horii, Z.1    Clark, A.J.2
  • 23
    • 0022345185 scopus 로고
    • Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12
    • Lloyd RG, Buckman C. 1985. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12. J Bacteriol 164:836-844.
    • (1985) J Bacteriol , vol.164 , pp. 836-844
    • Lloyd, R.G.1    Buckman, C.2
  • 24
    • 0030089480 scopus 로고    scopus 로고
    • The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination
    • Connelly JC, Leach DR. 1996. The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells 1:285-291.
    • (1996) Genes Cells , vol.1 , pp. 285-291
    • Connelly, J.C.1    Leach, D.R.2
  • 25
    • 0026551842 scopus 로고
    • Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12
    • Gibson FP, Leach DRF, Lloyd RG. 1992. Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12. J Bacteriol 174:1222-1228.
    • (1992) J Bacteriol , vol.174 , pp. 1222-1228
    • Gibson, F.P.1    Leach, D.R.F.2    Lloyd, R.G.3
  • 26
    • 0028292327 scopus 로고
    • Homologous genetic recombination: the pieces begin to fall into place
    • Clark AJ, Sandler SJ. 1994. Homologous genetic recombination: the pieces begin to fall into place. Crit Rev Microbiol 20:125-142.
    • (1994) Crit Rev Microbiol , vol.20 , pp. 125-142
    • Clark, A.J.1    Sandler, S.J.2
  • 27
    • 0020532849 scopus 로고
    • Plasmidic recombination in Escherichia coli K-12: the role of recF gene function
    • Cohen A, Laban A. 1983. Plasmidic recombination in Escherichia coli K-12: the role of recF gene function. Mol Gen Genet 189:471-474.
    • (1983) Mol Gen Genet , vol.189 , pp. 471-474
    • Cohen, A.1    Laban, A.2
  • 28
    • 0021962878 scopus 로고
    • Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli
    • Kolodner R, Fishel RA, Howard M. 1985. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163:1060-1066.
    • (1985) J Bacteriol , vol.163 , pp. 1060-1066
    • Kolodner, R.1    Fishel, R.A.2    Howard, M.3
  • 29
    • 0031453378 scopus 로고    scopus 로고
    • Processing of recombination intermediates by the RuvABC proteins
    • West SC. 1997. Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31:213-244.
    • (1997) Annu Rev Genet , vol.31 , pp. 213-244
    • West, S.C.1
  • 30
    • 0026009412 scopus 로고
    • Conjugational recombination in resolvasedeficient ruvC mutants of Escherichia coli K-12 depends on recG
    • Lloyd RG. 1991. Conjugational recombination in resolvasedeficient ruvC mutants of Escherichia coli K-12 depends on recG. J Bacteriol 173:5414-5418.
    • (1991) J Bacteriol , vol.173 , pp. 5414-5418
    • Lloyd, R.G.1
  • 31
    • 1642484213 scopus 로고    scopus 로고
    • Interplay between DNA replication, recombination and repair based on the structure of RecG helicase
    • Briggs GS, Mahdi AA, Weller GR, Wen Q, Lloyd RG. 2004. Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc B 359:49-59.
    • (2004) Philos Trans R Soc B , vol.359 , pp. 49-59
    • Briggs, G.S.1    Mahdi, A.A.2    Weller, G.R.3    Wen, Q.4    Lloyd, R.G.5
  • 32
    • 26944459614 scopus 로고    scopus 로고
    • Structure and mechanism of Escherichia coli RecA ATPase
    • Bell CE. 2005. Structure and mechanism of Escherichia coli RecA ATPase. Mol Microbiol 58:358-366.
    • (2005) Mol Microbiol , vol.58 , pp. 358-366
    • Bell, C.E.1
  • 33
    • 0242692609 scopus 로고    scopus 로고
    • The bacterial RecA protein as a motor protein
    • Cox MM. 2003. The bacterial RecA protein as a motor protein. Annu Rev Microbiol 57:551-577.
    • (2003) Annu Rev Microbiol , vol.57 , pp. 551-577
    • Cox, M.M.1
  • 34
    • 33847778234 scopus 로고    scopus 로고
    • Motoring along with the bacterial RecA protein
    • Cox MM. 2007. Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8:127-138.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 127-138
    • Cox, M.M.1
  • 35
    • 33846232301 scopus 로고    scopus 로고
    • RecA assembly, one molecule at a time
    • Egelman EH. 2006. RecA assembly, one molecule at a time. Structure 14:1600-1602.
    • (2006) Structure , vol.14 , pp. 1600-1602
    • Egelman, E.H.1
  • 37
    • 44349104598 scopus 로고    scopus 로고
    • Structural biology: snapshots of DNA repair
    • Kowalczykowski SC. 2008. Structural biology: snapshots of DNA repair. Nature 453:463-466.
    • (2008) Nature , vol.453 , pp. 463-466
    • Kowalczykowski, S.C.1
  • 38
    • 0032715175 scopus 로고    scopus 로고
    • Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda
    • Kuzminov A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751-813.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 751-813
    • Kuzminov, A.1
  • 39
    • 1642463787 scopus 로고    scopus 로고
    • Molecular design and functional organization of the RecA protein
    • McGrew DA, Knight KL. 2003. Molecular design and functional organization of the RecA protein. Crit Rev Biochem Mol Biol 38:385-432.
    • (2003) Crit Rev Biochem Mol Biol , vol.38 , pp. 385-432
    • McGrew, D.A.1    Knight, K.L.2
  • 41
    • 33845689742 scopus 로고    scopus 로고
    • DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12
    • Renzette N, Gumlaw N, Sandler SJ. 2007. DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12. Mol Microbiol 63:103-115.
    • (2007) Mol Microbiol , vol.63 , pp. 103-115
    • Renzette, N.1    Gumlaw, N.2    Sandler, S.J.3
  • 42
    • 0035283191 scopus 로고    scopus 로고
    • Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis
    • Yasuda T, Morimatsu K, Kato R, Usukura J, Takahashi M, Ohmori H. 2001. Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis. EMBO J 20:1192-1202.
    • (2001) EMBO J , vol.20 , pp. 1192-1202
    • Yasuda, T.1    Morimatsu, K.2    Kato, R.3    Usukura, J.4    Takahashi, M.5    Ohmori, H.6
  • 43
    • 0018891794 scopus 로고
    • Control of recA gene RNA in E. coli: regulatory and signal genes
    • McPartland A, Green L, Echols H. 1980. Control of recA gene RNA in E. coli: regulatory and signal genes. Cell 20:731-737.
    • (1980) Cell , vol.20 , pp. 731-737
    • McPartland, A.1    Green, L.2    Echols, H.3
  • 44
    • 21344461670 scopus 로고    scopus 로고
    • MutS inhibits RecA-mediated strand transfer with methylated DNA substrates
    • Calmann MA, Evans JE, Marinus MG. 2005. MutS inhibits RecA-mediated strand transfer with methylated DNA substrates. Nucleic Acids Res 33:3591-3597.
    • (2005) Nucleic Acids Res , vol.33 , pp. 3591-3597
    • Calmann, M.A.1    Evans, J.E.2    Marinus, M.G.3
  • 45
    • 33646200335 scopus 로고    scopus 로고
    • Inhibition of RecA protein function by the RdgC protein from Escherichia coli
    • Drees JC, Chitteni-Pattu S, McCaslin DR, Inman RB, Cox MM. 2006. Inhibition of RecA protein function by the RdgC protein from Escherichia coli. J Biol Chem 281:4708-4717.
    • (2006) J Biol Chem , vol.281 , pp. 4708-4717
    • Drees, J.C.1    Chitteni-Pattu, S.2    McCaslin, D.R.3    Inman, R.B.4    Cox, M.M.5
  • 46
    • 0031444642 scopus 로고    scopus 로고
    • The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner
    • Anderson DG, Kowalczykowski SC. 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90:77-86.
    • (1997) Cell , vol.90 , pp. 77-86
    • Anderson, D.G.1    Kowalczykowski, S.C.2
  • 47
    • 0141540814 scopus 로고    scopus 로고
    • A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase
    • Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114:647-654.
    • (2003) Cell , vol.114 , pp. 647-654
    • Spies, M.1    Bianco, P.R.2    Dillingham, M.S.3    Handa, N.4    Baskin, R.J.5    Kowalczykowski, S.C.6
  • 49
    • 0038392868 scopus 로고    scopus 로고
    • RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair
    • Morimatsu K, Kowalczykowski SC. 2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337-1347.
    • (2003) Mol Cell , vol.11 , pp. 1337-1347
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 51
    • 49949087040 scopus 로고    scopus 로고
    • Structural basis for inhibition of homologous recombination by the RecX protein
    • Ragone S, Maman JD, Furnham N, Pellegrini L. 2008. Structural basis for inhibition of homologous recombination by the RecX protein. EMBO J 27:2259-2269.
    • (2008) EMBO J , vol.27 , pp. 2259-2269
    • Ragone, S.1    Maman, J.D.2    Furnham, N.3    Pellegrini, L.4
  • 52
    • 0028043495 scopus 로고
    • Dissociation of RecA filaments from duplex DNA by the RuvA and RuvB DNA repair proteins
    • Adams DE, Tsaneva IR, West SC. 1994. Dissociation of RecA filaments from duplex DNA by the RuvA and RuvB DNA repair proteins. Proc Natl Acad Sci USA 91:9901-9905.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 9901-9905
    • Adams, D.E.1    Tsaneva, I.R.2    West, S.C.3
  • 53
    • 0023135142 scopus 로고
    • Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA
    • Kowalczykowski SC, Krupp RA. 1987. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol 193:97-113.
    • (1987) J Mol Biol , vol.193 , pp. 97-113
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 54
    • 0023801207 scopus 로고
    • Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recFencoded protein in genetic recombination
    • Madiraju MV, Templin A, Clark AJ. 1988. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recFencoded protein in genetic recombination. Proc Natl Acad Sci USA 85:6592-6596.
    • (1988) Proc Natl Acad Sci USA , vol.85 , pp. 6592-6596
    • Madiraju, M.V.1    Templin, A.2    Clark, A.J.3
  • 55
    • 0027729063 scopus 로고
    • The appearance of the UmuD'C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis
    • Sommer S, Bailone A, Devoret R. 1993. The appearance of the UmuD'C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Mol Microbiol 10:963-971.
    • (1993) Mol Microbiol , vol.10 , pp. 963-971
    • Sommer, S.1    Bailone, A.2    Devoret, R.3
  • 57
    • 0027203925 scopus 로고
    • Antipairing and strand transferase activities of E. coli helicase-II (UvrD)
    • Morel P, Hejna JA, Ehrlich SD, Cassuto E. 1993. Antipairing and strand transferase activities of E. coli helicase-II (UvrD). Nucleic Acids Res 21:3205-3209.
    • (1993) Nucleic Acids Res , vol.21 , pp. 3205-3209
    • Morel, P.1    Hejna, J.A.2    Ehrlich, S.D.3    Cassuto, E.4
  • 58
    • 13244252309 scopus 로고    scopus 로고
    • UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
    • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA. 2005. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24:180-189.
    • (2005) EMBO J , vol.24 , pp. 180-189
    • Veaute, X.1    Delmas, S.2    Selva, M.3    Jeusset, J.4    Le Cam, E.5    Matic, I.6    Fabre, F.7    Petit, M.A.8
  • 59
    • 0343188817 scopus 로고
    • Autodigestion of lexA and phage lambda repressors
    • Little JW. 1984. Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci USA 81:1375-1379.
    • (1984) Proc Natl Acad Sci USA , vol.81 , pp. 1375-1379
    • Little, J.W.1
  • 61
    • 58149136066 scopus 로고    scopus 로고
    • Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain
    • Galkin VE, Yu X, Bielnicki J, Ndjonka D, Bell CE, Egelman EH. 2009. Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain. J Mol Biol 385:779-787.
    • (2009) J Mol Biol , vol.385 , pp. 779-787
    • Galkin, V.E.1    Yu, X.2    Bielnicki, J.3    Ndjonka, D.4    Bell, C.E.5    Egelman, E.H.6
  • 63
    • 0024121518 scopus 로고
    • RecAmediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation
    • Nohmi T, Battista JR, Dodson LA, Walker GC. 1988. RecAmediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci USA 85:1816-1820.
    • (1988) Proc Natl Acad Sci USA , vol.85 , pp. 1816-1820
    • Nohmi, T.1    Battista, J.R.2    Dodson, L.A.3    Walker, G.C.4
  • 64
    • 0031013231 scopus 로고    scopus 로고
    • The RecA hexamer is a structural homologue of ring helicases
    • Yu X, Egelman EH. 1997. The RecA hexamer is a structural homologue of ring helicases. Nat Struct Biol 4:101-104.
    • (1997) Nat Struct Biol , vol.4 , pp. 101-104
    • Yu, X.1    Egelman, E.H.2
  • 65
    • 33746713745 scopus 로고    scopus 로고
    • Real-time observation of RecA filament dynamics with single monomer resolution
    • Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. 2006. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515-527.
    • (2006) Cell , vol.126 , pp. 515-527
    • Joo, C.1    McKinney, S.A.2    Nakamura, M.3    Rasnik, I.4    Myong, S.5    Ha, T.6
  • 66
    • 0025291850 scopus 로고
    • Assembly and disassembly of RecA protein filaments occur at opposite filament ends. Relationship to DNA strand exchange
    • Lindsley JE, Cox MM. 1990. Assembly and disassembly of RecA protein filaments occur at opposite filament ends. Relationship to DNA strand exchange. J Biol Chem 265:9043-9054.
    • (1990) J Biol Chem , vol.265 , pp. 9043-9054
    • Lindsley, J.E.1    Cox, M.M.2
  • 67
    • 0023008741 scopus 로고
    • Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP
    • Egelman EH, Stasiak A. 1986. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP. J Mol Biol 191:677-697.
    • (1986) J Mol Biol , vol.191 , pp. 677-697
    • Egelman, E.H.1    Stasiak, A.2
  • 68
    • 0024339718 scopus 로고
    • The location of DNA in RecA-DNA helical filaments
    • Egelman EH, Yu X. 1989. The location of DNA in RecA-DNA helical filaments. Science 245:404-407.
    • (1989) Science , vol.245 , pp. 404-407
    • Egelman, E.H.1    Yu, X.2
  • 70
    • 0026500416 scopus 로고
    • The structure of the E. coli recA protein monomer and polymer
    • Story RM, Weber IT, Steitz TA. 1992. The structure of the E. coli recA protein monomer and polymer. Nature 355:318-325.
    • (1992) Nature , vol.355 , pp. 318-325
    • Story, R.M.1    Weber, I.T.2    Steitz, T.A.3
  • 71
    • 0034177947 scopus 로고    scopus 로고
    • A common structural core in proteins active in DNA recombination and replication
    • Egelman E. 2000. A common structural core in proteins active in DNA recombination and replication. Trends Biochem Sci 25:180-181.
    • (2000) Trends Biochem Sci , vol.25 , pp. 180-181
    • Egelman, E.1
  • 72
    • 0029620927 scopus 로고
    • Photocross-links between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157-164) and L2 (amino acid residues 195-209)
    • Malkov VA, Camerini-Otero RD. 1995. Photocross-links between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157-164) and L2 (amino acid residues 195-209). J Biol Chem 270:30230-30233.
    • (1995) J Biol Chem , vol.270 , pp. 30230-30233
    • Malkov, V.A.1    Camerini-Otero, R.D.2
  • 73
    • 0037952727 scopus 로고    scopus 로고
    • Biochemical characterization of a mutant RecA protein altered in DNA-binding loop 1
    • Mirshad JK, Kowalczykowski SC. 2003. Biochemical characterization of a mutant RecA protein altered in DNA-binding loop 1. Biochemistry 42:5945-5954.
    • (2003) Biochemistry , vol.42 , pp. 5945-5954
    • Mirshad, J.K.1    Kowalczykowski, S.C.2
  • 74
    • 0029968823 scopus 로고    scopus 로고
    • Differential proximity probing of two DNA binding sites in the Escherichia coli recA protein using photocross-linking methods
    • Wang Y, Adzuma K. 1996. Differential proximity probing of two DNA binding sites in the Escherichia coli recA protein using photocross-linking methods. Biochemistry 35:3563-3571.
    • (1996) Biochemistry , vol.35 , pp. 3563-3571
    • Wang, Y.1    Adzuma, K.2
  • 75
    • 0038276074 scopus 로고    scopus 로고
    • The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein
    • Eggler AL, Lusetti SL, Cox MM. 2003. The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 278:16389-16396.
    • (2003) J Biol Chem , vol.278 , pp. 16389-16396
    • Eggler, A.L.1    Lusetti, S.L.2    Cox, M.M.3
  • 77
    • 0038276075 scopus 로고    scopus 로고
    • Magnesium ion-dependent activation of the RecA protein involves the C terminus
    • Lusetti SL, Shaw JJ, Cox MM. 2003. Magnesium ion-dependent activation of the RecA protein involves the C terminus. J Biol Chem 278:16381-16388.
    • (2003) J Biol Chem , vol.278 , pp. 16381-16388
    • Lusetti, S.L.1    Shaw, J.J.2    Cox, M.M.3
  • 78
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
    • Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489-494.
    • (2008) Nature , vol.453 , pp. 489-494
    • Chen, Z.1    Yang, H.2    Pavletich, N.P.3
  • 79
    • 33748945703 scopus 로고    scopus 로고
    • Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation
    • Fulconis R, Mine J, Bancaud A, Dutreix M, Viovy JL. 2006. Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation. EMBO J 25:4293-4304.
    • (2006) EMBO J , vol.25 , pp. 4293-4304
    • Fulconis, R.1    Mine, J.2    Bancaud, A.3    Dutreix, M.4    Viovy, J.L.5
  • 80
    • 33750296934 scopus 로고    scopus 로고
    • Direct observation of individual RecA filaments assembling on single DNA molecules
    • Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. 2006. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875-878.
    • (2006) Nature , vol.443 , pp. 875-878
    • Galletto, R.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 81
    • 70350488396 scopus 로고    scopus 로고
    • SSB protein diffusion on single-stranded DNA stimulates RecA filament formation
    • Roy R, Kozlov AG, Lohman TM, Ha T. 2009. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461:1092-1097.
    • (2009) Nature , vol.461 , pp. 1092-1097
    • Roy, R.1    Kozlov, A.G.2    Lohman, T.M.3    Ha, T.4
  • 82
    • 79960804204 scopus 로고    scopus 로고
    • SSB Functions as a sliding platform that migrates on DNA via reptation
    • Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, Ha T. 2011. SSB Functions as a sliding platform that migrates on DNA via reptation. Cell 146:222-232.
    • (2011) Cell , vol.146 , pp. 222-232
    • Zhou, R.1    Kozlov, A.G.2    Roy, R.3    Zhang, J.4    Korolev, S.5    Lohman, T.M.6    Ha, T.7
  • 83
    • 0028131478 scopus 로고
    • On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. 3. Unidirectional branch migration and extensive hybrid DNA formation
    • Jain SK, Cox MM, Inman RB. 1994. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. 3. Unidirectional branch migration and extensive hybrid DNA formation. J Biol Chem 269:20653-20661.
    • (1994) J Biol Chem , vol.269 , pp. 20653-20661
    • Jain, S.K.1    Cox, M.M.2    Inman, R.B.3
  • 84
    • 0026737631 scopus 로고
    • On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate
    • Kim JI, Cox MM, Inman RB. 1992. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate. J Biol Chem 267:16438-16443.
    • (1992) J Biol Chem , vol.267 , pp. 16438-16443
    • Kim, J.I.1    Cox, M.M.2    Inman, R.B.3
  • 85
    • 0029961677 scopus 로고    scopus 로고
    • DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements
    • Shan Q, Cox MM, Inman RB. 1996. DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements. J Biol Chem 271:5712-5724.
    • (1996) J Biol Chem , vol.271 , pp. 5712-5724
    • Shan, Q.1    Cox, M.M.2    Inman, R.B.3
  • 86
    • 0025985785 scopus 로고
    • The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions
    • Rosselli W, Stasiak A. 1991. The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions. EMBO J 10:4391-4396.
    • (1991) EMBO J , vol.10 , pp. 4391-4396
    • Rosselli, W.1    Stasiak, A.2
  • 87
    • 0026662981 scopus 로고
    • On the role of ATP hydrolysis in recA protein-mediated DNA strand exchang. 2. 4-Strand exchanges
    • Kim JI, Cox MM, Inman RB. 1992. On the role of ATP hydrolysis in recA protein-mediated DNA strand exchange. 2. 4-Strand exchanges. J Biol Chem 267:16444-16449.
    • (1992) J Biol Chem , vol.267 , pp. 16444-16449
    • Kim, J.I.1    Cox, M.M.2    Inman, R.B.3
  • 88
    • 0031556955 scopus 로고    scopus 로고
    • RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins
    • Shan Q, Bork JM, Webb BL, Inman RB, Cox MM. 1997. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265:519-540.
    • (1997) J Mol Biol , vol.265 , pp. 519-540
    • Shan, Q.1    Bork, J.M.2    Webb, B.L.3    Inman, R.B.4    Cox, M.M.5
  • 89
    • 0025166577 scopus 로고
    • Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis
    • Menetski JP, Bear DG, Kowalczykowski SC. 1990. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc Natl Acad Sci USA 87:21-25.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 21-25
    • Menetski, J.P.1    Bear, D.G.2    Kowalczykowski, S.C.3
  • 90
    • 0027397313 scopus 로고
    • Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation
    • Rehrauer WM, Kowalczykowski SC. 1993. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J Biol Chem 268:1292-1297.
    • (1993) J Biol Chem , vol.268 , pp. 1292-1297
    • Rehrauer, W.M.1    Kowalczykowski, S.C.2
  • 91
    • 15744376313 scopus 로고    scopus 로고
    • Organized unidirectional waves of ATP hydrolysis within a RecA filament
    • Cox JM, Tsodikov OV, Cox MM. 2005. Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol 3:e52.
    • (2005) PLoS Biol , vol.3
    • Cox, J.M.1    Tsodikov, O.V.2    Cox, M.M.3
  • 92
    • 0030897701 scopus 로고    scopus 로고
    • RecA filament dynamics during DNA strand exchange reactions
    • Shan Q, Cox MM. 1997. RecA filament dynamics during DNA strand exchange reactions. J Biol Chem 272:11063-11073.
    • (1997) J Biol Chem , vol.272 , pp. 11063-11073
    • Shan, Q.1    Cox, M.M.2
  • 93
    • 0030849316 scopus 로고    scopus 로고
    • Quantitation of the inhibition of Hfr x F-recombination by the mutagenesis complex UmuD'C
    • Boudsocq F, Campbell M, Devoret R, Bailone A. 1997. Quantitation of the inhibition of Hfr x F-recombination by the mutagenesis complex UmuD'C. J Mol Biol 270:201-211.
    • (1997) J Mol Biol , vol.270 , pp. 201-211
    • Boudsocq, F.1    Campbell, M.2    Devoret, R.3    Bailone, A.4
  • 94
    • 0025361131 scopus 로고
    • Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication
    • Sassanfar M, Roberts JW. 1990. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79-96.
    • (1990) J Mol Biol , vol.212 , pp. 79-96
    • Sassanfar, M.1    Roberts, J.W.2
  • 95
    • 0022689021 scopus 로고
    • Homologous recombination in Escherichia coli: dependence on substrate length and homology
    • Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457.
    • (1986) Genetics , vol.112 , pp. 441-457
    • Shen, P.1    Huang, H.V.2
  • 98
    • 0022812124 scopus 로고
    • Mutagenesis and repair of DNA damage caused by nitrogen mustard, N, N'-bis(2-chloroethyl)-N-nitrosourea (BCNU), streptozotocin, and mitomycin C in E. coli
    • Fram RJ, Sullivan J, Marinus MG. 1986. Mutagenesis and repair of DNA damage caused by nitrogen mustard, N, N'-bis(2-chloroethyl)-N-nitrosourea (BCNU), streptozotocin, and mitomycin C in E. coli. Mutat Res 166:229-342.
    • (1986) Mutat Res , vol.166 , pp. 229-342
    • Fram, R.J.1    Sullivan, J.2    Marinus, M.G.3
  • 99
    • 0017697662 scopus 로고
    • Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome
    • Krasin F, Hutchinson F. 1977. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol 116:81-98.
    • (1977) J Mol Biol , vol.116 , pp. 81-98
    • Krasin, F.1    Hutchinson, F.2
  • 101
    • 33646841195 scopus 로고    scopus 로고
    • Homologous recombination prevents methylation-induced toxicity in Escherichia coli
    • Nowosielska A, Smith SA, Engelward BP, Marinus MG. 2006. Homologous recombination prevents methylation-induced toxicity in Escherichia coli. Nucleic Acids Res 34:2258-2268.
    • (2006) Nucleic Acids Res , vol.34 , pp. 2258-2268
    • Nowosielska, A.1    Smith, S.A.2    Engelward, B.P.3    Marinus, M.G.4
  • 103
    • 0015044799 scopus 로고
    • Involvement of recombination genes in growth and viability of Escherichia coli K-12
    • Capaldo-Kimball F, Barbour SD. 1971. Involvement of recombination genes in growth and viability of Escherichia coli K-12. J Bacteriol 106:204-212.
    • (1971) J Bacteriol , vol.106 , pp. 204-212
    • Capaldo-Kimball, F.1    Barbour, S.D.2
  • 104
    • 0027265542 scopus 로고
    • Degradation of individual chromosomes in RecA mutants of Escherichia coli
    • Skarstad K, Boye E. 1993. Degradation of individual chromosomes in RecA mutants of Escherichia coli. J Bacteriol 175:5505-5509.
    • (1993) J Bacteriol , vol.175 , pp. 5505-5509
    • Skarstad, K.1    Boye, E.2
  • 105
    • 0028998597 scopus 로고
    • Collapse and repair of replication forks in Escherichia coli
    • Kuzminov A. 1995. Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373-384.
    • (1995) Mol Microbiol , vol.16 , pp. 373-384
    • Kuzminov, A.1
  • 106
    • 0038575033 scopus 로고    scopus 로고
    • RdgB acts to avoid chromosome fragmentation in Escherichia coli
    • Bradshaw JS, Kuzminov A. 2003. RdgB acts to avoid chromosome fragmentation in Escherichia coli. Mol Microbiol 48:1711-1725.
    • (2003) Mol Microbiol , vol.48 , pp. 1711-1725
    • Bradshaw, J.S.1    Kuzminov, A.2
  • 107
    • 33644783699 scopus 로고    scopus 로고
    • Chromosomal fragmentation is the major consequence of the rdgB defect in Escherichia coli
    • Lukas L, Kuzminov A. 2006. Chromosomal fragmentation is the major consequence of the rdgB defect in Escherichia coli. Genetics 172:1359-1362.
    • (2006) Genetics , vol.172 , pp. 1359-1362
    • Lukas, L.1    Kuzminov, A.2
  • 108
    • 1542616353 scopus 로고    scopus 로고
    • Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair
    • Kouzminova EA, Kuzminov A. 2004. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol Microbiol 51:1279-1295.
    • (2004) Mol Microbiol , vol.51 , pp. 1279-1295
    • Kouzminova, E.A.1    Kuzminov, A.2
  • 109
    • 28844477965 scopus 로고    scopus 로고
    • Fragmentation of replicating chromosomes triggered by uracil in DNA
    • Kouzminova EA, Kuzminov A. 2006. Fragmentation of replicating chromosomes triggered by uracil in DNA. J Mol Biol 355:20-33.
    • (2006) J Mol Biol , vol.355 , pp. 20-33
    • Kouzminova, E.A.1    Kuzminov, A.2
  • 110
    • 40549129679 scopus 로고    scopus 로고
    • Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks
    • Kouzminova EA, Kuzminov A. 2008. Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol 68:202-215.
    • (2008) Mol Microbiol , vol.68 , pp. 202-215
    • Kouzminova, E.A.1    Kuzminov, A.2
  • 111
    • 33749173326 scopus 로고    scopus 로고
    • The Escherichia coli UvrD helicase is essential for Tus removal during recombinationdependent replication restart from Ter sites
    • Bidnenko V, Lestini R, Michel B. 2006. The Escherichia coli UvrD helicase is essential for Tus removal during recombinationdependent replication restart from Ter sites. Mol Microbiol 62:382-396.
    • (2006) Mol Microbiol , vol.62 , pp. 382-396
    • Bidnenko, V.1    Lestini, R.2    Michel, B.3
  • 112
    • 0037099681 scopus 로고    scopus 로고
    • Replication fork collapse at replication terminator sequences
    • Bidnenko V, Ehrlich SD, Michel B. 2002. Replication fork collapse at replication terminator sequences. EMBO J 21:3898-3907.
    • (2002) EMBO J , vol.21 , pp. 3898-3907
    • Bidnenko, V.1    Ehrlich, S.D.2    Michel, B.3
  • 113
    • 37749029027 scopus 로고    scopus 로고
    • Chromosome structuring limits genome plasticity in Escherichia coli
    • Esnault E, Valens M, Espeli O, Boccard F. 2007. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3: e226.
    • (2007) PLoS Genet , vol.3 , pp. e226
    • Esnault, E.1    Valens, M.2    Espeli, O.3    Boccard, F.4
  • 114
    • 33947245061 scopus 로고    scopus 로고
    • A novel class of mutations that affect DNA replication in E. coli
    • Nordman J, Skovgaard O, Wright A. 2007. A novel class of mutations that affect DNA replication in E. coli. Mol Microbiol 64: 125-138.
    • (2007) Mol Microbiol , vol.64 , pp. 125-138
    • Nordman, J.1    Skovgaard, O.2    Wright, A.3
  • 115
    • 9244256745 scopus 로고    scopus 로고
    • RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation
    • Kouzminova EA, Rotman E, Macomber L, Zhang J, Kuzminov A. 2004. RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci USA 101: 16262-16267.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 16262-16267
    • Kouzminova, E.A.1    Rotman, E.2    Macomber, L.3    Zhang, J.4    Kuzminov, A.5
  • 116
    • 14544289538 scopus 로고    scopus 로고
    • A defect in the acetyl coenzyme A↔acetate pathway poisons recombinational repairdeficient mutants of Escherichia coli
    • Shi IY, Stansbury J, Kuzminov A. 2005. A defect in the acetyl coenzyme A↔acetate pathway poisons recombinational repairdeficient mutants of Escherichia coli. J Bacteriol 187:1266-1275.
    • (2005) J Bacteriol , vol.187 , pp. 1266-1275
    • Shi, I.Y.1    Stansbury, J.2    Kuzminov, A.3
  • 117
    • 65949092557 scopus 로고    scopus 로고
    • Reduced lipopolysaccharide phosphorylation in Escherichia coli lowers the elevated ori/ter ratio in seqA mutants
    • Rotman E, Bratcher P, Kuzminov A. 2009. Reduced lipopolysaccharide phosphorylation in Escherichia coli lowers the elevated ori/ter ratio in seqA mutants. Mol Microbiol 72:1273-1292.
    • (2009) Mol Microbiol , vol.72 , pp. 1273-1292
    • Rotman, E.1    Bratcher, P.2    Kuzminov, A.3
  • 118
    • 0033988907 scopus 로고    scopus 로고
    • Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant
    • Marinus MG. 2000. Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant. J Bacteriol 182:463-468.
    • (2000) J Bacteriol , vol.182 , pp. 463-468
    • Marinus, M.G.1
  • 119
    • 75649142564 scopus 로고    scopus 로고
    • DinG, Rep and UvrD helicases cooperate to promote replication accross transcription units in vivo
    • Boubakri H, Langlois de Septenville A, Viguera E, Michel B. 2010. DinG, Rep and UvrD helicases cooperate to promote replication accross transcription units in vivo. EMBO J 29:145-157.
    • (2010) EMBO J , vol.29 , pp. 145-157
    • Boubakri, H.1    Langlois de Septenville, A.2    Viguera, E.3    Michel, B.4
  • 120
    • 0036015646 scopus 로고    scopus 로고
    • Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp
    • Grompone G, Seigneur M, Ehrlich SD, Michel B. 2002. Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 44:1331-1339.
    • (2002) Mol Microbiol , vol.44 , pp. 1331-1339
    • Grompone, G.1    Seigneur, M.2    Ehrlich, S.D.3    Michel, B.4
  • 121
    • 34548061530 scopus 로고    scopus 로고
    • UvrD controls the access of recombination proteins to blocked replication forks
    • Lestini R, Michel B. 2007. UvrD controls the access of recombination proteins to blocked replication forks. EMBO J 26:3804-3814.
    • (2007) EMBO J , vol.26 , pp. 3804-3814
    • Lestini, R.1    Michel, B.2
  • 122
    • 0030890705 scopus 로고    scopus 로고
    • recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli
    • Courcelle J, CarswellCrumpton C, Hanawalt PC. 1997. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci USA 94:3714-3719.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 3714-3719
    • Courcelle, J.1    CarswellCrumpton, C.2    Hanawalt, P.C.3
  • 123
    • 0021992965 scopus 로고
    • Mechanism of transient inhibition of DNA synthesis in ultraviolet-irradiated E. coli: inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function
    • Khidhir MA, Casaregola S, Holland IB. 1985. Mechanism of transient inhibition of DNA synthesis in ultraviolet-irradiated E. coli: inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet 199:133-140.
    • (1985) Mol Gen Genet , vol.199 , pp. 133-140
    • Khidhir, M.A.1    Casaregola, S.2    Holland, I.B.3
  • 124
    • 31844456472 scopus 로고    scopus 로고
    • Replication fork reactivation downstream of a blocked nascent leading strand
    • Heller RC, Marians KJ. 2006. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557-562.
    • (2006) Nature , vol.439 , pp. 557-562
    • Heller, R.C.1    Marians, K.J.2
  • 126
    • 39849108496 scopus 로고    scopus 로고
    • Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli
    • Renzette N, Sandler SJ. 2008. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol Microbiol 67:1347-1359.
    • (2008) Mol Microbiol , vol.67 , pp. 1347-1359
    • Renzette, N.1    Sandler, S.J.2
  • 127
    • 0028867292 scopus 로고
    • The identification of the single-stranded DNA-binding domain of the Escherichia coli RecA protein
    • Gardner RV, Voloshin ON, Cameriniotero RD. 1995. The identification of the single-stranded DNA-binding domain of the Escherichia coli RecA protein. Eur J Biochem 233:419-425.
    • (1995) Eur J Biochem , vol.233 , pp. 419-425
    • Gardner, R.V.1    Voloshin, O.N.2    Cameriniotero, R.D.3
  • 128
    • 0029974806 scopus 로고    scopus 로고
    • Homologous DNA pairing promoted by a 20-amino acid peptide derived from RecA
    • Voloshin ON, Wang LJ, Cameriniotero RD. 1996. Homologous DNA pairing promoted by a 20-amino acid peptide derived from RecA. Science 272:868-872.
    • (1996) Science , vol.272 , pp. 868-872
    • Voloshin, O.N.1    Wang, L.J.2    Cameriniotero, R.D.3
  • 129
    • 0034634390 scopus 로고    scopus 로고
    • The homologous pairing domain of RecA also mediates the allosteric regulation of DNA binding and ATP hydrolysis: a remarkable concentration of functional residues
    • Voloshin ON, Wang L, Camerini-Otero RD. 2000. The homologous pairing domain of RecA also mediates the allosteric regulation of DNA binding and ATP hydrolysis: a remarkable concentration of functional residues. J Mol Biol 303:709-720.
    • (2000) J Mol Biol , vol.303 , pp. 709-720
    • Voloshin, O.N.1    Wang, L.2    Camerini-Otero, R.D.3
  • 130
    • 0020030168 scopus 로고
    • Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli
    • Witkin EM, McCall JO, Volkert MR, Wermundsen IE. 1982. Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli. Mol Gen Genet 185:43-50.
    • (1982) Mol Gen Genet , vol.185 , pp. 43-50
    • Witkin, E.M.1    McCall, J.O.2    Volkert, M.R.3    Wermundsen, I.E.4
  • 131
    • 0026046532 scopus 로고
    • Constitutive and UV-mediated activation of RecA protein-combined effects of recA441 and recF143 mutations and of addition of nucleosides and adenine
    • Sassanfar M, Roberts J. 1991. Constitutive and UV-mediated activation of RecA protein-combined effects of recA441 and recF143 mutations and of addition of nucleosides and adenine. J Bacteriol 173:5869-5875.
    • (1991) J Bacteriol , vol.173 , pp. 5869-5875
    • Sassanfar, M.1    Roberts, J.2
  • 132
    • 0023726274 scopus 로고
    • Suppression of the UVsensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+
    • Thoms B, Wackernagel W. 1988. Suppression of the UVsensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+. J Bacteriol 170:3675-3681.
    • (1988) J Bacteriol , vol.170 , pp. 3675-3681
    • Thoms, B.1    Wackernagel, W.2
  • 133
    • 0021351070 scopus 로고
    • Suppression of Escherichia coli recF mutations by recA-linked srfA mutations
    • Volkert MR, Hartke MA. 1984. Suppression of Escherichia coli recF mutations by recA-linked srfA mutations. J Bacteriol 157:498-506.
    • (1984) J Bacteriol , vol.157 , pp. 498-506
    • Volkert, M.R.1    Hartke, M.A.2
  • 134
    • 0025754829 scopus 로고
    • Cloning and preliminary characterization of srf-2020 and srf-801, the recF partial suppressor mutations which map in recA of Escherichia coli K-12
    • Wang TC, Madiraju MV, Templin A, Clark AJ. 1991. Cloning and preliminary characterization of srf-2020 and srf-801, the recF partial suppressor mutations which map in recA of Escherichia coli K-12. Biochimie 73:335-340.
    • (1991) Biochimie , vol.73 , pp. 335-340
    • Wang, T.C.1    Madiraju, M.V.2    Templin, A.3    Clark, A.J.4
  • 135
    • 0026781991 scopus 로고
    • Biochemical basis of the constitutive repressor cleavage activity of recA730 protein-a comparison to recA441 and recA803 proteins
    • Lavery PE, Kowalczykowski SC. 1992. Biochemical basis of the constitutive repressor cleavage activity of recA730 protein-a comparison to recA441 and recA803 proteins. J Biol Chem 267:20648-20658.
    • (1992) J Biol Chem , vol.267 , pp. 20648-20658
    • Lavery, P.E.1    Kowalczykowski, S.C.2
  • 136
    • 0027269936 scopus 로고
    • Cosuppression of recFmutation, recR-mutation and recO-mutation by mutant recA alleles in Escherichia coli cells
    • Wang TCV, Chang HY, Hung JL. 1993. Cosuppression of recFmutation, recR-mutation and recO-mutation by mutant recA alleles in Escherichia coli cells. Mutat Res 294:157-166.
    • (1993) Mutat Res , vol.294 , pp. 157-166
    • Wang, T.C.V.1    Chang, H.Y.2    Hung, J.L.3
  • 137
    • 33845966684 scopus 로고    scopus 로고
    • A RecA mutant, RecA (730), suppresses the recombination deficiency of the RecBC(1004)Dchi* interaction in vitro and in vivo
    • Handa N, Kowalczykowski SC. 2007. A RecA mutant, RecA (730), suppresses the recombination deficiency of the RecBC(1004)Dchi* interaction in vitro and in vivo. J Mol Biol 365:1314-1325.
    • (2007) J Mol Biol , vol.365 , pp. 1314-1325
    • Handa, N.1    Kowalczykowski, S.C.2
  • 138
  • 139
    • 0020649041 scopus 로고
    • Prophage phi 80 is induced in Escherichia coli K12 recA430
    • Devoret R, Pierre M, Moreau PL. 1983. Prophage phi 80 is induced in Escherichia coli K12 recA430. Mol Gen Genet 189:199-206.
    • (1983) Mol Gen Genet , vol.189 , pp. 199-206
    • Devoret, R.1    Pierre, M.2    Moreau, P.L.3
  • 140
    • 0021332983 scopus 로고
    • Functional domains of Escherichia coli recA protein deduced from the mutational sites in the gene
    • Kawashima H, Horii T, Ogawa T, Ogawa H. 1984. Functional domains of Escherichia coli recA protein deduced from the mutational sites in the gene. Mol Gen Genet 193:288-292.
    • (1984) Mol Gen Genet , vol.193 , pp. 288-292
    • Kawashima, H.1    Horii, T.2    Ogawa, T.3    Ogawa, H.4
  • 141
    • 0025269888 scopus 로고
    • Biochemical properties of the Escherichia coli recA430 protein. Analysis of a mutation that affects the interaction of the ATP-recA protein complex with singlestranded DNA
    • Menetski JP, Kowalczykowski SC. 1990. Biochemical properties of the Escherichia coli recA430 protein. Analysis of a mutation that affects the interaction of the ATP-recA protein complex with singlestranded DNA. J Mol Biol 211:845-855.
    • (1990) J Mol Biol , vol.211 , pp. 845-855
    • Menetski, J.P.1    Kowalczykowski, S.C.2
  • 142
    • 0030582680 scopus 로고    scopus 로고
    • Characterization of a mutant RecA protein that facilitates homologous genetic recombination but not recombinational DNA repair: RecA423
    • Ishimori K, Sommer S, Bailone A, Takahashi M, Cox MM, Devoret R. 1996. Characterization of a mutant RecA protein that facilitates homologous genetic recombination but not recombinational DNA repair: RecA423. J Mol Biol 264:696-712.
    • (1996) J Mol Biol , vol.264 , pp. 696-712
    • Ishimori, K.1    Sommer, S.2    Bailone, A.3    Takahashi, M.4    Cox, M.M.5    Devoret, R.6
  • 144
    • 0026511367 scopus 로고
    • A partially deficient mutant, reca1730, that fails to form normal nucleoprotein filaments
    • Dutreix M, Burnett B, Bailone A, Radding CM, Devoret R. 1992. A partially deficient mutant, reca1730, that fails to form normal nucleoprotein filaments. Mol Gen Genet 232:489-497.
    • (1992) Mol Gen Genet , vol.232 , pp. 489-497
    • Dutreix, M.1    Burnett, B.2    Bailone, A.3    Radding, C.M.4    Devoret, R.5
  • 145
    • 0024583633 scopus 로고
    • New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis
    • Dutreix M, Moreau PL, Bailone A, Galibert F, Battista JR, Walker GC, Devoret R. 1989. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol 171:2415-2423.
    • (1989) J Bacteriol , vol.171 , pp. 2415-2423
    • Dutreix, M.1    Moreau, P.L.2    Bailone, A.3    Galibert, F.4    Battista, J.R.5    Walker, G.C.6    Devoret, R.7
  • 146
    • 0031944934 scopus 로고    scopus 로고
    • Specific RecA amino acid changes affect RecA-UmuD'C interaction
    • Sommer S, Boudsocq F, Devoret R, Bailone A. 1998. Specific RecA amino acid changes affect RecA-UmuD'C interaction. Mol Microbiol 28:281-291.
    • (1998) Mol Microbiol , vol.28 , pp. 281-291
    • Sommer, S.1    Boudsocq, F.2    Devoret, R.3    Bailone, A.4
  • 147
    • 0027255851 scopus 로고
    • The LexA repressor binds within the deep helical groove of the activated RecA filament
    • Yu X, Egelman EH. 1993. The LexA repressor binds within the deep helical groove of the activated RecA filament. J Mol Biol 231:29-40.
    • (1993) J Mol Biol , vol.231 , pp. 29-40
    • Yu, X.1    Egelman, E.H.2
  • 148
    • 0035023305 scopus 로고    scopus 로고
    • Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli
    • Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC. 2001. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41-64.
    • (2001) Genetics , vol.158 , pp. 41-64
    • Courcelle, J.1    Khodursky, A.2    Peter, B.3    Brown, P.O.4    Hanawalt, P.C.5
  • 150
    • 0036224939 scopus 로고    scopus 로고
    • Over 1000 genes are involved in the DNA damage response of Escherichia coli
    • Khil PP, Camerini-Otero RD. 2002. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89-105.
    • (2002) Mol Microbiol , vol.44 , pp. 89-105
    • Khil, P.P.1    Camerini-Otero, R.D.2
  • 151
    • 27644580858 scopus 로고    scopus 로고
    • Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites
    • Wade JT, Reppas NB, Church GM, Struhl K. 2005. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 19:2619-2630.
    • (2005) Genes Dev , vol.19 , pp. 2619-2630
    • Wade, J.T.1    Reppas, N.B.2    Church, G.M.3    Struhl, K.4
  • 152
    • 22744432208 scopus 로고    scopus 로고
    • Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria
    • Friedman N, Vardi S, Ronen M, Alon U, Stavans J. 2005. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PloS Biol 3(7):e238.
    • (2005) PloS Biol , vol.3 , Issue.7
    • Friedman, N.1    Vardi, S.2    Ronen, M.3    Alon, U.4    Stavans, J.5
  • 153
    • 0035811261 scopus 로고    scopus 로고
    • Survival and induction of SOS in Escherichia coli treated with cisplatin, UVirradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination
    • Keller KL, Overbeck-Carrick TL, Beck DJ. 2001. Survival and induction of SOS in Escherichia coli treated with cisplatin, UVirradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutat Res 486:21-29.
    • (2001) Mutat Res , vol.486 , pp. 21-29
    • Keller, K.L.1    Overbeck-Carrick, T.L.2    Beck, D.J.3
  • 154
    • 0023178465 scopus 로고
    • Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant
    • Thoms B, Wackernagel W. 1987. Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant. J Bacteriol 169:1731-1736.
    • (1987) J Bacteriol , vol.169 , pp. 1731-1736
    • Thoms, B.1    Wackernagel, W.2
  • 155
    • 0028797220 scopus 로고
    • Altered SOS induction associated with mutations in recF, recO and recR
    • Whitby MC, Lloyd RG. 1995. Altered SOS induction associated with mutations in recF, recO and recR. Mol Gen Genet 246:174-179.
    • (1995) Mol Gen Genet , vol.246 , pp. 174-179
    • Whitby, M.C.1    Lloyd, R.G.2
  • 156
    • 0025830670 scopus 로고
    • SOS induction as an in vivo assay of enzyme-DNA interactions
    • Heitman J, Model P. 1991. SOS induction as an in vivo assay of enzyme-DNA interactions. Gene 103:1-9.
    • (1991) Gene , vol.103 , pp. 1-9
    • Heitman, J.1    Model, P.2
  • 157
    • 0025905609 scopus 로고
    • RecBC promoted repair of bleomycin damage in Escherichia coli
    • Knezevic-Vukcevic J, Simic D. 1991. RecBC promoted repair of bleomycin damage in Escherichia coli. Biochimie 73:497-500.
    • (1991) Biochimie , vol.73 , pp. 497-500
    • Knezevic-Vukcevic, J.1    Simic, D.2
  • 158
    • 0026804867 scopus 로고
    • Inducible stable DNA replication in Escherichia coli uvr+ and uvr-cells, treated with genotoxic chemicals
    • Masek F, Sedliakova M. 1992. Inducible stable DNA replication in Escherichia coli uvr+ and uvr-cells, treated with genotoxic chemicals. Mutat Res 281:63-66.
    • (1992) Mutat Res , vol.281 , pp. 63-66
    • Masek, F.1    Sedliakova, M.2
  • 159
    • 23844508951 scopus 로고    scopus 로고
    • Genetic analysis of the requirements for SOS induction by nalidixic acid in Escherichia coli
    • Newmark KG, O'Reilly EK, Pohlhaus JR, Kreuzer KN. 2005. Genetic analysis of the requirements for SOS induction by nalidixic acid in Escherichia coli. Gene 356:69-76.
    • (2005) Gene , vol.356 , pp. 69-76
    • Newmark, K.G.1    O'Reilly, E.K.2    Pohlhaus, J.R.3    Kreuzer, K.N.4
  • 160
    • 0026604213 scopus 로고
    • Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division
    • Piddock LJV, Walters RN. 1992. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob Agents Chemother 36:819-825.
    • (1992) Antimicrob Agents Chemother , vol.36 , pp. 819-825
    • Piddock, L.J.V.1    Walters, R.N.2
  • 161
    • 48149100780 scopus 로고    scopus 로고
    • The epsilon subunit of DNA polymerase III is involved in the nalidixic acid-induced SOS response in Escherichia coli
    • Pohlhaus JR, Long DT, O'Reilly E, Kreuzer KN. 2008. The epsilon subunit of DNA polymerase III is involved in the nalidixic acid-induced SOS response in Escherichia coli. J Bacteriol 190:5239-5247.
    • (2008) J Bacteriol , vol.190 , pp. 5239-5247
    • Pohlhaus, J.R.1    Long, D.T.2    O'Reilly, E.3    Kreuzer, K.N.4
  • 162
    • 6044220123 scopus 로고    scopus 로고
    • Isolation of SOS constitutive mutants of Escherichia coli
    • O'Reilly EK, Kreuzer KN. 2004. Isolation of SOS constitutive mutants of Escherichia coli. J Bacteriol 186:7149-7160.
    • (2004) J Bacteriol , vol.186 , pp. 7149-7160
    • O'Reilly, E.K.1    Kreuzer, K.N.2
  • 163
    • 0020024935 scopus 로고
    • Induction of the SOS system by DNA ligase-deficient growth of Escherichia coli
    • Condra JH, Pauling C. 1982. Induction of the SOS system by DNA ligase-deficient growth of Escherichia coli. J Gen Microbiol 128:613-621.
    • (1982) J Gen Microbiol , vol.128 , pp. 613-621
    • Condra, J.H.1    Pauling, C.2
  • 164
    • 4644351908 scopus 로고    scopus 로고
    • SOS response induction by beta-lactams and bacterial defense against antibiotic lethality
    • Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. 2004. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1629-1631.
    • (2004) Science , vol.305 , pp. 1629-1631
    • Miller, C.1    Thomsen, L.E.2    Gaggero, C.3    Mosseri, R.4    Ingmer, H.5    Cohen, S.N.6
  • 165
    • 3342995284 scopus 로고    scopus 로고
    • The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited
    • Fujii S, Gasser V, Fuchs RP. 2004. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J Mol Biol 341:405-417.
    • (2004) J Mol Biol , vol.341 , pp. 405-417
    • Fujii, S.1    Gasser, V.2    Fuchs, R.P.3
  • 166
    • 33747862944 scopus 로고    scopus 로고
    • RecA acts in trans to allow replication of damaged DNA by DNA polymerase V
    • Schlacher K, Cox MM, Woodgate R, Goodman MF. 2006. RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442:883-887.
    • (2006) Nature , vol.442 , pp. 883-887
    • Schlacher, K.1    Cox, M.M.2    Woodgate, R.3    Goodman, M.F.4
  • 167
    • 33845709987 scopus 로고    scopus 로고
    • RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis
    • Fujii S, Isogawa A, Fuchs RP. 2006. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 25:5754-5763.
    • (2006) EMBO J , vol.25 , pp. 5754-5763
    • Fujii, S.1    Isogawa, A.2    Fuchs, R.P.3
  • 168
    • 0031944978 scopus 로고    scopus 로고
    • Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli
    • Liu YH, Cheng AJ, Wang TC. 1998. Involvement of recF, recO, and recR genes in UV-radiation mutagenesis of Escherichia coli. J Bacteriol 180:1766-1770.
    • (1998) J Bacteriol , vol.180 , pp. 1766-1770
    • Liu, Y.H.1    Cheng, A.J.2    Wang, T.C.3
  • 169
    • 0035902462 scopus 로고    scopus 로고
    • Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence
    • Bull HJ, Lombardo MJ, Rosenberg SM. 2001. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc Natl Acad Sci USA 98:8334-8341.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8334-8341
    • Bull, H.J.1    Lombardo, M.J.2    Rosenberg, S.M.3
  • 170
    • 0033390088 scopus 로고    scopus 로고
    • Mechanisms of stationary phase mutation: a decade of adaptive mutation
    • Foster PL. 1999. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet 33:57-88.
    • (1999) Annu Rev Genet , vol.33 , pp. 57-88
    • Foster, P.L.1
  • 171
    • 0025767697 scopus 로고
    • RecA protein in the SOS response-milestones and mysteries
    • Witkin EM. 1991. RecA protein in the SOS response-milestones and mysteries. Biochimie 73:133-141.
    • (1991) Biochimie , vol.73 , pp. 133-141
    • Witkin, E.M.1
  • 172
    • 0942287233 scopus 로고    scopus 로고
    • RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli
    • Chow KH, Courcelle J. 2004. RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli. J Biol Chem 279:3492-3496.
    • (2004) J Biol Chem , vol.279 , pp. 3492-3496
    • Chow, K.H.1    Courcelle, J.2
  • 173
    • 0023428773 scopus 로고
    • Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli
    • Witkin EM, Roegner-Maniscalco V, Sweasy JB, McCall JO. 1987. Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli. Proc Natl Acad Sci USA 84:6805-6809.
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 6805-6809
    • Witkin, E.M.1    Roegner-Maniscalco, V.2    Sweasy, J.B.3    McCall, J.O.4
  • 174
    • 26444573211 scopus 로고    scopus 로고
    • Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UVarrested replication forks in Escherichia coli
    • Courcelle CT, Belle JJ, Courcelle J. 2005. Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UVarrested replication forks in Escherichia coli. J Bacteriol 187:6953-6961.
    • (2005) J Bacteriol , vol.187 , pp. 6953-6961
    • Courcelle, C.T.1    Belle, J.J.2    Courcelle, J.3
  • 175
    • 0036267593 scopus 로고    scopus 로고
    • Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins
    • Rangarajan S, Woodgate R, Goodman MF. 2002. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 43:617-628.
    • (2002) Mol Microbiol , vol.43 , pp. 617-628
    • Rangarajan, S.1    Woodgate, R.2    Goodman, M.F.3
  • 176
    • 0028047403 scopus 로고
    • A dominant negative allele of the Escherichia-cli uvrD gene encoding DNA helicase-II-a biochemical and genetic characterization
    • George JW, Brosh RM, Matson SW. 1994. A dominant negative allele of the Escherichia-cli uvrD gene encoding DNA helicase-II-a biochemical and genetic characterization. J Mol Biol 235:424-435.
    • (1994) J Mol Biol , vol.235 , pp. 424-435
    • George, J.W.1    Brosh, R.M.2    Matson, S.W.3
  • 177
    • 2442676334 scopus 로고    scopus 로고
    • Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery
    • Tuteja N, Tuteja R. 2004. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835-1848.
    • (2004) Eur J Biochem , vol.271 , pp. 1835-1848
    • Tuteja, N.1    Tuteja, R.2
  • 178
    • 2442706340 scopus 로고    scopus 로고
    • Unraveling DNA helicases. Motif, structure, mechanism and function
    • Tuteja N, Tuteja R. 2004. Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849-1863.
    • (2004) Eur J Biochem , vol.271 , pp. 1849-1863
    • Tuteja, N.1    Tuteja, R.2
  • 179
    • 0030660145 scopus 로고    scopus 로고
    • uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway
    • Bierne H, Seigneur M, Ehrlich SD, Michel B. 1997. uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway. Mol Microbiol 26:557-567.
    • (1997) Mol Microbiol , vol.26 , pp. 557-567
    • Bierne, H.1    Seigneur, M.2    Ehrlich, S.D.3    Michel, B.4
  • 180
    • 0035687216 scopus 로고    scopus 로고
    • Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair
    • Petranovic M, Zahradka K, Zahradka D, Petranovic D, Nagy B, SalajSmic E, Petranovic D. 2001. Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie 83:1041-1047.
    • (2001) Biochimie , vol.83 , pp. 1041-1047
    • Petranovic, M.1    Zahradka, K.2    Zahradka, D.3    Petranovic, D.4    Nagy, B.5    SalajSmic, E.6    Petranovic, D.7
  • 181
    • 0017905113 scopus 로고
    • Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes
    • Zieg J, Maples VF, Kushner SR. 1978. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes. J Bacteriol 134:958-966.
    • (1978) J Bacteriol , vol.134 , pp. 958-966
    • Zieg, J.1    Maples, V.F.2    Kushner, S.R.3
  • 182
    • 50249130755 scopus 로고    scopus 로고
    • UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli
    • Lestini R, Michel B. 2008. UvrD and UvrD252 counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli. J Bacteriol 190:5995-6001.
    • (2008) J Bacteriol , vol.190 , pp. 5995-6001
    • Lestini, R.1    Michel, B.2
  • 183
    • 67650410035 scopus 로고    scopus 로고
    • Suppression of constitutive SOS expression by recA4162 (I298V) and recA4164 (L126V) requires UvrD and RecX in Escherichia coli K-12
    • Long JE, Renzette N, Sandler SJ. 2009. Suppression of constitutive SOS expression by recA4162 (I298V) and recA4164 (L126V) requires UvrD and RecX in Escherichia coli K-12. Mol Microbiol 73:226-239.
    • (2009) Mol Microbiol , vol.73 , pp. 226-239
    • Long, J.E.1    Renzette, N.2    Sandler, S.J.3
  • 184
    • 0037349448 scopus 로고    scopus 로고
    • recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli
    • Pages V, Koffel-Schwartz N, Fuchs RP. 2003. recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli. DNA Repair (Amsterdam) 2:273-284.
    • (2003) DNA Repair (Amsterdam) , vol.2 , pp. 273-284
    • Pages, V.1    Koffel-Schwartz, N.2    Fuchs, R.P.3
  • 185
    • 0027192845 scopus 로고
    • Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa
    • Sano Y. 1993. Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa. J Bacteriol 175:2451-2454.
    • (1993) J Bacteriol , vol.175 , pp. 2451-2454
    • Sano, Y.1
  • 186
    • 0037125994 scopus 로고    scopus 로고
    • RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: insights into negative regulation of homologous recombination
    • Venkatesh R, Ganesh N, Guhan N, Reddy MS, Chandrasekhar T, Muniyappa K. 2002. RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: insights into negative regulation of homologous recombination. Proc Natl Acad Sci USA 99:12091-12096.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 12091-12096
    • Venkatesh, R.1    Ganesh, N.2    Guhan, N.3    Reddy, M.S.4    Chandrasekhar, T.5    Muniyappa, K.6
  • 188
    • 11144222919 scopus 로고    scopus 로고
    • Inhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state
    • Drees JC, Lusetti SL, Cox MM. 2004. Inhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state. J Biol Chem 279:52991-52997.
    • (2004) J Biol Chem , vol.279 , pp. 52991-52997
    • Drees, J.C.1    Lusetti, S.L.2    Cox, M.M.3
  • 189
    • 58149345832 scopus 로고    scopus 로고
    • Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12
    • Long JE, Renzette N, Centore RC, Sandler SJ. 2008. Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12. PLoS One 3:e4100.
    • (2008) PLoS One , vol.3
    • Long, J.E.1    Renzette, N.2    Centore, R.C.3    Sandler, S.J.4
  • 190
    • 79955476626 scopus 로고    scopus 로고
    • Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein
    • Galkin VE, Britt RL, Bane LB, Yu X, Cox MM, Egelman EH. 2011. Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein. J Mol Biol 408:815-824.
    • (2011) J Mol Biol , vol.408 , pp. 815-824
    • Galkin, V.E.1    Britt, R.L.2    Bane, L.B.3    Yu, X.4    Cox, M.M.5    Egelman, E.H.6
  • 191
    • 11244255422 scopus 로고    scopus 로고
    • The DinI and RecX proteins are competing modulators of RecA function
    • Lusetti SL, Drees JC, Stohl EA, Seifert HS, Cox MM. 2004. The DinI and RecX proteins are competing modulators of RecA function. J Biol Chem 279:55073-55079.
    • (2004) J Biol Chem , vol.279 , pp. 55073-55079
    • Lusetti, S.L.1    Drees, J.C.2    Stohl, E.A.3    Seifert, H.S.4    Cox, M.M.5
  • 192
    • 0032101713 scopus 로고    scopus 로고
    • Inhibition of Escherichia coli RecA coprotease activities by DinI
    • Yasuda T, Morimatsu K, Horii T, Nagata T, Ohmori H. 1998. Inhibition of Escherichia coli RecA coprotease activities by DinI. EMBO J 17:3207-3216.
    • (1998) EMBO J , vol.17 , pp. 3207-3216
    • Yasuda, T.1    Morimatsu, K.2    Horii, T.3    Nagata, T.4    Ohmori, H.5
  • 193
    • 34250345700 scopus 로고    scopus 로고
    • Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair
    • Briggs GS, McEwan PA, Yu J, Moore T, Emsley J, Lloyd RG. 2007. Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair. J Biol Chem 282:12353-12357.
    • (2007) J Biol Chem , vol.282 , pp. 12353-12357
    • Briggs, G.S.1    McEwan, P.A.2    Yu, J.3    Moore, T.4    Emsley, J.5    Lloyd, R.G.6
  • 194
    • 0037415736 scopus 로고    scopus 로고
    • The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA
    • Moore T, McGlynn P, Ngo HP, Sharples GJ, Lloyd RG. 2003. The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO J 22:735-745.
    • (2003) EMBO J , vol.22 , pp. 735-745
    • Moore, T.1    McGlynn, P.2    Ngo, H.P.3    Sharples, G.J.4    Lloyd, R.G.5
  • 195
    • 0030000241 scopus 로고    scopus 로고
    • Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12
    • Ryder L, Sharples GJ, Lloyd RG. 1996. Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12. Genetics 143:1101-1114.
    • (1996) Genetics , vol.143 , pp. 1101-1114
    • Ryder, L.1    Sharples, G.J.2    Lloyd, R.G.3
  • 196
    • 80051924077 scopus 로고    scopus 로고
    • The Escherichia coli DinD protein modulates RecA activity by inhibiting postsynaptic RecA filaments
    • Uranga LA, Balise VD, Benally CV, Grey A, Lusetti SL. 2011. The Escherichia coli DinD protein modulates RecA activity by inhibiting postsynaptic RecA filaments. J Biol Chem 286:29480-29491.
    • (2011) J Biol Chem , vol.286 , pp. 29480-29491
    • Uranga, L.A.1    Balise, V.D.2    Benally, C.V.3    Grey, A.4    Lusetti, S.L.5
  • 198
    • 0028870059 scopus 로고
    • Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species
    • Matic I, Rayssiguier C, Radman M. 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507-515.
    • (1995) Cell , vol.80 , pp. 507-515
    • Matic, I.1    Rayssiguier, C.2    Radman, M.3
  • 200
    • 14444280136 scopus 로고    scopus 로고
    • Role of MutS ATPase activity in MutS, L-dependent block of in vitro strand transfer
    • Worth L, Bader T, Yang J, Clark S. 1998. Role of MutS ATPase activity in MutS, L-dependent block of in vitro strand transfer. J Biol Chem 273:23176-23182.
    • (1998) J Biol Chem , vol.273 , pp. 23176-23182
    • Worth, L.1    Bader, T.2    Yang, J.3    Clark, S.4
  • 201
    • 4644227132 scopus 로고    scopus 로고
    • MutS inhibits RecA-mediated strand exchange with platinated DNA substrates
    • Calmann MA, Marinus MG. 2004. MutS inhibits RecA-mediated strand exchange with platinated DNA substrates. Proc Natl Acad Sci USA 101:14174-14179.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 14174-14179
    • Calmann, M.A.1    Marinus, M.G.2
  • 202
    • 57349157777 scopus 로고    scopus 로고
    • RecBCD enzyme and the repair of double-stranded DNA breaks
    • Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642-671.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 642-671
    • Dillingham, M.S.1    Kowalczykowski, S.C.2
  • 203
    • 0031470610 scopus 로고    scopus 로고
    • Recombination initiation: easy as A, B, C, D.. chi?
    • Eggleston AK, West SC. 1997. Recombination initiation: easy as A, B, C, D.. chi? Curr Biol 7:R745-R749.
    • (1997) Curr Biol , vol.7 , pp. R745-R749
    • Eggleston, A.K.1    West, S.C.2
  • 206
    • 0028566106 scopus 로고
    • chi and the RecBCD enzyme of Escherichia coli
    • Myers RS, Stahl FW. 1994. chi and the RecBCD enzyme of Escherichia coli. Annu Rev Genet 28:49-70.
    • (1994) Annu Rev Genet , vol.28 , pp. 49-70
    • Myers, R.S.1    Stahl, F.W.2
  • 208
    • 0028214553 scopus 로고
    • Hotspots of homologous recombination
    • Smith GR. 1994. Hotspots of homologous recombination. Experientia 50:234-241.
    • (1994) Experientia , vol.50 , pp. 234-241
    • Smith, G.R.1
  • 209
    • 0035671854 scopus 로고    scopus 로고
    • Homologous recombination near and far from DNA breaks: alternative roles and contrasting views
    • Smith GR. 2001. Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet 35:243-274.
    • (2001) Annu Rev Genet , vol.35 , pp. 243-274
    • Smith, G.R.1
  • 210
    • 0026537422 scopus 로고
    • High-molecular-weight linear multimer formation by single-stranded DNA plasmids in Escherichia coli
    • Dabert P, Ehrlich SD, Gruss A. 1992. High-molecular-weight linear multimer formation by single-stranded DNA plasmids in Escherichia coli. J Bacteriol 174:173-178.
    • (1992) J Bacteriol , vol.174 , pp. 173-178
    • Dabert, P.1    Ehrlich, S.D.2    Gruss, A.3
  • 211
    • 0016810915 scopus 로고
    • The nature and origin of a class of essential gene substitutions in bacteriophage lambda
    • Henderson D, Weil J. 1975. The nature and origin of a class of essential gene substitutions in bacteriophage lambda. Virology 67:124-135.
    • (1975) Virology , vol.67 , pp. 124-135
    • Henderson, D.1    Weil, J.2
  • 212
    • 0028176499 scopus 로고
    • chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease
    • Kuzminov A, Schabtach E, Stahl FW. 1994. chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. EMBO J 13:2764-2776.
    • (1994) EMBO J , vol.13 , pp. 2764-2776
    • Kuzminov, A.1    Schabtach, E.2    Stahl, F.W.3
  • 213
    • 0016198522 scopus 로고
    • Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity
    • Lam ST, Stahl MM, McMilin KD, Stahl FW. 1974. Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity. Genetics 77:425-433.
    • (1974) Genetics , vol.77 , pp. 425-433
    • Lam, S.T.1    Stahl, M.M.2    McMilin, K.D.3    Stahl, F.W.4
  • 214
    • 0030917148 scopus 로고    scopus 로고
    • The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5'-GCTGGTGG-3'
    • Bianco PR, Kowalczykowski SC. 1997. The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5'-GCTGGTGG-3'. Proc Natl Acad Sci USA 94:6706-6711.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 6706-6711
    • Bianco, P.R.1    Kowalczykowski, S.C.2
  • 216
    • 0018230936 scopus 로고
    • A single base-pair change creates a Chi recombinational hotspot in bacteriophage lambda
    • Sprague KU, Faulds DH, Smith GR. 1978. A single base-pair change creates a Chi recombinational hotspot in bacteriophage lambda. Proc Natl Acad Sci USA 75:6182-6186.
    • (1978) Proc Natl Acad Sci USA , vol.75 , pp. 6182-6186
    • Sprague, K.U.1    Faulds, D.H.2    Smith, G.R.3
  • 217
    • 0018791751 scopus 로고
    • Orientationdependent recombination hotspot activity in bacteriophage lambda
    • Faulds D, Dower N, Stahl MM, Stahl FW. 1979. Orientationdependent recombination hotspot activity in bacteriophage lambda. J Mol Biol 131:681-695.
    • (1979) J Mol Biol , vol.131 , pp. 681-695
    • Faulds, D.1    Dower, N.2    Stahl, M.M.3    Stahl, F.W.4
  • 218
    • 0018980111 scopus 로고
    • Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda
    • Stahl FW, Stahl MM, Malone RE, Crasemann JM. 1980. Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda. Genetics 94:235-248.
    • (1980) Genetics , vol.94 , pp. 235-248
    • Stahl, F.W.1    Stahl, M.M.2    Malone, R.E.3    Crasemann, J.M.4
  • 219
  • 220
    • 33947587178 scopus 로고    scopus 로고
    • Validating the significance of genomic properties of Chi sites from the distribution of all octamers in Escherichia coli
    • Arakawa K, Uno R, Nakayama Y, Tomita M. 2007. Validating the significance of genomic properties of Chi sites from the distribution of all octamers in Escherichia coli. Gene 392:239-246.
    • (2007) Gene , vol.392 , pp. 239-246
    • Arakawa, K.1    Uno, R.2    Nakayama, Y.3    Tomita, M.4
  • 221
    • 33747884625 scopus 로고    scopus 로고
    • Over-representation of Chi sequences caused by di-codon increase in Escherichia coli K-12
    • Uno R, Nakayama Y, Tomita M. 2006. Over-representation of Chi sequences caused by di-codon increase in Escherichia coli K-12. Gene 380:30-37.
    • (2006) Gene , vol.380 , pp. 30-37
    • Uno, R.1    Nakayama, Y.2    Tomita, M.3
  • 222
    • 0034707195 scopus 로고    scopus 로고
    • The orientation bias of Chi sequences is a general tendency of G-rich oligomers
    • Uno R, Nakayama Y, Arakawa K, Tomita M. 2000. The orientation bias of Chi sequences is a general tendency of G-rich oligomers. Gene 259:207-215.
    • (2000) Gene , vol.259 , pp. 207-215
    • Uno, R.1    Nakayama, Y.2    Arakawa, K.3    Tomita, M.4
  • 223
    • 0014852683 scopus 로고
    • An endonuclease activity from Escherichia coli absent from certain rec-strains
    • Goldmark PJ, Linn S. 1970. An endonuclease activity from Escherichia coli absent from certain rec-strains. Proc Natl Acad Sci USA 67:434-441.
    • (1970) Proc Natl Acad Sci USA , vol.67 , pp. 434-441
    • Goldmark, P.J.1    Linn, S.2
  • 224
    • 0015522679 scopus 로고
    • Purification and properties of the recBC DNase of Escherichia coli K-12
    • Goldmark PJ, Linn S. 1972. Purification and properties of the recBC DNase of Escherichia coli K-12. J Biol Chem 247:1849-1860.
    • (1972) J Biol Chem , vol.247 , pp. 1849-1860
    • Goldmark, P.J.1    Linn, S.2
  • 225
    • 0015839529 scopus 로고
    • The recBC deoxyribonuclease of Escherichia coli K-12. Substrate specificity and reaction intermediates
    • Karu AE, MacKay V, Goldmark PJ, Linn S. 1973. The recBC deoxyribonuclease of Escherichia coli K-12. Substrate specificity and reaction intermediates. J Biol Chem 248:4874-4884.
    • (1973) J Biol Chem , vol.248 , pp. 4874-4884
    • Karu, A.E.1    MacKay, V.2    Goldmark, P.J.3    Linn, S.4
  • 226
    • 0015812076 scopus 로고
    • Formation of the recB-recC DNase by in vitro complementation and evidence concerning its subunit nature
    • Lieberman RP, Oishi M. 1973. Formation of the recB-recC DNase by in vitro complementation and evidence concerning its subunit nature. Nat New Biol 243:75-77.
    • (1973) Nat New Biol , vol.243 , pp. 75-77
    • Lieberman, R.P.1    Oishi, M.2
  • 227
    • 0015266288 scopus 로고
    • Adenosine triphosphatase associated with adenosine triphosphatedependent deoxyribonuclease (recB-recC enzyme-E. coli-ATP to phosphodiester hydrolysis ratio-DNA-dependent ATPase activity)
    • Nobrega FG, Rola FH, Pasetto-Nobrega M, Oishi M. 1972. Adenosine triphosphatase associated with adenosine triphosphatedependent deoxyribonuclease (recB-recC enzyme-E. coli-ATP to phosphodiester hydrolysis ratio-DNA-dependent ATPase activity). Proc Natl Acad Sci USA 69:15-19.
    • (1972) Proc Natl Acad Sci USA , vol.69 , pp. 15-19
    • Nobrega, F.G.1    Rola, F.H.2    Pasetto-Nobrega, M.3    Oishi, M.4
  • 228
    • 0014649255 scopus 로고
    • An ATP-dependent deoxyribonuclease from Escherichia coli with a possible role in genetic recombination
    • Oishi M. 1969. An ATP-dependent deoxyribonuclease from Escherichia coli with a possible role in genetic recombination. Proc Natl Acad Sci USA 64:1292-9.
    • (1969) Proc Natl Acad Sci USA , vol.64 , pp. 1292-1299
    • Oishi, M.1
  • 229
    • 0015527124 scopus 로고
    • 5'-Oligonucleotides as the acid-soluble products of the ATP-dependent DNase from Escherichia coli
    • Tanner D, Nobrega FG, Oishi M. 1972. 5'-Oligonucleotides as the acid-soluble products of the ATP-dependent DNase from Escherichia coli. J Mol Biol 67:513-516.
    • (1972) J Mol Biol , vol.67 , pp. 513-516
    • Tanner, D.1    Nobrega, F.G.2    Oishi, M.3
  • 230
    • 0015496023 scopus 로고
    • Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli
    • Tomizawa J, Ogawa H. 1972. Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli. Nat New Biol 239:14-16.
    • (1972) Nat New Biol , vol.239 , pp. 14-16
    • Tomizawa, J.1    Ogawa, H.2
  • 231
    • 18244428198 scopus 로고
    • Mechanisms of enzyme degradation of bacterial chromosomes and their regulation
    • (In French.)
    • Wright M, Buttin G. 1969. Mechanisms of enzyme degradation of bacterial chromosomes and their regulation. Bull Soc Chim Biol (Paris) 51:1373-1383. (In French.).
    • (1969) Bull Soc Chim Biol (Paris) , vol.51 , pp. 1373-1383
    • Wright, M.1    Buttin, G.2
  • 232
    • 0015149052 scopus 로고
    • The isolation and characterization from Escherichia coli of an adenosine triphosphatedependent deoxyribonuclease directed by rec B, C genes
    • Wright M, Buttin G, Hurwitz J. 1971. The isolation and characterization from Escherichia coli of an adenosine triphosphatedependent deoxyribonuclease directed by rec B, C genes. J Biol Chem 246:6543-6455.
    • (1971) J Biol Chem , vol.246 , pp. 6543-6555
    • Wright, M.1    Buttin, G.2    Hurwitz, J.3
  • 233
    • 0022181381 scopus 로고
    • Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli
    • Taylor AF, Smith GR. 1985. Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J Mol Biol 185:431-443.
    • (1985) J Mol Biol , vol.185 , pp. 431-443
    • Taylor, A.F.1    Smith, G.R.2
  • 234
    • 0028810980 scopus 로고
    • Monomeric RecBCD enzyme binds and unwinds DNA
    • Taylor AF, Smith GR. 1995. Monomeric RecBCD enzyme binds and unwinds DNA. J Biol Chem 270:24451-24458.
    • (1995) J Biol Chem , vol.270 , pp. 24451-24458
    • Taylor, A.F.1    Smith, G.R.2
  • 235
    • 24644435846 scopus 로고    scopus 로고
    • Energetics of DNA end binding by. coli RecBC and RecBCD helicases indicate loop formation in the 3'-single-stranded DNA tail
    • Wong CJ, Lucius AL, Lohman TM. 2005. Energetics of DNA end binding by E. coli RecBC and RecBCD helicases indicate loop formation in the 3'-single-stranded DNA tail. J Mol Biol 352:765-782.
    • (2005) J Mol Biol , vol.352 , pp. 765-782
    • Wong, C.J.1    Lucius, A.L.2    Lohman, T.M.3
  • 236
    • 50049092327 scopus 로고    scopus 로고
    • Influence of DNA end structure on the mechanism of initiation of DNA unwinding by the Escherichia coli RecBCD and RecBC helicases
    • Wu CG, Lohman TM. 2008. Influence of DNA end structure on the mechanism of initiation of DNA unwinding by the Escherichia coli RecBCD and RecBC helicases. J Mol Biol 382:312-326.
    • (2008) J Mol Biol , vol.382 , pp. 312-326
    • Wu, C.G.1    Lohman, T.M.2
  • 237
    • 0032544662 scopus 로고    scopus 로고
    • SSB protein controls RecBCD enzyme nuclease activity during unwinding: a new role for looped intermediates
    • Anderson DG, Kowalczykowski SC. 1998. SSB protein controls RecBCD enzyme nuclease activity during unwinding: a new role for looped intermediates. J Mol Biol 282:275-285.
    • (1998) J Mol Biol , vol.282 , pp. 275-285
    • Anderson, D.G.1    Kowalczykowski, S.C.2
  • 238
    • 0029038312 scopus 로고
    • Role of the Escherichia coli recombination hotspot, chi, in RecABCD-dependent homologous pairing
    • Dixon DA, Kowalczykowski SC. 1995. Role of the Escherichia coli recombination hotspot, chi, in RecABCD-dependent homologous pairing. J Biol Chem 270:16360-16370.
    • (1995) J Biol Chem , vol.270 , pp. 16360-16370
    • Dixon, D.A.1    Kowalczykowski, S.C.2
  • 239
    • 0027511858 scopus 로고
    • The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme
    • Dixon DA, Kowalczykowski SC. 1993. The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73:87-96.
    • (1993) Cell , vol.73 , pp. 87-96
    • Dixon, D.A.1    Kowalczykowski, S.C.2
  • 240
    • 14644412914 scopus 로고    scopus 로고
    • Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition
    • Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC. 2005. Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol Cell 17:745-750.
    • (2005) Mol Cell , vol.17 , pp. 745-750
    • Handa, N.1    Bianco, P.R.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 241
    • 27744497422 scopus 로고    scopus 로고
    • Translocation by the RecB motor is an absolute requirement for χ-recognition and RecA protein loading by RecBCD enzyme
    • Spies M, Dillingham MS, Kowalczykowski SC. 2005. Translocation by the RecB motor is an absolute requirement for χ-recognition and RecA protein loading by RecBCD enzyme. J Biol Chem 280:37078-37087.
    • (2005) J Biol Chem , vol.280 , pp. 37078-37087
    • Spies, M.1    Dillingham, M.S.2    Kowalczykowski, S.C.3
  • 242
    • 0030969429 scopus 로고    scopus 로고
    • The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme
    • Anderson DG, Kowalczykowski SC. 1997. The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev 11:571-581.
    • (1997) Genes Dev , vol.11 , pp. 571-581
    • Anderson, D.G.1    Kowalczykowski, S.C.2
  • 244
    • 0031064615 scopus 로고    scopus 로고
    • Chiactivated RecBCD enzyme possesses 5'->3' nucleolytic activity, but RecBC enzyme does not: evidence suggesting that the alteration induced by Chi is not simply ejection of the RecD subunit
    • Anderson DG, Churchill JJ, Kowalczykowski SC. 1997. Chiactivated RecBCD enzyme possesses 5'->3' nucleolytic activity, but RecBC enzyme does not: evidence suggesting that the alteration induced by Chi is not simply ejection of the RecD subunit. Genes Cells 2:117-128.
    • (1997) Genes Cells , vol.2 , pp. 117-128
    • Anderson, D.G.1    Churchill, J.J.2    Kowalczykowski, S.C.3
  • 245
    • 0033578824 scopus 로고    scopus 로고
    • A single mutation, RecB(D1080A), eliminates RecA protein loading but not Chi recognition by RecBCD enzyme
    • Anderson DG, Churchill JJ, Kowalczykowski SC. 1999. A single mutation, RecB(D1080A), eliminates RecA protein loading but not Chi recognition by RecBCD enzyme. J Biol Chem 274:27139-27144.
    • (1999) J Biol Chem , vol.274 , pp. 27139-27144
    • Anderson, D.G.1    Churchill, J.J.2    Kowalczykowski, S.C.3
  • 246
    • 0034697325 scopus 로고    scopus 로고
    • Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme
    • Arnold DA, Kowalczykowski SC. 2000. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J Biol Chem 275:12261-12265.
    • (2000) J Biol Chem , vol.275 , pp. 12261-12265
    • Arnold, D.A.1    Kowalczykowski, S.C.2
  • 249
    • 0037698985 scopus 로고    scopus 로고
    • RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
    • Taylor AF, Smith GR. 2003. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423:889-893.
    • (2003) Nature , vol.423 , pp. 889-893
    • Taylor, A.F.1    Smith, G.R.2
  • 250
    • 0034737310 scopus 로고    scopus 로고
    • Identification of the RecA protein-loading domain of RecBCD enzyme
    • Churchill JJ, Kowalczykowski SC. 2000. Identification of the RecA protein-loading domain of RecBCD enzyme. J Mol Biol 297:537-542.
    • (2000) J Mol Biol , vol.297 , pp. 537-542
    • Churchill, J.J.1    Kowalczykowski, S.C.2
  • 251
    • 67650957556 scopus 로고    scopus 로고
    • The RecB nuclease domain binds to RecA-DNA filaments: implications for filament loading
    • Lucarelli D, Wang YA, Galkin VE, Yu X, Wigley DB, Egelman EH. 2009. The RecB nuclease domain binds to RecA-DNA filaments: implications for filament loading. J Mol Biol 391:269-274.
    • (2009) J Mol Biol , vol.391 , pp. 269-274
    • Lucarelli, D.1    Wang, Y.A.2    Galkin, V.E.3    Yu, X.4    Wigley, D.B.5    Egelman, E.H.6
  • 252
    • 32444451553 scopus 로고    scopus 로고
    • The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins
    • Spies M, Kowalczykowski SC. 2006. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol Cell 21:573-580.
    • (2006) Mol Cell , vol.21 , pp. 573-580
    • Spies, M.1    Kowalczykowski, S.C.2
  • 253
    • 0027288130 scopus 로고
    • Kinetics and processivity of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli
    • Korangy F, Julin DA. 1993. Kinetics and processivity of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli. Biochemistry 32:4873-4880.
    • (1993) Biochemistry , vol.32 , pp. 4873-4880
    • Korangy, F.1    Julin, D.A.2
  • 254
    • 0028100641 scopus 로고
    • Efficiency of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli
    • Korangy F, Julin DA. 1994. Efficiency of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli. Biochemistry 33:9552-9560.
    • (1994) Biochemistry , vol.33 , pp. 9552-9560
    • Korangy, F.1    Julin, D.A.2
  • 256
    • 0035905807 scopus 로고    scopus 로고
    • chi-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules
    • Dohoney KM, Gelles J. 2001. chi-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409:370-374.
    • (2001) Nature , vol.409 , pp. 370-374
    • Dohoney, K.M.1    Gelles, J.2
  • 257
    • 1542375262 scopus 로고    scopus 로고
    • Forward and reverse motion of single RecBCD molecules on DNA
    • Perkins TT, Li HW, Dalal RV, Gelles J, Block SM. 2004. Forward and reverse motion of single RecBCD molecules on DNA. Biophys J 86:1640-1648.
    • (2004) Biophys J , vol.86 , pp. 1640-1648
    • Perkins, T.T.1    Li, H.W.2    Dalal, R.V.3    Gelles, J.4    Block, S.M.5
  • 258
    • 36049052525 scopus 로고    scopus 로고
    • RecBCD enzyme switches lead motor subunits in response to chi recognition
    • Spies M, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell 131:694-705.
    • (2007) Cell , vol.131 , pp. 694-705
    • Spies, M.1    Amitani, I.2    Baskin, R.J.3    Kowalczykowski, S.C.4
  • 259
    • 0014588869 scopus 로고
    • Characteristics of some multiply recombination-deficient strains of Escherichia coli
    • Willetts NS, Clark AJ. 1969. Characteristics of some multiply recombination-deficient strains of Escherichia coli. J Bacteriol 100:231-239.
    • (1969) J Bacteriol , vol.100 , pp. 231-239
    • Willetts, N.S.1    Clark, A.J.2
  • 260
    • 0017286062 scopus 로고
    • Postinfection control by bacteriophage T4 of Escherichia coli recBC nuclease activity
    • Behme MT, Lilley GD, Ebisuzaki K. 1976. Postinfection control by bacteriophage T4 of Escherichia coli recBC nuclease activity. J Virol 18:20-25.
    • (1976) J Virol , vol.18 , pp. 20-25
    • Behme, M.T.1    Lilley, G.D.2    Ebisuzaki, K.3
  • 261
    • 0016807042 scopus 로고
    • Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec-spheroplasts measured with different forms of bacteriophage DNA
    • Benzinger R, Enquist LW, Skalka A. 1975. Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec-spheroplasts measured with different forms of bacteriophage DNA. J Virol 15:861-871.
    • (1975) J Virol , vol.15 , pp. 861-871
    • Benzinger, R.1    Enquist, L.W.2    Skalka, A.3
  • 262
    • 0015419143 scopus 로고
    • Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12
    • Simmon VF, Lederberg S. 1972. Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12. J Bacteriol 112:161-169.
    • (1972) J Bacteriol , vol.112 , pp. 161-169
    • Simmon, V.F.1    Lederberg, S.2
  • 263
    • 33846555471 scopus 로고    scopus 로고
    • Chi hotspot activity in Escherichia coli without RecBCD exonuclease activity: implications for the mechanism of recombination
    • Amundsen SK, Smith GR. 2007. Chi hotspot activity in Escherichia coli without RecBCD exonuclease activity: implications for the mechanism of recombination. Genetics 175:41-54.
    • (2007) Genetics , vol.175 , pp. 41-54
    • Amundsen, S.K.1    Smith, G.R.2
  • 264
    • 0028925161 scopus 로고
    • On the clustered exchanges of the RecBCD pathway operating on phage lambda
    • Stahl FW, Shurvinton CE, Thomason LC, Hill S, Stahl MM. 1995. On the clustered exchanges of the RecBCD pathway operating on phage lambda. Genetics 139:1107-1121.
    • (1995) Genetics , vol.139 , pp. 1107-1121
    • Stahl, F.W.1    Shurvinton, C.E.2    Thomason, L.C.3    Hill, S.4    Stahl, M.M.5
  • 265
    • 0025009867 scopus 로고
    • Further tests of a recombination model in which chi removes the RecD subunit from the RecBCD enzyme of Escherichia coli
    • Stahl FW, Thomason LC, Siddiqi I, Stahl MM. 1990. Further tests of a recombination model in which chi removes the RecD subunit from the RecBCD enzyme of Escherichia coli. Genetics 126:519-533.
    • (1990) Genetics , vol.126 , pp. 519-533
    • Stahl, F.W.1    Thomason, L.C.2    Siddiqi, I.3    Stahl, M.M.4
  • 266
    • 0029079521 scopus 로고
    • Interaction with the recombination hot spot chi in vivo converts the RecBCD enzyme of Escherichia coli into a chi-independent recombinase by inactivation of the RecD subunit
    • Koppen A, Krobitsch S, Thoms B, Wackernagel W. 1995. Interaction with the recombination hot spot chi in vivo converts the RecBCD enzyme of Escherichia coli into a chi-independent recombinase by inactivation of the RecD subunit. Proc Natl Acad Sci USA 92:6249-6253.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 6249-6253
    • Koppen, A.1    Krobitsch, S.2    Thoms, B.3    Wackernagel, W.4
  • 267
    • 0029037763 scopus 로고
    • The recombination hot spot chi activates RecBCD recombination by converting Escherichia coli to a recD mutant phenocopy
    • Myers RS, Kuzminov A, Stahl FW. 1995. The recombination hot spot chi activates RecBCD recombination by converting Escherichia coli to a recD mutant phenocopy. Proc Natl Acad Sci USA 92:6244-6248.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 6244-6248
    • Myers, R.S.1    Kuzminov, A.2    Stahl, F.W.3
  • 269
    • 0033119729 scopus 로고    scopus 로고
    • Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits
    • Taylor AF, Smith GR. 1999. Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits. Genes Dev 13:890-900.
    • (1999) Genes Dev , vol.13 , pp. 890-900
    • Taylor, A.F.1    Smith, G.R.2
  • 271
    • 0022509196 scopus 로고
    • Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli
    • Biek DP, Cohen SN. 1986. Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli. J Bacteriol 167:594-603.
    • (1986) J Bacteriol , vol.167 , pp. 594-603
    • Biek, D.P.1    Cohen, S.N.2
  • 272
    • 0025163199 scopus 로고
    • Genetic dissection of the biochemical activities of RecBCD enzyme
    • Amundsen SK, Neiman AM, Thibodeaux SM, Smith GR. 1990. Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics 126:25-40.
    • (1990) Genetics , vol.126 , pp. 25-40
    • Amundsen, S.K.1    Neiman, A.M.2    Thibodeaux, S.M.3    Smith, G.R.4
  • 273
    • 0027240259 scopus 로고
    • Biochemical characterization of a mutant recBCD enzyme, the recB(2109)CD enzyme, which lacks chi-specific, but not non-specific, nuclease activity
    • Eggleston AK, Kowalczykowski SC. 1993. Biochemical characterization of a mutant recBCD enzyme, the recB(2109)CD enzyme, which lacks chi-specific, but not non-specific, nuclease activity. J Mol Biol 231:605-620.
    • (1993) J Mol Biol , vol.231 , pp. 605-620
    • Eggleston, A.K.1    Kowalczykowski, S.C.2
  • 274
    • 0027296790 scopus 로고
    • The mutant recBCD enzyme, recB(2109)CD enzyme, has helicase activity but does not promote efficient joint molecule formation in vitro
    • Eggleston AK, Kowalczykowski SC. 1993. The mutant recBCD enzyme, recB(2109)CD enzyme, has helicase activity but does not promote efficient joint molecule formation in vitro. J Mol Biol 231:621-633.
    • (1993) J Mol Biol , vol.231 , pp. 621-633
    • Eggleston, A.K.1    Kowalczykowski, S.C.2
  • 275
    • 0035989351 scopus 로고    scopus 로고
    • A domain of RecC required for assembly of the regulatory RecD subunit into the Escherichia coli RecBCD holoenzyme
    • Amundsen SK, Taylor AF, Smith GR. 2002. A domain of RecC required for assembly of the regulatory RecD subunit into the Escherichia coli RecBCD holoenzyme. Genetics 161:483-492.
    • (2002) Genetics , vol.161 , pp. 483-492
    • Amundsen, S.K.1    Taylor, A.F.2    Smith, G.R.3
  • 276
    • 33747832754 scopus 로고    scopus 로고
    • Exonuclease requirements for recombination of lambda-phage in recD mutants of Escherichia coli
    • Dermic D, Zahradka D, Petranovic M. 2006. Exonuclease requirements for recombination of lambda-phage in recD mutants of Escherichia coli. Genetics 173:2399-402.
    • (2006) Genetics , vol.173 , pp. 2399-2402
    • Dermic, D.1    Zahradka, D.2    Petranovic, M.3
  • 277
    • 33646182576 scopus 로고    scopus 로고
    • Functions of multiple exonucleases are essential for cell viability, DNA repair and homologous recombination in recD mutants of Escherichia coli
    • Dermic D. 2006. Functions of multiple exonucleases are essential for cell viability, DNA repair and homologous recombination in recD mutants of Escherichia coli. Genetics 172:2057-2069.
    • (2006) Genetics , vol.172 , pp. 2057-2069
    • Dermic, D.1
  • 278
    • 0025921507 scopus 로고
    • Overlapping functions of recD, recJ and recN provide evidence of 3 epistatic groups of genes in Escherichia coli recombination and DNA repair
    • Lloyd RG, Buckman C. 1991. Overlapping functions of recD, recJ and recN provide evidence of 3 epistatic groups of genes in Escherichia coli recombination and DNA repair. Biochimie 73:313-320.
    • (1991) Biochimie , vol.73 , pp. 313-320
    • Lloyd, R.G.1    Buckman, C.2
  • 279
    • 0023915211 scopus 로고
    • Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12
    • Lloyd RG, Porton MC, Buckman C. 1988. Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol Gen Genet 212:317-324.
    • (1988) Mol Gen Genet , vol.212 , pp. 317-324
    • Lloyd, R.G.1    Porton, M.C.2    Buckman, C.3
  • 280
    • 0023790378 scopus 로고
    • The genetic dependence of recombination in recD mutants of Escherichia coli
    • Lovett ST, Luisi-DeLuca C, Kolodner RD. 1988. The genetic dependence of recombination in recD mutants of Escherichia coli. Genetics 120:37-45.
    • (1988) Genetics , vol.120 , pp. 37-45
    • Lovett, S.T.1    Luisi-DeLuca, C.2    Kolodner, R.D.3
  • 281
    • 0026723028 scopus 로고
    • A mutation in the consensus ATPbinding sequence of the RecD subunit reduces the processivity of the RecBCD enzyme from Escherichia coli
    • Korangy F, Julin DA. 1992. A mutation in the consensus ATPbinding sequence of the RecD subunit reduces the processivity of the RecBCD enzyme from Escherichia coli. J Biol Chem 267:3088-3095.
    • (1992) J Biol Chem , vol.267 , pp. 3088-3095
    • Korangy, F.1    Julin, D.A.2
  • 282
    • 0020599039 scopus 로고
    • Escherichia coli RecBC pseudorevertants lacking chi recombinational hotspot activity
    • Schultz DW, Taylor AF, Smith GR. 1983. Escherichia coli RecBC pseudorevertants lacking chi recombinational hotspot activity. J Bacteriol 155:664-680.
    • (1983) J Bacteriol , vol.155 , pp. 664-680
    • Schultz, D.W.1    Taylor, A.F.2    Smith, G.R.3
  • 283
    • 0034691091 scopus 로고    scopus 로고
    • The RecD subunit of the Escherichia coli RecBCD enzyme inhibits RecA loading, homologous recombination, and DNA repair
    • Amundsen SK, Taylor AF, Smith GR. 2000. The RecD subunit of the Escherichia coli RecBCD enzyme inhibits RecA loading, homologous recombination, and DNA repair. Proc Natl Acad Sci USA 97:7399-7404.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 7399-7404
    • Amundsen, S.K.1    Taylor, A.F.2    Smith, G.R.3
  • 284
    • 0037459374 scopus 로고    scopus 로고
    • Interchangeable parts of the Escherichia coli recombination machinery
    • Amundsen SK, Smith GR. 2003. Interchangeable parts of the Escherichia coli recombination machinery. Cell 112:741-744.
    • (2003) Cell , vol.112 , pp. 741-744
    • Amundsen, S.K.1    Smith, G.R.2
  • 285
    • 0037295442 scopus 로고    scopus 로고
    • RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli
    • Ivancic-Bace I, Peharec P, Moslavac S, Skrobot N, Salaj-Smic E, Brcic-Kostic K. 2003. RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli. Genetics 163:485-494.
    • (2003) Genetics , vol.163 , pp. 485-494
    • Ivancic-Bace, I.1    Peharec, P.2    Moslavac, S.3    Skrobot, N.4    Salaj-Smic, E.5    Brcic-Kostic, K.6
  • 286
    • 47749114206 scopus 로고    scopus 로고
    • RecJ nuclease is required for SOS induction after introduction of a double-strand break in a RecA loading deficient recB mutant of Escherichia coli
    • Vlasic I, Ivancic-Bace I, Imesek M, Mihaljevic B, Brcic-Kostic K. 2008. RecJ nuclease is required for SOS induction after introduction of a double-strand break in a RecA loading deficient recB mutant of Escherichia coli. Biochimie 90:1347-1355.
    • (2008) Biochimie , vol.90 , pp. 1347-1355
    • Vlasic, I.1    Ivancic-Bace, I.2    Imesek, M.3    Mihaljevic, B.4    Brcic-Kostic, K.5
  • 287
    • 0034614654 scopus 로고    scopus 로고
    • A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions
    • Wang JD, Chen RW, Julin DA. 2000. A single nuclease active site of the Escherichia coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions. J Biol Chem 275:507-513.
    • (2000) J Biol Chem , vol.275 , pp. 507-513
    • Wang, J.D.1    Chen, R.W.2    Julin, D.A.3
  • 288
    • 0032491378 scopus 로고    scopus 로고
    • Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme
    • Yu M, Souaya J, Julin DA. 1998. Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme. J Mol Biol 283:797-808.
    • (1998) J Mol Biol , vol.283 , pp. 797-808
    • Yu, M.1    Souaya, J.2    Julin, D.A.3
  • 291
    • 0028786478 scopus 로고
    • Lethality of rep recB and rep recC double mutants of Escherichia coli
    • Uzest M, Ehrlich SD, Michel B. 1995. Lethality of rep recB and rep recC double mutants of Escherichia coli. Mol Microbiol 17:1177-1188.
    • (1995) Mol Microbiol , vol.17 , pp. 1177-1188
    • Uzest, M.1    Ehrlich, S.D.2    Michel, B.3
  • 292
    • 0035254234 scopus 로고    scopus 로고
    • Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks
    • Flores MJ, Bierne H, Ehrlich SD, Michel B. 2001. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 20:619-629.
    • (2001) EMBO J , vol.20 , pp. 619-629
    • Flores, M.J.1    Bierne, H.2    Ehrlich, S.D.3    Michel, B.4
  • 293
    • 4344695035 scopus 로고    scopus 로고
    • Cells defective for replication restart undergo replication fork reversal
    • Grompone G, Ehrlich D, Michel B. 2004. Cells defective for replication restart undergo replication fork reversal. EMBO Rep 5:607-612.
    • (2004) EMBO Rep , vol.5 , pp. 607-612
    • Grompone, G.1    Ehrlich, D.2    Michel, B.3
  • 294
    • 34247647580 scopus 로고    scopus 로고
    • Defective ribonucleoside diphosphate reductase impairs replication fork progression in Escherichia coli
    • Guarino E, Jimenez-Sanchez A, Guzman EC. 2007. Defective ribonucleoside diphosphate reductase impairs replication fork progression in Escherichia coli. J Bacteriol 189:3496-3501.
    • (2007) J Bacteriol , vol.189 , pp. 3496-3501
    • Guarino, E.1    Jimenez-Sanchez, A.2    Guzman, E.C.3
  • 295
    • 34547629795 scopus 로고    scopus 로고
    • Double-strand break generation under deoxyribonucleotide starvation in Escherichia coli
    • Guarino E, Salguero I, Jimenez-Sanchez A, Guzman EC. 2007. Double-strand break generation under deoxyribonucleotide starvation in Escherichia coli. J Bacteriol 189:5782-5786.
    • (2007) J Bacteriol , vol.189 , pp. 5782-5786
    • Guarino, E.1    Salguero, I.2    Jimenez-Sanchez, A.3    Guzman, E.C.4
  • 296
    • 79958124104 scopus 로고    scopus 로고
    • RecA-dependent replication in the nrdA101(Ts) mutant of Escherichia coli under restrictive conditions
    • Salguero I, Guarino E, Guzman EC. 2011. RecA-dependent replication in the nrdA101(Ts) mutant of Escherichia coli under restrictive conditions. J Bacteriol 193:2851-2860.
    • (2011) J Bacteriol , vol.193 , pp. 2851-2860
    • Salguero, I.1    Guarino, E.2    Guzman, E.C.3
  • 297
    • 0029347083 scopus 로고
    • Instability of inhibited replication forks in E. coli
    • Kuzminov A. 1995. Instability of inhibited replication forks in E. coli. Bioessays 17:733-741.
    • (1995) Bioessays , vol.17 , pp. 733-741
    • Kuzminov, A.1
  • 298
    • 33745743449 scopus 로고    scopus 로고
    • Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo
    • Possoz C, Filipe SR, Grainge I, Sherratt DJ. 2006. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J 25:2596-2604.
    • (2006) EMBO J , vol.25 , pp. 2596-2604
    • Possoz, C.1    Filipe, S.R.2    Grainge, I.3    Sherratt, D.J.4
  • 299
    • 0033960606 scopus 로고    scopus 로고
    • Palindromes as substrates for multiple pathways of recombination in Escherichia coli
    • Cromie GA, Millar CB, Schmidt KH, Leach DRF. 2000. Palindromes as substrates for multiple pathways of recombination in Escherichia coli. Genetics 154:513-522.
    • (2000) Genetics , vol.154 , pp. 513-522
    • Cromie, G.A.1    Millar, C.B.2    Schmidt, K.H.3    Leach, D.R.F.4
  • 300
    • 0030714064 scopus 로고    scopus 로고
    • Repair by recombination ofDNA containing a palindromic sequence
    • Leach DRL, Okely EA, Pinder DJ. 1997. Repair by recombination ofDNA containing a palindromic sequence. Mol Microbiol 26:597-606.
    • (1997) Mol Microbiol , vol.26 , pp. 597-606
    • Leach, D.R.L.1    Okely, E.A.2    Pinder, D.J.3
  • 301
    • 40649101678 scopus 로고    scopus 로고
    • SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome
    • Eykelenboom JK, Blackwood JK, Okely E, Leach DR. 2008. SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol Cell 29:644-651.
    • (2008) Mol Cell , vol.29 , pp. 644-651
    • Eykelenboom, J.K.1    Blackwood, J.K.2    Okely, E.3    Leach, D.R.4
  • 302
    • 0027238208 scopus 로고
    • Biochemical interaction of the Escherichia coli RecF, RecO, and RecR Proteins with RecA protein and single-stranded DNA binding protein
    • Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR Proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA 90:3875-3879.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 3875-3879
    • Umezu, K.1    Chi, N.W.2    Kolodner, R.D.3
  • 303
    • 0016839760 scopus 로고
    • The effect of lexA and recF mutations on post-replication repair and DNA synthesis in Escherichia coli K-12
    • Ganesan AK, Seawell PC. 1975. The effect of lexA and recF mutations on post-replication repair and DNA synthesis in Escherichia coli K-12. Mol Gen Genet 141:189-205.
    • (1975) Mol Gen Genet , vol.141 , pp. 189-205
    • Ganesan, A.K.1    Seawell, P.C.2
  • 304
    • 0021020675 scopus 로고
    • Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB
    • Wang TC, Smith KC. 1983. Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB. J Bacteriol 156:1093-1098.
    • (1983) J Bacteriol , vol.156 , pp. 1093-1098
    • Wang, T.C.1    Smith, K.C.2
  • 305
    • 59149085483 scopus 로고    scopus 로고
    • RecFOR and RecOR as distinct RecA loading pathways
    • Sakai A, Cox MM. 2009. RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem 284:3264-3272.
    • (2009) J Biol Chem , vol.284 , pp. 3264-3272
    • Sakai, A.1    Cox, M.M.2
  • 306
    • 0024655588 scopus 로고
    • Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair
    • Mahdi AA, Lloyd RG. 1989. Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol Gen Genet 216:503-510.
    • (1989) Mol Gen Genet , vol.216 , pp. 503-510
    • Mahdi, A.A.1    Lloyd, R.G.2
  • 307
    • 0021334513 scopus 로고
    • Genetic analysis of the recJ gene of Escherichia coli K-12
    • Lovett ST, Clark AJ. 1984. Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol 157:190-196.
    • (1984) J Bacteriol , vol.157 , pp. 190-196
    • Lovett, S.T.1    Clark, A.J.2
  • 308
    • 0021792806 scopus 로고
    • The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants
    • Nakayama K, Irino N, Nakayama H. 1985. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet 200:266-271.
    • (1985) Mol Gen Genet , vol.200 , pp. 266-271
    • Nakayama, K.1    Irino, N.2    Nakayama, H.3
  • 309
    • 0021265499 scopus 로고
    • Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product
    • Picksley SM, Attfield PV, Lloyd RG. 1984. Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet 195:267-274.
    • (1984) Mol Gen Genet , vol.195 , pp. 267-274
    • Picksley, S.M.1    Attfield, P.V.2    Lloyd, R.G.3
  • 310
    • 55449115425 scopus 로고    scopus 로고
    • Comparative and evolutionary analysis of the bacterial homologous recombination systems
    • Rocha EP, Cornet E, Michel B. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15.
    • (2005) PLoS Genet , vol.1
    • Rocha, E.P.1    Cornet, E.2    Michel, B.3
  • 311
    • 2942563756 scopus 로고    scopus 로고
    • Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair
    • Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW. 2004. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 23:2029-2038.
    • (2004) EMBO J , vol.23 , pp. 2029-2038
    • Lee, B.I.1    Kim, K.H.2    Park, S.J.3    Eom, S.H.4    Song, H.K.5    Suh, S.W.6
  • 312
    • 50849143437 scopus 로고    scopus 로고
    • RecR forms a ring-like tetramer that encircles dsDNA by forming a complex with RecF
    • Honda M, Fujisawa T, Shibata T, Mikawa T. 2008. RecR forms a ring-like tetramer that encircles dsDNA by forming a complex with RecF. Nucleic Acids Res 36:5013-5020.
    • (2008) Nucleic Acids Res , vol.36 , pp. 5013-5020
    • Honda, M.1    Fujisawa, T.2    Shibata, T.3    Mikawa, T.4
  • 313
    • 16344368487 scopus 로고    scopus 로고
    • Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans
    • Leiros I, Timmins J, Hall DR, McSweeney S. 2005. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J 24:906-918.
    • (2005) EMBO J , vol.24 , pp. 906-918
    • Leiros, I.1    Timmins, J.2    Hall, D.R.3    McSweeney, S.4
  • 316
    • 79960790784 scopus 로고    scopus 로고
    • Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein
    • Ryzhikov M, Koroleva O, Postnov D, Tran A, Korolev S. 2011. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res 39:6305-6314.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6305-6314
    • Ryzhikov, M.1    Koroleva, O.2    Postnov, D.3    Tran, A.4    Korolev, S.5
  • 317
    • 33846945734 scopus 로고    scopus 로고
    • Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function
    • Koroleva O, Makharashvili N, Courcelle CT, Courcelle J, Korolev S. 2007. Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. EMBO J 26:867-877.
    • (2007) EMBO J , vol.26 , pp. 867-877
    • Koroleva, O.1    Makharashvili, N.2    Courcelle, C.T.3    Courcelle, J.4    Korolev, S.5
  • 318
    • 0026441250 scopus 로고
    • Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein
    • Madiraju MV, Clark AJ. 1992. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J Bacteriol 174:7705-7710.
    • (1992) J Bacteriol , vol.174 , pp. 7705-7710
    • Madiraju, M.V.1    Clark, A.J.2
  • 319
    • 0032983974 scopus 로고    scopus 로고
    • ATP hydrolysis and DNA binding by the Escherichia coli RecF protein
    • Webb BL, Cox MM, Inman RB. 1999. ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J Biol Chem 274:15367-15374.
    • (1999) J Biol Chem , vol.274 , pp. 15367-15374
    • Webb, B.L.1    Cox, M.M.2    Inman, R.B.3
  • 320
    • 34547121734 scopus 로고    scopus 로고
    • A central role for SSB in Escherichia coli RecQ DNA helicase function
    • Shereda RD, Bernstein DA, Keck JL. 2007. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem 282:19247-19258.
    • (2007) J Biol Chem , vol.282 , pp. 19247-19258
    • Shereda, R.D.1    Bernstein, D.A.2    Keck, J.L.3
  • 321
    • 0027158626 scopus 로고
    • RecQ DNA helicase of Escherichia coli-characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein
    • Umezu K, Nakayama H. 1993. RecQ DNA helicase of Escherichia coli-characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol 230:1145-1150.
    • (1993) J Mol Biol , vol.230 , pp. 1145-1150
    • Umezu, K.1    Nakayama, H.2
  • 322
    • 0141865522 scopus 로고    scopus 로고
    • High-resolution structure of the E.coli RecQ helicase catalytic core
    • Bernstein DA, Zittel MC, Keck JL. 2003. High-resolution structure of the E.coli RecQ helicase catalytic core. EMBO J 22:4910-4921.
    • (2003) EMBO J , vol.22 , pp. 4910-4921
    • Bernstein, D.A.1    Zittel, M.C.2    Keck, J.L.3
  • 323
    • 0037930738 scopus 로고    scopus 로고
    • Domain mapping of Escherichia coli RecQ defines the roles of conserved N-and C-terminal regions in the RecQ family
    • Bernstein DA, Keck JL. 2003. Domain mapping of Escherichia coli RecQ defines the roles of conserved N-and C-terminal regions in the RecQ family. Nucleic Acids Res 31:2778-2785.
    • (2003) Nucleic Acids Res , vol.31 , pp. 2778-2785
    • Bernstein, D.A.1    Keck, J.L.2
  • 324
    • 23444440610 scopus 로고    scopus 로고
    • Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain
    • Bernstein DA, Keck JL. 2005. Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain. Structure 13:1173-1182.
    • (2005) Structure , vol.13 , pp. 1173-1182
    • Bernstein, D.A.1    Keck, J.L.2
  • 326
    • 0345587483 scopus 로고
    • Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli
    • Lovett ST, Kolodner RD. 1989. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci USA 86:2627-2631.
    • (1989) Proc Natl Acad Sci USA , vol.86 , pp. 2627-2631
    • Lovett, S.T.1    Kolodner, R.D.2
  • 327
    • 66149130735 scopus 로고    scopus 로고
    • Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli
    • Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC. 2009. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 23:1234-1245.
    • (2009) Genes Dev , vol.23 , pp. 1234-1245
    • Handa, N.1    Morimatsu, K.2    Lovett, S.T.3    Kowalczykowski, S.C.4
  • 328
    • 0037197889 scopus 로고    scopus 로고
    • The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity
    • Yamagata A, Kakuta Y, Masui R, Fukuyama K. 2002. The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity. Proc Natl Acad Sci USA 99:5908-5912.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 5908-5912
    • Yamagata, A.1    Kakuta, Y.2    Masui, R.3    Fukuyama, K.4
  • 329
    • 21244457233 scopus 로고    scopus 로고
    • RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks
    • Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG. 2005. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 57:97-110.
    • (2005) Mol Microbiol , vol.57 , pp. 97-110
    • Meddows, T.R.1    Savory, A.P.2    Grove, J.I.3    Moore, T.4    Lloyd, R.G.5
  • 330
    • 0024023811 scopus 로고
    • Different effects of recJ and recN mutations on the postreplication repair of UV-damaged DNA in Escherichia coli K-12
    • Wang TC, Smith KC. 1988. Different effects of recJ and recN mutations on the postreplication repair of UV-damaged DNA in Escherichia coli K-12. J Bacteriol 170:2555-2559.
    • (1988) J Bacteriol , vol.170 , pp. 2555-2559
    • Wang, T.C.1    Smith, K.C.2
  • 331
    • 77952757937 scopus 로고    scopus 로고
    • RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro
    • Reyes ED, Patidar PL, Uranga LA, Bortoletto AS, Lusetti SL. 2011. RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro. J Biol Chem 285:16521-16529.
    • (2011) J Biol Chem , vol.285 , pp. 16521-16529
    • Reyes, E.D.1    Patidar, P.L.2    Uranga, L.A.3    Bortoletto, A.S.4    Lusetti, S.L.5
  • 332
    • 0037180443 scopus 로고    scopus 로고
    • Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: a common step in genetic recombination
    • Kantake N, Madiraju MV, Sugiyama T, Kowalczykowski SC. 2002. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: a common step in genetic recombination. Proc Natl Acad Sci USA 99:15327-15332.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 15327-15332
    • Kantake, N.1    Madiraju, M.V.2    Sugiyama, T.3    Kowalczykowski, S.C.4
  • 333
    • 0028034452 scopus 로고
    • Protein interactions in genetic recombination in Escherichia coli-interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNAbinding protein
    • Umezu K, Kolodner RD. 1994. Protein interactions in genetic recombination in Escherichia coli-interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNAbinding protein. J Biol Chem 269:30005-30013.
    • (1994) J Biol Chem , vol.269 , pp. 30005-30013
    • Umezu, K.1    Kolodner, R.D.2
  • 334
    • 0030700498 scopus 로고    scopus 로고
    • Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps
    • Webb BL, Cox MM, Inman RB. 1997. Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91:347-356.
    • (1997) Cell , vol.91 , pp. 347-356
    • Webb, B.L.1    Cox, M.M.2    Inman, R.B.3
  • 335
    • 0037126613 scopus 로고    scopus 로고
    • The RecOR proteins modulate RecA protein function at 5' ends of single-stranded DNA
    • Bork JM, Cox MM, Inman RB. 2001. The RecOR proteins modulate RecA protein function at 5' ends of single-stranded DNA. EMBO J 20:7313-7322.
    • (2001) EMBO J , vol.20 , pp. 7313-7322
    • Bork, J.M.1    Cox, M.M.2    Inman, R.B.3
  • 336
    • 34248647207 scopus 로고    scopus 로고
    • SSB protein limits RecOR binding onto single-stranded DNA
    • Hobbs MD, Sakai A, Cox MM. 2007. SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem 282:11058-11067.
    • (2007) J Biol Chem , vol.282 , pp. 11058-11067
    • Hobbs, M.D.1    Sakai, A.2    Cox, M.M.3
  • 339
    • 0345698973 scopus 로고    scopus 로고
    • Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair
    • Villarroya M, PerezRoger I, Macian F, Armengod ME. 1998. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair. EMBO J 17:1829-1837.
    • (1998) EMBO J , vol.17 , pp. 1829-1837
    • Villarroya, M.1    PerezRoger, I.2    Macian, F.3    Armengod, M.E.4
  • 341
    • 0036837550 scopus 로고    scopus 로고
    • Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions
    • Bhattacharya R, Beck DJ. 2002. Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions. DNA Repair (Amsterdam) 1:955-966.
    • (2002) DNA Repair (Amsterdam) , vol.1 , pp. 955-966
    • Bhattacharya, R.1    Beck, D.J.2
  • 342
    • 1542674947 scopus 로고
    • Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells
    • Wang TC, Smith KC. 1986. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells. Mutat Res 165:39-44.
    • (1986) Mutat Res , vol.165 , pp. 39-44
    • Wang, T.C.1    Smith, K.C.2
  • 343
    • 0014432520 scopus 로고
    • Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation
    • Rupp WD, Howard-Flanders P. 1968. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291-304.
    • (1968) J Mol Biol , vol.31 , pp. 291-304
    • Rupp, W.D.1    Howard-Flanders, P.2
  • 344
    • 54349101230 scopus 로고
    • Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells
    • Tseng YC, Hung JL, Wang TCV. 1994. Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells. Mutat Res 315:1-9.
    • (1994) Mutat Res , vol.315 , pp. 1-9
    • Tseng, Y.C.1    Hung, J.L.2    Wang, T.C.V.3
  • 345
    • 0031862023 scopus 로고    scopus 로고
    • Single-strand DNA-specific exonucleases in Escherichia coli: roles in repair and mutation avoidance
    • Viswanathan M, Lovett ST. 1998. Single-strand DNA-specific exonucleases in Escherichia coli: roles in repair and mutation avoidance. Genetics 149:7-16.
    • (1998) Genetics , vol.149 , pp. 7-16
    • Viswanathan, M.1    Lovett, S.T.2
  • 346
    • 0028948763 scopus 로고
    • Enhancement of RecA strand-transfer activity by the RecJ exonuclease of Escherichia coli
    • Correttebennett SE, Lovett ST. 1995. Enhancement of RecA strand-transfer activity by the RecJ exonuclease of Escherichia coli. J Biol Chem 270:6881-6885.
    • (1995) J Biol Chem , vol.270 , pp. 6881-6885
    • Correttebennett, S.E.1    Lovett, S.T.2
  • 347
    • 0000772677 scopus 로고    scopus 로고
    • DNA repair mechanisms
    • Neidhardt FC, Curtiss R III, Ingraham J, Lin ECC, Low KB, Magasanik B, ReznikoffWS, Riley M, Schaechter M, and Umbarger HE (ed), ASM Press, Washington, DC
    • Rupp WD. 1996. DNA repair mechanisms, p 2277-2294. In Neidhardt FC, Curtiss R III, Ingraham J, Lin ECC, Low KB, Magasanik B, ReznikoffWS, Riley M, Schaechter M, and Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC.
    • (1996) Escherichia coli and Salmonella: Cellular and Molecular Biology , pp. 2277-2294
    • Rupp, W.D.1
  • 348
    • 0031878178 scopus 로고    scopus 로고
    • Abortive recombination in Escherichia coli ruv mutants blocks chromosome partitioning
    • Ishioka K, Fukuoh A, Iwasaki H, Nakata A, Shinagawa H. 1998. Abortive recombination in Escherichia coli ruv mutants blocks chromosome partitioning. Genes Cells 3:209-220.
    • (1998) Genes Cells , vol.3 , pp. 209-220
    • Ishioka, K.1    Fukuoh, A.2    Iwasaki, H.3    Nakata, A.4    Shinagawa, H.5
  • 349
    • 33749411110 scopus 로고    scopus 로고
    • RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli
    • Donaldson JR, Courcelle CT, Courcelle J. 2006. RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli. J Biol Chem 281:28811-28821.
    • (2006) J Biol Chem , vol.281 , pp. 28811-28821
    • Donaldson, J.R.1    Courcelle, C.T.2    Courcelle, J.3
  • 350
    • 34247533437 scopus 로고    scopus 로고
    • The bacterial RecA protein: structure, function, and regulation
    • A. Aguilera and R. Rothstein (ed), Springer, Berlin, Germany
    • Cox MM. 2007. The bacterial RecA protein: structure, function, and regulation, p 53-94. In A. Aguilera and R. Rothstein (ed), Topics in Current Genetics. Springer, Berlin, Germany.
    • (2007) Topics in Current Genetics , pp. 53-94
    • Cox, M.M.1
  • 351
    • 34247549645 scopus 로고    scopus 로고
    • Genetics of recombination in the model bacterium Escherichia coli
    • A. Aguilera and R. Rothstein (ed), Springer, Berlin, Germany
    • Michel B, Baharoglu Z, Lestini R. 2007. Genetics of recombination in the model bacterium Escherichia coli, p 1-26. In A. Aguilera and R. Rothstein (ed), Topics in Current Genetics. Springer, Berlin, Germany.
    • (2007) Topics in Current Genetics , pp. 1-26
    • Michel, B.1    Baharoglu, Z.2    Lestini, R.3
  • 352
    • 0015223483 scopus 로고
    • Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli
    • Rupp WD, Wilde CE III, Reno DL, Howard-Flanders P. 1971. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol 61:25-44.
    • (1971) J Mol Biol , vol.61 , pp. 25-44
    • Rupp, W.D.1    Wilde, C.E.2    Reno, D.L.3    Howard-Flanders, P.4
  • 353
    • 0035902521 scopus 로고    scopus 로고
    • Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination
    • Courcelle J, Hanawalt PC. 2001. Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination. Proc Natl Acad Sci USA 98:8196-8202.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8196-8202
    • Courcelle, J.1    Hanawalt, P.C.2
  • 354
    • 32544441919 scopus 로고    scopus 로고
    • RuvAB is essential for replication forks reversal in certain replication mutants
    • Baharoglu Z, Petranovic M, Flores MJ, Michel B. 2006. RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 25:596-604.
    • (2006) EMBO J , vol.25 , pp. 596-604
    • Baharoglu, Z.1    Petranovic, M.2    Flores, M.J.3    Michel, B.4
  • 355
    • 33645239646 scopus 로고    scopus 로고
    • Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases
    • Delmas S, Matic I. 2006. Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. Proc Natl Acad Sci USA 103:4564-4569.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 4564-4569
    • Delmas, S.1    Matic, I.2
  • 356
    • 0037439088 scopus 로고    scopus 로고
    • Hallmarks of homology recognition by RecA-like recombinases are exhibited by the unrelated Escherichia coli RecT protein
    • Noirot P, Gupta RC, Radding CM, Kolodner RD. 2003. Hallmarks of homology recognition by RecA-like recombinases are exhibited by the unrelated Escherichia coli RecT protein. EMBO J 22:324-334.
    • (2003) EMBO J , vol.22 , pp. 324-334
    • Noirot, P.1    Gupta, R.C.2    Radding, C.M.3    Kolodner, R.D.4
  • 357
    • 0032775025 scopus 로고    scopus 로고
    • sbcS sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants
    • Bidnenko V, Seigneur M, PenelColin M, Bouton MF, Ehrlich SD, Michel B. 1999. sbcS sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants. Mol Microbiol 33:846-857.
    • (1999) Mol Microbiol , vol.33 , pp. 846-857
    • Bidnenko, V.1    Seigneur, M.2    PenelColin, M.3    Bouton, M.F.4    Ehrlich, S.D.5    Michel, B.6
  • 358
    • 0030026028 scopus 로고    scopus 로고
    • Evidence for both 3' and 5' single-strand DNA ends in intermediates in chi-stimulated recombination in vivo
    • Razavy H, Szigety SK, Rosenberg SM. 1996. Evidence for both 3' and 5' single-strand DNA ends in intermediates in chi-stimulated recombination in vivo. Genetics 142:333-339.
    • (1996) Genetics , vol.142 , pp. 333-339
    • Razavy, H.1    Szigety, S.K.2    Rosenberg, S.M.3
  • 359
    • 37549057335 scopus 로고    scopus 로고
    • Effects of single-strand DNases ExoI, RecJ, ExoVII, and SbcCD on homologous recombination of recBCD+ strains of Escherichia coli and roles of SbcB15 and XonA2 ExoI mutant enzymes
    • Thoms B, Borchers I, Wackernagel W. 2008. Effects of single-strand DNases ExoI, RecJ, ExoVII, and SbcCD on homologous recombination of recBCD+ strains of Escherichia coli and roles of SbcB15 and XonA2 ExoI mutant enzymes. J Bacteriol 190:179-192.
    • (2008) J Bacteriol , vol.190 , pp. 179-192
    • Thoms, B.1    Borchers, I.2    Wackernagel, W.3
  • 360
    • 0036067305 scopus 로고    scopus 로고
    • The RuvABC resolvase is indispensable for recombinational repair in sbcB15 mutants of Escherichia coli
    • Zahradka D, Zahradka K, Petranovic M, Dermic D, Brcic-Kostic K. 2002. The RuvABC resolvase is indispensable for recombinational repair in sbcB15 mutants of Escherichia coli. J Bacteriol 184:4141-4147.
    • (2002) J Bacteriol , vol.184 , pp. 4141-4147
    • Zahradka, D.1    Zahradka, K.2    Petranovic, M.3    Dermic, D.4    Brcic-Kostic, K.5
  • 361
    • 33750479057 scopus 로고    scopus 로고
    • sbcB15 and ΔsbcB mutations activate two types of recFrecombination pathways in Escherichia coli
    • Zahradka K, Simic S, Buljubasic M, Petranovic M, Dermic D, Zahradka D. 2006. sbcB15 and ΔsbcB mutations activate two types of recFrecombination pathways in Escherichia coli. J Bacteriol 188:7562-7571.
    • (2006) J Bacteriol , vol.188 , pp. 7562-7571
    • Zahradka, K.1    Simic, S.2    Buljubasic, M.3    Petranovic, M.4    Dermic, D.5    Zahradka, D.6
  • 362
    • 14544272738 scopus 로고    scopus 로고
    • Effects of recJ, recQ, and recFOR mutations on recombination in nucleasedeficient recB recD double mutants of Escherichia coli
    • Ivancic-Bace I, Salaj-Smic E, Brcic-Kostic K. 2005. Effects of recJ, recQ, and recFOR mutations on recombination in nucleasedeficient recB recD double mutants of Escherichia coli. J Bacteriol 187:1350-1356.
    • (2005) J Bacteriol , vol.187 , pp. 1350-1356
    • Ivancic-Bace, I.1    Salaj-Smic, E.2    Brcic-Kostic, K.3
  • 363
    • 33745884095 scopus 로고    scopus 로고
    • Genetic evidence for the requirement of RecA loading activity in SOS induction after UV irradiation in Escherichia coli
    • Ivancic-Bace I, Vlasic I, Salaj-Smic E, Brcic-Kostic K. 2006. Genetic evidence for the requirement of RecA loading activity in SOS induction after UV irradiation in Escherichia coli. J Bacteriol 188:5024-5032.
    • (2006) J Bacteriol , vol.188 , pp. 5024-5032
    • Ivancic-Bace, I.1    Vlasic, I.2    Salaj-Smic, E.3    Brcic-Kostic, K.4
  • 364
    • 0025924538 scopus 로고
    • Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair
    • Lloyd RG, Buckman C. 1991. Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. J Bacteriol 173:1004-1011.
    • (1991) J Bacteriol , vol.173 , pp. 1004-1011
    • Lloyd, R.G.1    Buckman, C.2
  • 365
    • 0036193882 scopus 로고    scopus 로고
    • Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways
    • Lovett ST, Hurley RL, Sutera VA Jr, Aubuchon RH, Lebedeva MA. 2002. Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160:851-859.
    • (2002) Genetics , vol.160 , pp. 851-859
    • Lovett, S.T.1    Hurley, R.L.2    Sutera, V.A.3    Aubuchon, R.H.4    Lebedeva, M.A.5
  • 366
    • 27744446311 scopus 로고    scopus 로고
    • Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo
    • Maul RW, Sutton MD. 2005. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187:7607-7618.
    • (2005) J Bacteriol , vol.187 , pp. 7607-7618
    • Maul, R.W.1    Sutton, M.D.2
  • 367
    • 33947327048 scopus 로고    scopus 로고
    • Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli
    • Rudolph CJ, Upton AL, Lloyd RG. 2007. Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes Dev 21:668-681.
    • (2007) Genes Dev , vol.21 , pp. 668-681
    • Rudolph, C.J.1    Upton, A.L.2    Lloyd, R.G.3
  • 368
    • 48149112447 scopus 로고    scopus 로고
    • Maintaining replication fork integrity in UV-irradiated Escherichia coli cells
    • Rudolph CJ, Upton AL, Lloyd RG. 2008. Maintaining replication fork integrity in UV-irradiated Escherichia coli cells. DNA Repair (Amsterdam) 7:1589-1602.
    • (2008) DNA Repair (Amsterdam) , vol.7 , pp. 1589-1602
    • Rudolph, C.J.1    Upton, A.L.2    Lloyd, R.G.3
  • 369
    • 2442489945 scopus 로고    scopus 로고
    • RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli
    • Donaldson JR, Courcelle CT, Courcelle J. 2004. RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli. Genetics 166:1631-1640.
    • (2004) Genetics , vol.166 , pp. 1631-1640
    • Donaldson, J.R.1    Courcelle, C.T.2    Courcelle, J.3
  • 370
    • 67651205866 scopus 로고    scopus 로고
    • Pathological replication in cells lacking RecG DNA translocase
    • Rudolph CJ, Upton AL, Harris L, Lloyd RG. 2009. Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol 73:352-366.
    • (2009) Mol Microbiol , vol.73 , pp. 352-366
    • Rudolph, C.J.1    Upton, A.L.2    Harris, L.3    Lloyd, R.G.4
  • 371
    • 0032740855 scopus 로고    scopus 로고
    • RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli
    • Courcelle J, Hanawalt PC. 1999. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet 262:543-551.
    • (1999) Mol Gen Genet , vol.262 , pp. 543-551
    • Courcelle, J.1    Hanawalt, P.C.2
  • 372
    • 0032916453 scopus 로고    scopus 로고
    • Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and RecF protein function
    • Courcelle J, Crowley DJ, Hanawalt PC. 1999. Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and RecF protein function. J Bacteriol 181:916-922.
    • (1999) J Bacteriol , vol.181 , pp. 916-922
    • Courcelle, J.1    Crowley, D.J.2    Hanawalt, P.C.3
  • 373
    • 21244442328 scopus 로고    scopus 로고
    • Discontinuous or semi-discontinuous DNA replication in Escherichia coli?
    • Wang TC. 2005. Discontinuous or semi-discontinuous DNA replication in Escherichia coli? Bioessays 27:633-636.
    • (2005) Bioessays , vol.27 , pp. 633-636
    • Wang, T.C.1
  • 374
    • 34548507222 scopus 로고    scopus 로고
    • Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins
    • McInerney P, O'Donnell M. 2007. Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 282:25903-25916.
    • (2007) J Biol Chem , vol.282 , pp. 25903-25916
    • McInerney, P.1    O'Donnell, M.2
  • 376
    • 0028046470 scopus 로고
    • The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli
    • Sawitzke JA, Stahl FW. 1994. The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli. J Bacteriol 176:6730-6737.
    • (1994) J Bacteriol , vol.176 , pp. 6730-6737
    • Sawitzke, J.A.1    Stahl, F.W.2
  • 377
    • 0030856710 scopus 로고    scopus 로고
    • Roles for lambda Orf and Escherichia coli RecO, RecR and RecF in lambda recombination
    • Sawitzke JA, Stahl FW. 1997. Roles for lambda Orf and Escherichia coli RecO, RecR and RecF in lambda recombination. Genetics 147:357-369.
    • (1997) Genetics , vol.147 , pp. 357-369
    • Sawitzke, J.A.1    Stahl, F.W.2
  • 378
    • 0032873606 scopus 로고    scopus 로고
    • Holliday junction processing in bacteria: Insights from the evolutionary conservation of RuVABC, RecG, and RusA
    • Sharples GJ, Ingleston SM, Lloyd RG. 1999. Holliday junction processing in bacteria: Insights from the evolutionary conservation of RuVABC, RecG, and RusA. J Bacteriol 181:5543-5550.
    • (1999) J Bacteriol , vol.181 , pp. 5543-5550
    • Sharples, G.J.1    Ingleston, S.M.2    Lloyd, R.G.3
  • 379
    • 1842861596 scopus 로고    scopus 로고
    • Three-dimensional structural views of branch migration and resolution in DNA homologous recombination
    • Yamada K, Ariyoshi M, Morikawa K. 2004. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 14:130-137.
    • (2004) Curr Opin Struct Biol , vol.14 , pp. 130-137
    • Yamada, K.1    Ariyoshi, M.2    Morikawa, K.3
  • 381
  • 385
    • 0034669196 scopus 로고    scopus 로고
    • The acidic pin of RuvA modulates Holliday junction binding and processing by the RuvABC resolvasome
    • Ingleston SM, Sharples GJ, Lloyd RG. 2000. The acidic pin of RuvA modulates Holliday junction binding and processing by the RuvABC resolvasome. EMBO J 19:6266-6274.
    • (2000) EMBO J , vol.19 , pp. 6266-6274
    • Ingleston, S.M.1    Sharples, G.J.2    Lloyd, R.G.3
  • 386
    • 37449025007 scopus 로고    scopus 로고
    • Functional significance of octameric RuvA for a branch migration complex from Thermus thermophilus
    • Fujiwara Y, Mayanagi K, Morikawa K. 2008. Functional significance of octameric RuvA for a branch migration complex from Thermus thermophilus. Biochem Biophys Res Commun 366:426-431.
    • (2008) Biochem Biophys Res Commun , vol.366 , pp. 426-431
    • Fujiwara, Y.1    Mayanagi, K.2    Morikawa, K.3
  • 387
    • 13544260497 scopus 로고    scopus 로고
    • The role of RuvA octamerization for RuvAB function in vitro and in vivo
    • Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. 2005. The role of RuvA octamerization for RuvAB function in vitro and in vivo. J Biol Chem 280:3365-3375.
    • (2005) J Biol Chem , vol.280 , pp. 3365-3375
    • Privezentzev, C.V.1    Keeley, A.2    Sigala, B.3    Tsaneva, I.R.4
  • 388
    • 0034607557 scopus 로고    scopus 로고
    • Modulation of RuvB function by the mobile domain III of the Holliday junction recognition protein RuvA
    • Nishino T, Iwasaki H, Kataoka M, Ariyoshi M, Fujita T, Shinagawa H, Morikawa K. 2000. Modulation of RuvB function by the mobile domain III of the Holliday junction recognition protein RuvA. J Mol Biol 298:407-416.
    • (2000) J Mol Biol , vol.298 , pp. 407-416
    • Nishino, T.1    Iwasaki, H.2    Kataoka, M.3    Ariyoshi, M.4    Fujita, T.5    Shinagawa, H.6    Morikawa, K.7
  • 389
    • 0032518238 scopus 로고    scopus 로고
    • Functional analyses of the domain structure in the Holliday junction binding protein RuvA
    • Nishino T, Ariyoshi M, Iwasaki H, Shinagawa H, Morikawa K. 1998. Functional analyses of the domain structure in the Holliday junction binding protein RuvA. Structure 6:11-21.
    • (1998) Structure , vol.6 , pp. 11-21
    • Nishino, T.1    Ariyoshi, M.2    Iwasaki, H.3    Shinagawa, H.4    Morikawa, K.5
  • 391
    • 0034885052 scopus 로고    scopus 로고
    • AAA+ superfamily ATPases: common structure-diverse function
    • Ogura T, Wilkinson AJ. 2001. AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6:575-597.
    • (2001) Genes Cells , vol.6 , pp. 575-597
    • Ogura, T.1    Wilkinson, A.J.2
  • 392
    • 0035860740 scopus 로고    scopus 로고
    • A unique beta-hairpin protruding from AAA+ ATPase domain of RuvB motor protein is involved in the interaction with RuvA DNA recognition protein for branch migration of Holliday junctions
    • Han YW, Iwasaki H, Miyata T, Mayanagi K, Yamada K, Morikawa K, Shinagawa H. 2001. A unique beta-hairpin protruding from AAA+ ATPase domain of RuvB motor protein is involved in the interaction with RuvA DNA recognition protein for branch migration of Holliday junctions. J Biol Chem 276:35024-35028.
    • (2001) J Biol Chem , vol.276 , pp. 35024-35028
    • Han, Y.W.1    Iwasaki, H.2    Miyata, T.3    Mayanagi, K.4    Yamada, K.5    Morikawa, K.6    Shinagawa, H.7
  • 393
    • 24044482592 scopus 로고    scopus 로고
    • Structure-function analysis of the three domains of RuvB DNA motor protein
    • Ohnishi T, Hishida T, Harada Y, Iwasaki H, Shinagawa H. 2005. Structure-function analysis of the three domains of RuvB DNA motor protein. J Biol Chem 280:30504-30510.
    • (2005) J Biol Chem , vol.280 , pp. 30504-30510
    • Ohnishi, T.1    Hishida, T.2    Harada, Y.3    Iwasaki, H.4    Shinagawa, H.5
  • 394
    • 4143135445 scopus 로고    scopus 로고
    • Singlemolecule study of RuvAB-mediated Holliday-junction migration
    • Dawid A, Croquette V, Grigoriev M, Heslot F. 2004. Singlemolecule study of RuvAB-mediated Holliday-junction migration. Proc Natl Acad Sci USA 101:11611-11616.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 11611-11616
    • Dawid, A.1    Croquette, V.2    Grigoriev, M.3    Heslot, F.4
  • 395
    • 33746796409 scopus 로고    scopus 로고
    • Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvARuvB protein complex
    • Han YW, Tani T, Hayashi M, Hishida T, Iwasaki H, Shinagawa H, Harada Y. 2006. Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvARuvB protein complex. Proc Natl Acad Sci USA 103:11544-11548.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 11544-11548
    • Han, Y.W.1    Tani, T.2    Hayashi, M.3    Hishida, T.4    Iwasaki, H.5    Shinagawa, H.6    Harada, Y.7
  • 396
    • 0031554722 scopus 로고    scopus 로고
    • Biochemical properties of RuvBD113N: a mutation in helicase motif II of the RuvB hexamer affects DNA binding and ATPase activities
    • Mezard C, Davies AA, Stasiak A, West SC. 1997. Biochemical properties of RuvBD113N: a mutation in helicase motif II of the RuvB hexamer affects DNA binding and ATPase activities. J Mol Biol 271:704-717.
    • (1997) J Mol Biol , vol.271 , pp. 704-717
    • Mezard, C.1    Davies, A.A.2    Stasiak, A.3    West, S.C.4
  • 397
    • 0344069591 scopus 로고    scopus 로고
    • Helicasedefective RuvB(D113E) promotes RuvAB-mediated branch migration in vitro
    • George H, Mezard C, Stasiak A, West SC. 1999. Helicasedefective RuvB(D113E) promotes RuvAB-mediated branch migration in vitro. J Mol Biol 293:505-519.
    • (1999) J Mol Biol , vol.293 , pp. 505-519
    • George, H.1    Mezard, C.2    Stasiak, A.3    West, S.C.4
  • 399
    • 0027376095 scopus 로고
    • Resolution of Holliday junctions by RuvC resolvase: cleavage specificity and DNA distortion
    • Bennett RJ, Dunderdale HJ, West SC. 1993. Resolution of Holliday junctions by RuvC resolvase: cleavage specificity and DNA distortion. Cell 74:1021-1031.
    • (1993) Cell , vol.74 , pp. 1021-1031
    • Bennett, R.J.1    Dunderdale, H.J.2    West, S.C.3
  • 400
    • 0028050328 scopus 로고
    • Substrate specificity of the Escherichia coli Ruvc protein-resolution of three-and four-stranded recombination intermediates
    • Benson FE, West SC. 1994. Substrate specificity of the Escherichia coli Ruvc protein-resolution of three-and four-stranded recombination intermediates. J Biol Chem 269:5195-5201.
    • (1994) J Biol Chem , vol.269 , pp. 5195-5201
    • Benson, F.E.1    West, S.C.2
  • 401
    • 0028048535 scopus 로고
    • Preliminary crystallographic study of Escherichia coli RuvC protein-an endonuclease specific for Holliday junctions
    • Ariyoshi M, Vassylyev DG, Iwasaki H, Fujishima A, Shinagawa H, Morikawa K. 1994. Preliminary crystallographic study of Escherichia coli RuvC protein-an endonuclease specific for Holliday junctions. J Mol Biol 241:281-282.
    • (1994) J Mol Biol , vol.241 , pp. 281-282
    • Ariyoshi, M.1    Vassylyev, D.G.2    Iwasaki, H.3    Fujishima, A.4    Shinagawa, H.5    Morikawa, K.6
  • 402
    • 0032493711 scopus 로고    scopus 로고
    • Sequence-specificity of holliday junction resolution: identification of RuvC mutants defective in metal binding and target site recognition
    • Hagan NFP, Vincent SD, Ingleston SM, Sharples GJ, Bennett RJ, West SC, Lloyd RG. 1998. Sequence-specificity of holliday junction resolution: identification of RuvC mutants defective in metal binding and target site recognition. J Mol Biol 281:17-29.
    • (1998) J Mol Biol , vol.281 , pp. 17-29
    • Hagan, N.F.P.1    Vincent, S.D.2    Ingleston, S.M.3    Sharples, G.J.4    Bennett, R.J.5    West, S.C.6    Lloyd, R.G.7
  • 403
    • 0027221081 scopus 로고
    • An E. coli RuvC mutant defective in cleavage of synthetic Holliday junctions
    • Sharples GJ, Lloyd RG. 1993. An E. coli RuvC mutant defective in cleavage of synthetic Holliday junctions. Nucleic Acids Res 21:3359-3364.
    • (1993) Nucleic Acids Res , vol.21 , pp. 3359-3364
    • Sharples, G.J.1    Lloyd, R.G.2
  • 404
    • 0030596061 scopus 로고    scopus 로고
    • Interactions between RuvA and RuvC at Holliday junctions: inhibition of junction cleavage and formation of a RuvA-RuvC-DNA complex
    • Whitby MC, Bolt EL, Chan SN, Lloyd RG. 1996. Interactions between RuvA and RuvC at Holliday junctions: inhibition of junction cleavage and formation of a RuvA-RuvC-DNA complex. J Mol Biol 264:878-890.
    • (1996) J Mol Biol , vol.264 , pp. 878-890
    • Whitby, M.C.1    Bolt, E.L.2    Chan, S.N.3    Lloyd, R.G.4
  • 405
    • 0032575757 scopus 로고    scopus 로고
    • Coordinated actions of RuvABC in Holliday junction processing
    • Zerbib D, Mezard C, George H, West SC. 1998. Coordinated actions of RuvABC in Holliday junction processing. J Mol Biol 281:621-630.
    • (1998) J Mol Biol , vol.281 , pp. 621-630
    • Zerbib, D.1    Mezard, C.2    George, H.3    West, S.C.4
  • 406
    • 0033637253 scopus 로고    scopus 로고
    • Control of crossing over
    • Cromie GA, Leach DRF. 2000. Control of crossing over. Mol Cell 6:815-826.
    • (2000) Mol Cell , vol.6 , pp. 815-826
    • Cromie, G.A.1    Leach, D.R.F.2
  • 407
    • 0033909543 scopus 로고    scopus 로고
    • Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells
    • Michel B, Recchia GD, PenelColin M, Ehrlich SD, Sherratt DJ. 2000. Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol Microbiol 37:180-191.
    • (2000) Mol Microbiol , vol.37 , pp. 180-191
    • Michel, B.1    Recchia, G.D.2    PenelColin, M.3    Ehrlich, S.D.4    Sherratt, D.J.5
  • 408
    • 0033565930 scopus 로고    scopus 로고
    • Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of holliday junction resolution
    • van Gool AJ, Hajibagheri NM, Stasiak A, West SC. 1999. Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of holliday junction resolution. Genes Dev 13:1861-1870.
    • (1999) Genes Dev , vol.13 , pp. 1861-1870
    • van Gool, A.J.1    Hajibagheri, N.M.2    Stasiak, A.3    West, S.C.4
  • 409
    • 56749119855 scopus 로고    scopus 로고
    • Identification of Holliday junction resolvases from humans and yeast
    • Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. 2008. Identification of Holliday junction resolvases from humans and yeast. Nature 456:357-361.
    • (2008) Nature , vol.456 , pp. 357-361
    • Ip, S.C.1    Rass, U.2    Blanco, M.G.3    Flynn, H.R.4    Skehel, J.M.5    West, S.C.6
  • 410
    • 67749116521 scopus 로고    scopus 로고
    • The search for a human Holliday junction resolvase
    • West SC. 2009. The search for a human Holliday junction resolvase. Biochem Soc Trans 37:519-526.
    • (2009) Biochem Soc Trans , vol.37 , pp. 519-526
    • West, S.C.1
  • 411
    • 0015954847 scopus 로고
    • Isolation and characterization of an Escherichia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet light irradiation
    • Otsuji N, Iyehara H, Hideshima Y. 1974. Isolation and characterization of an Escherichia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet light irradiation. J Bacteriol 117:337-344.
    • (1974) J Bacteriol , vol.117 , pp. 337-344
    • Otsuji, N.1    Iyehara, H.2    Hideshima, Y.3
  • 412
    • 0025720560 scopus 로고
    • Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein
    • Sharples GJ, Lloyd RG. 1991. Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein. J Bacteriol 173:7711-7715.
    • (1991) J Bacteriol , vol.173 , pp. 7711-7715
    • Sharples, G.J.1    Lloyd, R.G.2
  • 413
    • 0025940780 scopus 로고
    • Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease
    • Takahagi M, Iwasaki H, Nakata A, Shinagawa H. 1991. Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J Bacteriol 173:5747-5753.
    • (1991) J Bacteriol , vol.173 , pp. 5747-5753
    • Takahagi, M.1    Iwasaki, H.2    Nakata, A.3    Shinagawa, H.4
  • 414
    • 31644446744 scopus 로고    scopus 로고
    • The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis
    • Sanchez H, Kidane D, Reed P, Curtis FA, Cozar MC, Graumann PL, Sharples GJ, Alonso JC. 2005. The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics 171:873-883.
    • (2005) Genetics , vol.171 , pp. 873-883
    • Sanchez, H.1    Kidane, D.2    Reed, P.3    Curtis, F.A.4    Cozar, M.C.5    Graumann, P.L.6    Sharples, G.J.7    Alonso, J.C.8
  • 416
    • 0021223652 scopus 로고
    • Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12
    • Lloyd RG, Benson FE, Shurvinton CE. 1984. Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12. Mol Gen Genet 194:303-309.
    • (1984) Mol Gen Genet , vol.194 , pp. 303-309
    • Lloyd, R.G.1    Benson, F.E.2    Shurvinton, C.E.3
  • 417
    • 0021213091 scopus 로고
    • Genetic analysis and molecular cloning of the Escherichia coli ruv gene
    • Shurvinton CE, Lloyd RG, Benson FE, Attfield PV. 1984. Genetic analysis and molecular cloning of the Escherichia coli ruv gene. Mol Gen Genet 194:322-329.
    • (1984) Mol Gen Genet , vol.194 , pp. 322-329
    • Shurvinton, C.E.1    Lloyd, R.G.2    Benson, F.E.3    Attfield, P.V.4
  • 418
    • 4344611594 scopus 로고    scopus 로고
    • RecN and RecG are required for Escherichia coli survival of bleomycin-induced damage
    • Kosa JL, Zdraveski ZZ, Currier S, Marinus MG, Essigmann JM. 2004. RecN and RecG are required for Escherichia coli survival of bleomycin-induced damage. Mutat Res 554:149-157.
    • (2004) Mutat Res , vol.554 , pp. 149-157
    • Kosa, J.L.1    Zdraveski, Z.Z.2    Currier, S.3    Marinus, M.G.4    Essigmann, J.M.5
  • 419
    • 1942488150 scopus 로고    scopus 로고
    • RecG helicase promotes DNA double-strand break repair
    • Meddows TR, Savory AP, Lloyd RG. 2004. RecG helicase promotes DNA double-strand break repair. Mol Microbiol 52:119-132.
    • (2004) Mol Microbiol , vol.52 , pp. 119-132
    • Meddows, T.R.1    Savory, A.P.2    Lloyd, R.G.3
  • 420
    • 0036184234 scopus 로고    scopus 로고
    • Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities
    • Gregg AV, McGlynn P, Jaktaji RP, Lloyd RG. 2002. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell 9:241-251.
    • (2002) Mol Cell , vol.9 , pp. 241-251
    • Gregg, A.V.1    McGlynn, P.2    Jaktaji, R.P.3    Lloyd, R.G.4
  • 421
    • 41949084372 scopus 로고    scopus 로고
    • ruvA Mutants that resolve Holliday junctions but do not reverse replication forks
    • Baharoglu Z, Bradley AS, Le Masson M, Tsaneva I, Michel B. 2008. ruvA Mutants that resolve Holliday junctions but do not reverse replication forks. PLoS Genet 4:e1000012.
    • (2008) PLoS Genet , vol.4
    • Baharoglu, Z.1    Bradley, A.S.2    Le Masson, M.3    Tsaneva, I.4    Michel, B.5
  • 422
    • 0034176967 scopus 로고    scopus 로고
    • Replication fork arrest and DNA recombination
    • Michel B. 2000. Replication fork arrest and DNA recombination. Trends Biochem Sci 25:173-178.
    • (2000) Trends Biochem Sci , vol.25 , pp. 173-178
    • Michel, B.1
  • 423
    • 0033954246 scopus 로고    scopus 로고
    • Replication fork pausing and recombination or 'gimme a break.'
    • Rothstein R, Michel B, GangloffS. 2000. Replication fork pausing and recombination or 'gimme a break.' Genes Dev. 14:1-10.
    • (2000) Genes Dev , vol.14 , pp. 1-10
    • Rothstein, R.1    Michel, B.2    Gangloff, S.3
  • 424
    • 0033710452 scopus 로고    scopus 로고
    • RuvABC-dependent double-strand breaks in dnaBts mutants require RecA
    • Seigneur M, Ehrlich SD, Michel B. 2000. RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Mol Microbiol 38:565-574.
    • (2000) Mol Microbiol , vol.38 , pp. 565-574
    • Seigneur, M.1    Ehrlich, S.D.2    Michel, B.3
  • 425
    • 52649167880 scopus 로고    scopus 로고
    • ruvA and ruvB mutants specifically impaired for replication fork reversal
    • Le Masson M, Baharoglu Z, Michel B. 2008. ruvA and ruvB mutants specifically impaired for replication fork reversal. Mol Microbiol 70:537-548.
    • (2008) Mol Microbiol , vol.70 , pp. 537-548
    • Le Masson, M.1    Baharoglu, Z.2    Michel, B.3
  • 426
    • 79959371375 scopus 로고    scopus 로고
    • Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo
    • Bradley AS, Baharoglu Z, Niewiarowski A, Michel B, Tsaneva IR. 2011. Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo. J Biol Chem 286:22372-22383.
    • (2011) J Biol Chem , vol.286 , pp. 22372-22383
    • Bradley, A.S.1    Baharoglu, Z.2    Niewiarowski, A.3    Michel, B.4    Tsaneva, I.R.5
  • 427
    • 0032161224 scopus 로고    scopus 로고
    • Migration of a holliday junction through a nucleosome directed by the E. coli RuvAB motor protein
    • Grigoriev M, Hsieh P. 1998. Migration of a holliday junction through a nucleosome directed by the E. coli RuvAB motor protein. Mol Cell 2:373-381.
    • (1998) Mol Cell , vol.2 , pp. 373-381
    • Grigoriev, M.1    Hsieh, P.2
  • 428
    • 0347481358 scopus 로고    scopus 로고
    • The RuvAB branch migration complex can displace topoisomerase IV.quinolone. DNA ternary complexes
    • Shea ME, Hiasa H. 2003. The RuvAB branch migration complex can displace topoisomerase IV.quinolone. DNA ternary complexes. J Biol Chem 278:48485-48490.
    • (2003) J Biol Chem , vol.278 , pp. 48485-48490
    • Shea, M.E.1    Hiasa, H.2
  • 429
    • 0030575805 scopus 로고    scopus 로고
    • Bypass of DNA heterologies during RuvAB-mediated three-and four-strand branch migration
    • Adams DE, West SC. 1996. Bypass of DNA heterologies during RuvAB-mediated three-and four-strand branch migration. J Mol Biol 263:582-596.
    • (1996) J Mol Biol , vol.263 , pp. 582-596
    • Adams, D.E.1    West, S.C.2
  • 430
    • 0028788048 scopus 로고
    • The E. coli RuvAB proteins branch migrate Holliday junctions through heterologous DNA sequences in a reaction facilitated by SSB
    • Parsons CA, Stasiak A, West SC. 1995. The E. coli RuvAB proteins branch migrate Holliday junctions through heterologous DNA sequences in a reaction facilitated by SSB. EMBO J 14:5736-5744.
    • (1995) EMBO J , vol.14 , pp. 5736-5744
    • Parsons, C.A.1    Stasiak, A.2    West, S.C.3
  • 431
    • 28944448182 scopus 로고    scopus 로고
    • RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration
    • Kaplan DL, O'Donnell M. 2006. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. J Mol Biol 355:473-490.
    • (2006) J Mol Biol , vol.355 , pp. 473-490
    • Kaplan, D.L.1    O'Donnell, M.2
  • 433
    • 0030666224 scopus 로고    scopus 로고
    • Crystal structure of the delta' subunit of the cramp-loader complex of E. coli DNA polymerase III
    • Guenther B, Onrust R, Sali A, O'Donnell M, Kuriyan J. 1997. Crystal structure of the delta' subunit of the cramp-loader complex of E. coli DNA polymerase III. Cell 91:335-345.
    • (1997) Cell , vol.91 , pp. 335-345
    • Guenther, B.1    Onrust, R.2    Sali, A.3    O'Donnell, M.4    Kuriyan, J.5
  • 434
    • 0017065094 scopus 로고
    • Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA
    • Kemper B, Brown DT. 1976. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. J Virol 18:1000-1015.
    • (1976) J Virol , vol.18 , pp. 1000-1015
    • Kemper, B.1    Brown, D.T.2
  • 435
    • 3042615627 scopus 로고    scopus 로고
    • Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda
    • Sharples GJ, Curtis FA, McGlynn P, Bolt EL. 2004. Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda. J Mol Biol 340:739-751.
    • (2004) J Mol Biol , vol.340 , pp. 739-751
    • Sharples, G.J.1    Curtis, F.A.2    McGlynn, P.3    Bolt, E.L.4
  • 436
    • 39149145112 scopus 로고    scopus 로고
    • New insight into the recognition of branched DNA structure by junction-resolving enzymes
    • Declais AC, Lilley DM. 2008. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol 18:86-95.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 86-95
    • Declais, A.C.1    Lilley, D.M.2
  • 437
    • 32344447374 scopus 로고    scopus 로고
    • Structure-specific DNA nucleases: structural basis for 3D-scissors
    • Nishino T, Ishino Y, Morikawa K. 2006. Structure-specific DNA nucleases: structural basis for 3D-scissors. Curr Opin Struct Biol 16:60-67.
    • (2006) Curr Opin Struct Biol , vol.16 , pp. 60-67
    • Nishino, T.1    Ishino, Y.2    Morikawa, K.3
  • 438
    • 0035117855 scopus 로고    scopus 로고
    • The X philes: structure-specific endonucleases that resolve Holliday junctions
    • Sharples GJ. 2001. The X philes: structure-specific endonucleases that resolve Holliday junctions. Mol Microbiol 39:823-834.
    • (2001) Mol Microbiol , vol.39 , pp. 823-834
    • Sharples, G.J.1
  • 439
    • 0023125672 scopus 로고
    • Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA
    • de Massy B, Weisberg RA, Studier FW. 1987. Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA. J Mol Biol 193:359-376.
    • (1987) J Mol Biol , vol.193 , pp. 359-376
    • de Massy, B.1    Weisberg, R.A.2    Studier, F.W.3
  • 440
    • 0022599857 scopus 로고
    • Endonuclease VII resolves Yjunctions in branched DNA in vitro
    • Jensch F, Kemper B. 1986. Endonuclease VII resolves Yjunctions in branched DNA in vitro. EMBO J 5:181-189.
    • (1986) EMBO J , vol.5 , pp. 181-189
    • Jensch, F.1    Kemper, B.2
  • 441
    • 0020146223 scopus 로고
    • T4 endonuclease VII cleaves holliday structures
    • Mizuuchi K, Kemper B, Hays J, Weisberg RA. 1982. T4 endonuclease VII cleaves holliday structures. Cell 29:357-365.
    • (1982) Cell , vol.29 , pp. 357-365
    • Mizuuchi, K.1    Kemper, B.2    Hays, J.3    Weisberg, R.A.4
  • 442
    • 0026575569 scopus 로고
    • T4 Endonuclease-VII resolves cruciform DNA with nick and counter-nick and its activity is directed by local nucleotide sequence
    • Pottmeyer S, Kemper B. 1992. T4 Endonuclease-VII resolves cruciform DNA with nick and counter-nick and its activity is directed by local nucleotide sequence. J Mol Biol 223:607-615.
    • (1992) J Mol Biol , vol.223 , pp. 607-615
    • Pottmeyer, S.1    Kemper, B.2
  • 444
    • 0028590083 scopus 로고
    • Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions
    • Sharples GJ, Chan SN, Mahdi AA, Whitby MC, Lloyd RG. 1994. Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. EMBO J 13:6133-6142.
    • (1994) EMBO J , vol.13 , pp. 6133-6142
    • Sharples, G.J.1    Chan, S.N.2    Mahdi, A.A.3    Whitby, M.C.4    Lloyd, R.G.5
  • 445
    • 0034664813 scopus 로고    scopus 로고
    • Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories
    • Aravind L, Makarova KS, Koonin EV. 2000. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28:3417-3432.
    • (2000) Nucleic Acids Res , vol.28 , pp. 3417-3432
    • Aravind, L.1    Makarova, K.S.2    Koonin, E.V.3
  • 446
    • 34948885722 scopus 로고    scopus 로고
    • Crystal structure of T4 endonuclease VII resolving a Holliday junction
    • Biertumpfel C, Yang W, Suck D. 2007. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 449:616-620.
    • (2007) Nature , vol.449 , pp. 616-620
    • Biertumpfel, C.1    Yang, W.2    Suck, D.3
  • 447
    • 34948815680 scopus 로고    scopus 로고
    • The structural basis of Holliday junction resolution by T7 endonuclease I
    • Hadden JM, Declais AC, Carr SB, Lilley DM, Phillips SE. 2007. The structural basis of Holliday junction resolution by T7 endonuclease I. Nature 449:621-624.
    • (2007) Nature , vol.449 , pp. 621-624
    • Hadden, J.M.1    Declais, A.C.2    Carr, S.B.3    Lilley, D.M.4    Phillips, S.E.5
  • 449
    • 0027236687 scopus 로고
    • Resolution of Holliday intermediates in recombination and DNA repair-indirect suppression of ruvA, ruvB, and ruvC mutations
    • Mandal TN, Mahdi AA, Sharples GJ, Lloyd RG. 1993. Resolution of Holliday intermediates in recombination and DNA repair-indirect suppression of ruvA, ruvB, and ruvC mutations. J Bacteriol 175:4325-4334.
    • (1993) J Bacteriol , vol.175 , pp. 4325-4334
    • Mandal, T.N.1    Mahdi, A.A.2    Sharples, G.J.3    Lloyd, R.G.4
  • 450
    • 0036330895 scopus 로고    scopus 로고
    • Recombinationpromoting activity of the bacteriophage lambda Rap protein in Escherichia coli K-12
    • Poteete AR, Fenton AC, Wang HR. 2002. Recombinationpromoting activity of the bacteriophage lambda Rap protein in Escherichia coli K-12. J Bacteriol 184:4626-4629.
    • (2002) J Bacteriol , vol.184 , pp. 4626-4629
    • Poteete, A.R.1    Fenton, A.C.2    Wang, H.R.3
  • 451
    • 44349176520 scopus 로고    scopus 로고
    • Regression supports two mechanisms of fork processing in phage T4
    • Long DT, Kreuzer KN. 2008. Regression supports two mechanisms of fork processing in phage T4. Proc Natl Acad Sci USA 105:6852-6857.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 6852-6857
    • Long, D.T.1    Kreuzer, K.N.2
  • 452
    • 64049087591 scopus 로고    scopus 로고
    • Fork regression is an active helicase-driven pathway in bacteriophage T4
    • Long DT, Kreuzer KN. 2009. Fork regression is an active helicase-driven pathway in bacteriophage T4. EMBO Rep 10:394-399.
    • (2009) EMBO Rep , vol.10 , pp. 394-399
    • Long, D.T.1    Kreuzer, K.N.2
  • 453
    • 0026595482 scopus 로고
    • The nucleotide sequence of recG, the distal spo operon gene in Escherichia coli K-12
    • Kalman M, Murphy H, Cashel M. 1992. The nucleotide sequence of recG, the distal spo operon gene in Escherichia coli K-12. Gene 110:95-99.
    • (1992) Gene , vol.110 , pp. 95-99
    • Kalman, M.1    Murphy, H.2    Cashel, M.3
  • 454
    • 0025790082 scopus 로고
    • Molecular organization and nucleotide sequence of the recG locus of Escherichia coli K-12
    • Lloyd RG, Sharples GJ. 1991. Molecular organization and nucleotide sequence of the recG locus of Escherichia coli K-12. J Bacteriol 173:6837-6843.
    • (1991) J Bacteriol , vol.173 , pp. 6837-6843
    • Lloyd, R.G.1    Sharples, G.J.2
  • 455
    • 0027397630 scopus 로고
    • Dissociation of synthetic Holliday junctions by E. coli RecG protein
    • Lloyd RG, Sharples GJ. 1993. Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J 12:17-22.
    • (1993) EMBO J , vol.12 , pp. 17-22
    • Lloyd, R.G.1    Sharples, G.J.2
  • 456
    • 0027212716 scopus 로고
    • Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli
    • Lloyd RG, Sharples GJ. 1993. Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Res 21:1719-1725.
    • (1993) Nucleic Acids Res , vol.21 , pp. 1719-1725
    • Lloyd, R.G.1    Sharples, G.J.2
  • 457
    • 0028224716 scopus 로고
    • A mutation in helicase motif III of E. coli RecG protein abolishes branch migration of Holliday junctions
    • Sharples GJ, Whitby MC, Ryder L, Lloyd RG. 1994. A mutation in helicase motif III of E. coli RecG protein abolishes branch migration of Holliday junctions. Nucleic Acids Res 22:308-313.
    • (1994) Nucleic Acids Res , vol.22 , pp. 308-313
    • Sharples, G.J.1    Whitby, M.C.2    Ryder, L.3    Lloyd, R.G.4
  • 458
    • 0028005448 scopus 로고
    • Branch migration of Holliday junctions: Identification of RecG protein as a junction specific: DNA helicase
    • Whitby MC, Vincent SD, Lloyd RG. 1994. Branch migration of Holliday junctions: Identification of RecG protein as a junction specific: DNA helicase. EMBO J 13:5220-5228.
    • (1994) EMBO J , vol.13 , pp. 5220-5228
    • Whitby, M.C.1    Vincent, S.D.2    Lloyd, R.G.3
  • 459
    • 0029072794 scopus 로고
    • Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3'-tailed duplex DNA
    • Whitby MC, Lloyd RG. 1995. Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3'-tailed duplex DNA. EMBO J 14:3302-3310.
    • (1995) EMBO J , vol.14 , pp. 3302-3310
    • Whitby, M.C.1    Lloyd, R.G.2
  • 460
    • 0027438781 scopus 로고
    • Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair
    • Whitby MC, Ryder L, Lloyd RG. 1993. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75:341-350.
    • (1993) Cell , vol.75 , pp. 341-350
    • Whitby, M.C.1    Ryder, L.2    Lloyd, R.G.3
  • 461
    • 0031028107 scopus 로고    scopus 로고
    • ATPdependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase
    • Fukuoh A, Iwasaki H, Ishioka K, Shinagawa H. 1997. ATPdependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase. EMBO J 16:203-209.
    • (1997) EMBO J , vol.16 , pp. 203-209
    • Fukuoh, A.1    Iwasaki, H.2    Ishioka, K.3    Shinagawa, H.4
  • 462
    • 0030582737 scopus 로고    scopus 로고
    • The RecG branch migration protein Escherichia coli dissociates R-loops
    • Vincent SD, Mahdi AA, Lloyd RG. 1996. The RecG branch migration protein Escherichia coli dissociates R-loops. J Mol Biol 264:713-721.
    • (1996) J Mol Biol , vol.264 , pp. 713-721
    • Vincent, S.D.1    Mahdi, A.A.2    Lloyd, R.G.3
  • 463
    • 0033178272 scopus 로고    scopus 로고
    • RecG helicase activity at three-and four-strand DNA structures
    • McGlynn P, Lloyd RG. 1999. RecG helicase activity at three-and four-strand DNA structures. Nucleic Acids Res 27:3049-3056.
    • (1999) Nucleic Acids Res , vol.27 , pp. 3049-3056
    • McGlynn, P.1    Lloyd, R.G.2
  • 464
    • 0034737294 scopus 로고    scopus 로고
    • Modulation of RNA polymerase by (P)ppGpp reveals a RecG-dependent mechanism for replication fork progression
    • McGlynn P, Lloyd RG. 2000. Modulation of RNA polymerase by (P)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35-45.
    • (2000) Cell , vol.101 , pp. 35-45
    • McGlynn, P.1    Lloyd, R.G.2
  • 465
    • 0035812836 scopus 로고    scopus 로고
    • Structural analysis of DNA replication fork reversal by RecG
    • Singleton MR, Scaife S, Wigley DB. 2001. Structural analysis of DNA replication fork reversal by RecG. Cell 107:79-89.
    • (2001) Cell , vol.107 , pp. 79-89
    • Singleton, M.R.1    Scaife, S.2    Wigley, D.B.3
  • 466
    • 0015124414 scopus 로고
    • Genetic recombination in Escherichia coli. IV. Isolation and characterization of recombination-deficiency mutants of Escherichia coli K12
    • Storm PK, Hoekstra WP, de Haan PG, Verhoef C. 1971. Genetic recombination in Escherichia coli. IV. Isolation and characterization of recombination-deficiency mutants of Escherichia coli K12. Mutat Res 13:9-17.
    • (1971) Mutat Res , vol.13 , pp. 9-17
    • Storm, P.K.1    Hoekstra, W.P.2    de Haan, P.G.3    Verhoef, C.4
  • 467
    • 68449088790 scopus 로고    scopus 로고
    • Resolution of joint molecules by RuvABC and RecG following cleavage of the Escherichia coli chromosome by EcoKI
    • Wardrope L, Okely E, Leach D. 2009. Resolution of joint molecules by RuvABC and RecG following cleavage of the Escherichia coli chromosome by EcoKI. PLoS One 4:e6542.
    • (2009) PLoS One , vol.4
    • Wardrope, L.1    Okely, E.2    Leach, D.3
  • 468
    • 48149090365 scopus 로고    scopus 로고
    • DNA double strand break repair and crossing over mediated by RuvABC resolvase and RecG translocase
    • Grove JI, Harris L, Buckman C, Lloyd RG. 2008. DNA double strand break repair and crossing over mediated by RuvABC resolvase and RecG translocase. DNA Repair (Amsterdam) 7:1517-1530.
    • (2008) DNA Repair (Amsterdam) , vol.7 , pp. 1517-1530
    • Grove, J.I.1    Harris, L.2    Buckman, C.3    Lloyd, R.G.4
  • 469
    • 0029871788 scopus 로고    scopus 로고
    • Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82
    • Mahdi AA, Sharples GJ, Mandal TN, Lloyd RG. 1996. Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. J Mol Biol 257:561-573.
    • (1996) J Mol Biol , vol.257 , pp. 561-573
    • Mahdi, A.A.1    Sharples, G.J.2    Mandal, T.N.3    Lloyd, R.G.4
  • 470
    • 0030741602 scopus 로고    scopus 로고
    • Roles of the recG gene product of Escherichia coli in recombination repair: effects of the delta-recG mutation on cell division and chromosome partition
    • Ishioka K, Iwasaki H, Shinagawa H. 1997. Roles of the recG gene product of Escherichia coli in recombination repair: effects of the delta-recG mutation on cell division and chromosome partition. Genes Genet Syst 72:91-99.
    • (1997) Genes Genet Syst , vol.72 , pp. 91-99
    • Ishioka, K.1    Iwasaki, H.2    Shinagawa, H.3
  • 471
    • 0029850005 scopus 로고    scopus 로고
    • Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12
    • Al-Deib AA, Mahdi AA, Lloyd RG. 1996. Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J Bacteriol 178:6782-6789.
    • (1996) J Bacteriol , vol.178 , pp. 6782-6789
    • Al-Deib, A.A.1    Mahdi, A.A.2    Lloyd, R.G.3
  • 472
    • 76749101865 scopus 로고    scopus 로고
    • Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival
    • Gabbai CB, Marians KJ. 2010. Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival. DNA Repair (Amsterdam) 9:202-209.
    • (2010) DNA Repair (Amsterdam) , vol.9 , pp. 202-209
    • Gabbai, C.B.1    Marians, K.J.2
  • 473
    • 33845330910 scopus 로고    scopus 로고
    • Replisome assembly and the direct restart of stalled replication forks
    • Heller RC, Marians KJ. 2006. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7:932-943.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 932-943
    • Heller, R.C.1    Marians, K.J.2
  • 474
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. 1997. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212-238.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 475
    • 0346367178 scopus 로고    scopus 로고
    • ATPase/helicase motif mutants of Escherichia coli PriA protein essential for recombination-dependent DNA replication
    • Tanaka T, Taniyama C, Arai K, Masai H. 2003. ATPase/helicase motif mutants of Escherichia coli PriA protein essential for recombination-dependent DNA replication. Genes Cells 8:251-261.
    • (2003) Genes Cells , vol.8 , pp. 251-261
    • Tanaka, T.1    Taniyama, C.2    Arai, K.3    Masai, H.4
  • 476
    • 0029026201 scopus 로고
    • Escherichia coli RecG and RecA proteins in R-loop formation
    • Hong XK, Cadwell GW, Kogoma T. 1995. Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J 14:2385-2392.
    • (1995) EMBO J , vol.14 , pp. 2385-2392
    • Hong, X.K.1    Cadwell, G.W.2    Kogoma, T.3
  • 477
    • 0025272922 scopus 로고
    • Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli
    • Magee TR, Kogoma T. 1990. Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli. J Bacteriol 172:1834-1839.
    • (1990) J Bacteriol , vol.172 , pp. 1834-1839
    • Magee, T.R.1    Kogoma, T.2
  • 479
    • 0030051842 scopus 로고    scopus 로고
    • Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli
    • Foster PL, Trimarchi JM, Maurer RA. 1996. Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli. Genetics 142:25-37.
    • (1996) Genetics , vol.142 , pp. 25-37
    • Foster, P.L.1    Trimarchi, J.M.2    Maurer, R.A.3
  • 480
    • 0030000945 scopus 로고    scopus 로고
    • Opposing roles of the Holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation
    • Harris RS, Ross KJ, Rosenberg SM. 1996. Opposing roles of the Holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics 142:681-691.
    • (1996) Genetics , vol.142 , pp. 681-691
    • Harris, R.S.1    Ross, K.J.2    Rosenberg, S.M.3
  • 481
    • 0034088420 scopus 로고    scopus 로고
    • Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination
    • Bull HJ, McKenzie GJ, Hastings PJ, Rosenberg SM. 2000. Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154:1427-1437.
    • (2000) Genetics , vol.154 , pp. 1427-1437
    • Bull, H.J.1    McKenzie, G.J.2    Hastings, P.J.3    Rosenberg, S.M.4
  • 482
    • 30344459720 scopus 로고    scopus 로고
    • Roles of E. coli double-strand-break-repair proteins in stress-induced mutation
    • He AS, Rohatgi PR, Hersh MN, Rosenberg SM. 2006. Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair (Amsterdam) 5:258-573.
    • (2006) DNA Repair (Amsterdam) , vol.5 , pp. 258-573
    • He, A.S.1    Rohatgi, P.R.2    Hersh, M.N.3    Rosenberg, S.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.