-
1
-
-
42649094468
-
Global transcription in pluripotent embryonic stem cells
-
[1] Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D.J., Dash, C., et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2 (2008), 437–447.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 437-447
-
-
Efroni, S.1
Duttagupta, R.2
Cheng, J.3
Dehghani, H.4
Hoeppner, D.J.5
Dash, C.6
-
2
-
-
49649125042
-
Genome-scale DNA methylation maps of pluripotent and differentiated cells
-
[2] Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454 (2008), 766–770.
-
(2008)
Nature
, vol.454
, pp. 766-770
-
-
Meissner, A.1
Mikkelsen, T.S.2
Gu, H.3
Wernig, M.4
Hanna, J.5
Sivachenko, A.6
-
3
-
-
84873310426
-
Genome-wide chromatin state transitions associated with developmental and environmental cues
-
[3] Zhu, J., Adli, M., Zou, J.Y., Verstappen, G., Coyne, M., Zhang, X., et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152 (2013), 642–654.
-
(2013)
Cell
, vol.152
, pp. 642-654
-
-
Zhu, J.1
Adli, M.2
Zou, J.Y.3
Verstappen, G.4
Coyne, M.5
Zhang, X.6
-
4
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
[4] Li, F., Wang, X., Capasso, J.M., Gerdes, A.M., Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28 (1996), 1737–1746.
-
(1996)
J. Mol. Cell Cardiol.
, vol.28
, pp. 1737-1746
-
-
Li, F.1
Wang, X.2
Capasso, J.M.3
Gerdes, A.M.4
-
5
-
-
0031013253
-
Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts
-
[5] Soonpaa, M.H., Field, L.J., Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am. J. Physiol. 272 (1997), H220–6.
-
(1997)
Am. J. Physiol.
, vol.272
, pp. H220-6
-
-
Soonpaa, M.H.1
Field, L.J.2
-
6
-
-
84872611623
-
Mammalian heart renewal by pre-existing cardiomyocytes
-
[6] Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493 (2013), 433–436.
-
(2013)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
Steinhauser, M.L.2
Pizzimenti, C.L.3
Yang, V.K.4
Cai, L.5
Wang, M.6
-
7
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
[7] Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., et al. Transient regenerative potential of the neonatal mouse heart. Science 331 (2011), 1078–1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
-
8
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family
-
[8] Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 187–192.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 187-192
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Johnson, B.A.4
Grinsfelder, D.5
Canseco, D.6
-
9
-
-
84874805183
-
Complete cardiac regeneration in a mouse model of myocardial infarction
-
[9] Haubner, B.J., Adamowicz-Brice, M., Khadayate, S., Tiefenthaler, V., Metzler, B., Aitman, T., et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany N.Y.) 4 (2012), 966–977.
-
(2012)
Aging (Albany N.Y.)
, vol.4
, pp. 966-977
-
-
Haubner, B.J.1
Adamowicz-Brice, M.2
Khadayate, S.3
Tiefenthaler, V.4
Metzler, B.5
Aitman, T.6
-
10
-
-
84924367822
-
Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease
-
[10] Gilsbach, R., Preissl, S., Gruning, B.A., Schnick, T., Burger, L., Benes, V., et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun., 5, 2014, 5288.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5288
-
-
Gilsbach, R.1
Preissl, S.2
Gruning, B.A.3
Schnick, T.4
Burger, L.5
Benes, V.6
-
11
-
-
84931355632
-
Dynamic changes in the cardiac methylome during postnatal development
-
[11] Sim, C.B., Ziemann, M., Kaspi, A., Harikrishnan, K.N., Ooi, J., Khurana, I., et al. Dynamic changes in the cardiac methylome during postnatal development. FASEB J. 29 (2015), 1329–1343.
-
(2015)
FASEB J.
, vol.29
, pp. 1329-1343
-
-
Sim, C.B.1
Ziemann, M.2
Kaspi, A.3
Harikrishnan, K.N.4
Ooi, J.5
Khurana, I.6
-
12
-
-
84939523890
-
Deciphering the epigenetic code of cardiac myocyte transcription
-
[12] Preissl, S., Schwaderer, M., Raulf, A., Hesse, M., Grüning, B.A., Köbele, C., et al. Deciphering the epigenetic code of cardiac myocyte transcription. Circ. Res. 117 (2015), 413–423, 10.1161/CIRCRESAHA.115.306337.
-
(2015)
Circ. Res.
, vol.117
, pp. 413-423
-
-
Preissl, S.1
Schwaderer, M.2
Raulf, A.3
Hesse, M.4
Grüning, B.A.5
Köbele, C.6
-
13
-
-
84904541089
-
Interpreting the language of histone and DNA modifications
-
[13] Rothbart, S.B., Strahl, B.D., Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 1839 (2014), 627–643.
-
(2014)
Biochim. Biophys. Acta
, vol.1839
, pp. 627-643
-
-
Rothbart, S.B.1
Strahl, B.D.2
-
14
-
-
79952534189
-
Regulation of chromatin by histone modifications
-
[14] Bannister, A.J., Kouzarides, T., Regulation of chromatin by histone modifications. Cell Res. 21 (2011), 381–395.
-
(2011)
Cell Res.
, vol.21
, pp. 381-395
-
-
Bannister, A.J.1
Kouzarides, T.2
-
15
-
-
84940079857
-
Readers, writers, and erasers: chromatin as the whiteboard of heart disease
-
[15] Gillette, T.G., Hill, J.A., Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 116 (2015), 1245–1253.
-
(2015)
Circ. Res.
, vol.116
, pp. 1245-1253
-
-
Gillette, T.G.1
Hill, J.A.2
-
16
-
-
33847070442
-
The role of chromatin during transcription
-
[16] Li, B., Carey, M., Workman, J.L., The role of chromatin during transcription. Cell 128 (2007), 707–719.
-
(2007)
Cell
, vol.128
, pp. 707-719
-
-
Li, B.1
Carey, M.2
Workman, J.L.3
-
17
-
-
84892814234
-
Chromatin modifiers and remodellers: regulators of cellular differentiation
-
[17] Chen, T., Dent, S.Y., Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15 (2014), 93–106.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 93-106
-
-
Chen, T.1
Dent, S.Y.2
-
18
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
[18] Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 (2006), 315–326.
-
(2006)
Cell
, vol.125
, pp. 315-326
-
-
Bernstein, B.E.1
Mikkelsen, T.S.2
Xie, X.3
Kamal, M.4
Huebert, D.J.5
Cuff, J.6
-
19
-
-
79960009805
-
Cell fate potential of human pluripotent stem cells is encoded by histone modifications
-
[19] Hong, S.H., Rampalli, S., Lee, J.B., McNicol, J., Collins, T., Draper, J.S., et al. Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 9 (2011), 24–36.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 24-36
-
-
Hong, S.H.1
Rampalli, S.2
Lee, J.B.3
McNicol, J.4
Collins, T.5
Draper, J.S.6
-
20
-
-
84874194072
-
DNA methylation: roles in mammalian development
-
[20] Smith, Z.D., Meissner, A., DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14 (2013), 204–220.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
21
-
-
84886860116
-
TET enzymes, TDG and the dynamics of DNA demethylation
-
[21] Kohli, R.M., Zhang, Y., TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502 (2013), 472–479.
-
(2013)
Nature
, vol.502
, pp. 472-479
-
-
Kohli, R.M.1
Zhang, Y.2
-
22
-
-
84879663784
-
Global epigenomic reconfiguration during mammalian brain development
-
[22] Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., et al. Global epigenomic reconfiguration during mammalian brain development. Science, 341, 2013, 1237905.
-
(2013)
Science
, vol.341
, pp. 1237905
-
-
Lister, R.1
Mukamel, E.A.2
Nery, J.R.3
Urich, M.4
Puddifoot, C.A.5
Johnson, N.D.6
-
23
-
-
77649267695
-
Dynamic changes in the human methylome during differentiation
-
[23] Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T., et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20 (2010), 320–331.
-
(2010)
Genome Res.
, vol.20
, pp. 320-331
-
-
Laurent, L.1
Wong, E.2
Li, G.3
Huynh, T.4
Tsirigos, A.5
Ong, C.T.6
-
24
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
[24] Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462 (2009), 315–322.
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
Pelizzola, M.2
Dowen, R.H.3
Hawkins, R.D.4
Hon, G.5
Tonti-Filippini, J.6
-
25
-
-
84863986133
-
Functions of DNA methylation: islands, start sites, gene bodies and beyond
-
[25] Jones, P.A., Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13 (2012), 484–492.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
26
-
-
84902168468
-
Regulating the chromatin landscape: structural and mechanistic perspectives
-
[26] Bartholomew, B., Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83 (2014), 671–696.
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 671-696
-
-
Bartholomew, B.1
-
27
-
-
8544270889
-
Baf60c is essential for function of BAF chromatin remodelling complexes in heart development
-
[27] Lickert, H., Takeuchi, J.K., Von Both, I., Walls, J.R., McAuliffe, F., Adamson, S.L., et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432 (2004), 107–112.
-
(2004)
Nature
, vol.432
, pp. 107-112
-
-
Lickert, H.1
Takeuchi, J.K.2
Von Both, I.3
Walls, J.R.4
McAuliffe, F.5
Adamson, S.L.6
-
28
-
-
77951935861
-
Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming
-
[28] Cao, Y., Yao, Z., Sarkar, D., Lawrence, M., Sanchez, G.J., Parker, M.H., et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev. Cell 18 (2010), 662–674.
-
(2010)
Dev. Cell
, vol.18
, pp. 662-674
-
-
Cao, Y.1
Yao, Z.2
Sarkar, D.3
Lawrence, M.4
Sanchez, G.J.5
Parker, M.H.6
-
29
-
-
80053559720
-
Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation
-
[29] Pilon, A.M., Ajay, S.S., Kumar, S.A., Steiner, L.A., Cherukuri, P.F., Wincovitch, S., et al. Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood 118 (2011), e139–e148.
-
(2011)
Blood
, vol.118
, pp. e139-e148
-
-
Pilon, A.M.1
Ajay, S.S.2
Kumar, S.A.3
Steiner, L.A.4
Cherukuri, P.F.5
Wincovitch, S.6
-
30
-
-
84940567692
-
NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets
-
[30] Bouveret, R., Waardenberg, A.J., Schonrock, N., Ramialison, M., Doan, T., de Jong, D., et al. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. eLife, 4, 2015.
-
(2015)
eLife
, vol.4
-
-
Bouveret, R.1
Waardenberg, A.J.2
Schonrock, N.3
Ramialison, M.4
Doan, T.5
de Jong, D.6
-
31
-
-
84895077483
-
Regulation of transcription factor activity by interconnected post-translational modifications
-
[31] Filtz, T.M., Vogel, W.K., Leid, M., Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol. Sci. 35 (2014), 76–85.
-
(2014)
Trends Pharmacol. Sci.
, vol.35
, pp. 76-85
-
-
Filtz, T.M.1
Vogel, W.K.2
Leid, M.3
-
32
-
-
36849023295
-
Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors
-
[32] Wohrle, S., Wallmen, B., Hecht, A., Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors. Mol. Cell Biol. 27 (2007), 8164–8177.
-
(2007)
Mol. Cell Biol.
, vol.27
, pp. 8164-8177
-
-
Wohrle, S.1
Wallmen, B.2
Hecht, A.3
-
33
-
-
0030812908
-
Transcription factor access to chromatin
-
[33] Beato, M., Eisfeld, K., Transcription factor access to chromatin. Nucleic Acids Res. 25 (1997), 3559–3563.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 3559-3563
-
-
Beato, M.1
Eisfeld, K.2
-
34
-
-
80455144479
-
Pioneer transcription factors: establishing competence for gene expression
-
[34] Zaret, K.S., Carroll, J.S., Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25 (2011), 2227–2241.
-
(2011)
Genes Dev.
, vol.25
, pp. 2227-2241
-
-
Zaret, K.S.1
Carroll, J.S.2
-
35
-
-
22144486551
-
Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1
-
[35] Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J., et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122 (2005), 33–43.
-
(2005)
Cell
, vol.122
, pp. 33-43
-
-
Carroll, J.S.1
Liu, X.S.2
Brodsky, A.S.3
Li, W.4
Meyer, C.A.5
Szary, A.J.6
-
36
-
-
2042437650
-
Initial sequencing and analysis of the human genome
-
[36] Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., et al. Initial sequencing and analysis of the human genome. Nature 409 (2001), 860–921.
-
(2001)
Nature
, vol.409
, pp. 860-921
-
-
Lander, E.S.1
Linton, L.M.2
Birren, B.3
Nusbaum, C.4
Zody, M.C.5
Baldwin, J.6
-
37
-
-
24644519490
-
The transcriptional landscape of the mammalian genome
-
[37] Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., et al. The transcriptional landscape of the mammalian genome. Science 309 (2005), 1559–1563.
-
(2005)
Science
, vol.309
, pp. 1559-1563
-
-
Carninci, P.1
Kasukawa, T.2
Katayama, S.3
Gough, J.4
Frith, M.C.5
Maeda, N.6
-
38
-
-
84865757142
-
Landscape of transcription in human cells
-
[38] Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., et al. Landscape of transcription in human cells. Nature 489 (2012), 101–108.
-
(2012)
Nature
, vol.489
, pp. 101-108
-
-
Djebali, S.1
Davis, C.A.2
Merkel, A.3
Dobin, A.4
Lassmann, T.5
Mortazavi, A.6
-
39
-
-
84906322449
-
Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification
-
[39] Quinn, J.J., Ilik, I.A., Qu, K., Georgiev, P., Chu, C., Akhtar, A., et al. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol. 32 (2014), 933–940.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 933-940
-
-
Quinn, J.J.1
Ilik, I.A.2
Qu, K.3
Georgiev, P.4
Chu, C.5
Akhtar, A.6
-
40
-
-
84865727393
-
The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression
-
[40] Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22 (2012), 1775–1789.
-
(2012)
Genome Res.
, vol.22
, pp. 1775-1789
-
-
Derrien, T.1
Johnson, R.2
Bussotti, G.3
Tanzer, A.4
Djebali, S.5
Tilgner, H.6
-
41
-
-
84895552736
-
Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
-
[41] Yang, K.C., Yamada, K.A., Patel, A.Y., Topkara, V.K., George, I., Cheema, F.H., et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129 (2014), 1009–1021.
-
(2014)
Circulation
, vol.129
, pp. 1009-1021
-
-
Yang, K.C.1
Yamada, K.A.2
Patel, A.Y.3
Topkara, V.K.4
George, I.5
Cheema, F.H.6
-
42
-
-
0025809321
-
Parental imprinting of the mouse H19 gene
-
[42] Bartolomei, M.S., Zemel, S., Tilghman, S.M., Parental imprinting of the mouse H19 gene. Nature 351 (1991), 153–155.
-
(1991)
Nature
, vol.351
, pp. 153-155
-
-
Bartolomei, M.S.1
Zemel, S.2
Tilghman, S.M.3
-
43
-
-
84895908120
-
The evolution of lncRNA repertoires and expression patterns in tetrapods
-
[43] Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505 (2014), 635–640.
-
(2014)
Nature
, vol.505
, pp. 635-640
-
-
Necsulea, A.1
Soumillon, M.2
Warnefors, M.3
Liechti, A.4
Daish, T.5
Zeller, U.6
-
44
-
-
34250729138
-
Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
-
[44] Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129 (2007), 1311–1323.
-
(2007)
Cell
, vol.129
, pp. 1311-1323
-
-
Rinn, J.L.1
Kertesz, M.2
Wang, J.K.3
Squazzo, S.L.4
Xu, X.5
Brugmann, S.A.6
-
45
-
-
79751473406
-
Chromatin remodeling in cardiovascular development and physiology
-
[45] Han, P., Hang, C.T., Yang, J., Chang, C.P., Chromatin remodeling in cardiovascular development and physiology. Circ. Res. 108 (2011), 378–396.
-
(2011)
Circ. Res.
, vol.108
, pp. 378-396
-
-
Han, P.1
Hang, C.T.2
Yang, J.3
Chang, C.P.4
-
46
-
-
84873829893
-
The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse
-
[46] Grote, P., Wittler, L., Hendrix, D., Koch, F., Wahrisch, S., Beisaw, A., et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24 (2013), 206–214.
-
(2013)
Dev. Cell
, vol.24
, pp. 206-214
-
-
Grote, P.1
Wittler, L.2
Hendrix, D.3
Koch, F.4
Wahrisch, S.5
Beisaw, A.6
-
47
-
-
84888057006
-
DNMT1-interacting RNAs block gene-specific DNA methylation
-
[47] Di Ruscio, A., Ebralidze, A.K., Benoukraf, T., Amabile, G., Goff, L.A., Terragni, J., et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503 (2013), 371–376.
-
(2013)
Nature
, vol.503
, pp. 371-376
-
-
Di Ruscio, A.1
Ebralidze, A.K.2
Benoukraf, T.3
Amabile, G.4
Goff, L.A.5
Terragni, J.6
-
48
-
-
84924449774
-
LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration
-
[48] Wang, L., Zhao, Y., Bao, X., Zhu, X., Kwok, Y.K., Sun, K., et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 25 (2015), 335–350.
-
(2015)
Cell Res.
, vol.25
, pp. 335-350
-
-
Wang, L.1
Zhao, Y.2
Bao, X.3
Zhu, X.4
Kwok, Y.K.5
Sun, K.6
-
49
-
-
84923796255
-
Gene regulation transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells
-
[49] Arner, E., Daub, C.O., Vitting-Seerup, K., Andersson, R., Lilje, B., Drablos, F., et al. Gene regulation transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347 (2015), 1010–1014.
-
(2015)
Science
, vol.347
, pp. 1010-1014
-
-
Arner, E.1
Daub, C.O.2
Vitting-Seerup, K.3
Andersson, R.4
Lilje, B.5
Drablos, F.6
-
50
-
-
84881526410
-
Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription
-
[50] Kaikkonen, M.U., Spann, N.J., Heinz, S., Romanoski, C.E., Allison, K.A., Stender, J.D., et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51 (2013), 310–325.
-
(2013)
Mol. Cell
, vol.51
, pp. 310-325
-
-
Kaikkonen, M.U.1
Spann, N.J.2
Heinz, S.3
Romanoski, C.E.4
Allison, K.A.5
Stender, J.D.6
-
51
-
-
84879695128
-
Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation
-
[51] Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A.Y., et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498 (2013), 516–520.
-
(2013)
Nature
, vol.498
, pp. 516-520
-
-
Li, W.1
Notani, D.2
Ma, Q.3
Tanasa, B.4
Nunez, E.5
Chen, A.Y.6
-
52
-
-
84894589713
-
Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation
-
[52] Kieffer-Kwon, K.R., Tang, Z., Mathe, E., Qian, J., Sung, M.H., Li, G., et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155 (2013), 1507–1520.
-
(2013)
Cell
, vol.155
, pp. 1507-1520
-
-
Kieffer-Kwon, K.R.1
Tang, Z.2
Mathe, E.3
Qian, J.4
Sung, M.H.5
Li, G.6
-
53
-
-
84874368349
-
Activating RNAs associate with Mediator to enhance chromatin architecture and transcription
-
[53] Lai, F., Orom, U.A., Cesaroni, M., Beringer, M., Taatjes, D.J., Blobel, G.A., et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494 (2013), 497–501.
-
(2013)
Nature
, vol.494
, pp. 497-501
-
-
Lai, F.1
Orom, U.A.2
Cesaroni, M.3
Beringer, M.4
Taatjes, D.J.5
Blobel, G.A.6
-
54
-
-
84924181684
-
Epigenetics and metabolism
-
[54] Keating, S.T., El-Osta, A., Epigenetics and metabolism. Circ. Res. 116 (2015), 715–736.
-
(2015)
Circ. Res.
, vol.116
, pp. 715-736
-
-
Keating, S.T.1
El-Osta, A.2
-
55
-
-
84924857323
-
The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells
-
[55] Ryall, J.G., Dell'Orso, S., Derfoul, A., Juan, A., Zare, H., Feng, X., et al. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16 (2015), 171–183.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 171-183
-
-
Ryall, J.G.1
Dell'Orso, S.2
Derfoul, A.3
Juan, A.4
Zare, H.5
Feng, X.6
-
56
-
-
84867095528
-
A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development
-
[56] Paige, S.L., Thomas, S., Stoick-Cooper, C.L., Wang, H., Maves, L., Sandstrom, R., et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151 (2012), 221–232.
-
(2012)
Cell
, vol.151
, pp. 221-232
-
-
Paige, S.L.1
Thomas, S.2
Stoick-Cooper, C.L.3
Wang, H.4
Maves, L.5
Sandstrom, R.6
-
57
-
-
84867073340
-
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage
-
[57] Wamstad, J.A., Alexander, J.M., Truty, R.M., Shrikumar, A., Li, F., Eilertson, K.E., et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151 (2012), 206–220.
-
(2012)
Cell
, vol.151
, pp. 206-220
-
-
Wamstad, J.A.1
Alexander, J.M.2
Truty, R.M.3
Shrikumar, A.4
Li, F.5
Eilertson, K.E.6
-
58
-
-
84878292277
-
Transcriptional and epigenetic dynamics during specification of human embryonic stem cells
-
[58] Gifford, C.A., Ziller, M.J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153 (2013), 1149–1163.
-
(2013)
Cell
, vol.153
, pp. 1149-1163
-
-
Gifford, C.A.1
Ziller, M.J.2
Gu, H.3
Trapnell, C.4
Donaghey, J.5
Tsankov, A.6
-
59
-
-
80052586181
-
Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes
-
[59] Sdek, P., Zhao, P., Wang, Y., Huang, C.J., Ko, C.Y., Butler, P.C., et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J. Cell Biol. 194 (2011), 407–423.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 407-423
-
-
Sdek, P.1
Zhao, P.2
Wang, Y.3
Huang, C.J.4
Ko, C.Y.5
Butler, P.C.6
-
60
-
-
84910146191
-
Epigenetic modification at notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction
-
[60] Felician, G., Collesi, C., Lusic, M., Martinelli, V., Ferro, M.D., Zentilin, L., et al. Epigenetic modification at notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ. Res. 115 (2014), 636–649.
-
(2014)
Circ. Res.
, vol.115
, pp. 636-649
-
-
Felician, G.1
Collesi, C.2
Lusic, M.3
Martinelli, V.4
Ferro, M.D.5
Zentilin, L.6
-
61
-
-
0035831460
-
Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D
-
[61] Slepak, T.I., Webster, K.A., Zang, J., Prentice, H., O'Dowd, A., Hicks, M.N., et al. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J. Biol. Chem. 276 (2001), 7575–7585.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 7575-7585
-
-
Slepak, T.I.1
Webster, K.A.2
Zang, J.3
Prentice, H.4
O'Dowd, A.5
Hicks, M.N.6
-
62
-
-
0031045835
-
Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C
-
[62] Sartorelli, V., Huang, J., Hamamori, Y., Kedes, L., Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell Biol. 17 (1997), 1010–1026.
-
(1997)
Mol. Cell Biol.
, vol.17
, pp. 1010-1026
-
-
Sartorelli, V.1
Huang, J.2
Hamamori, Y.3
Kedes, L.4
-
63
-
-
44349174984
-
Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes
-
[63] Takaya, T., Kawamura, T., Morimoto, T., Ono, K., Kita, T., Shimatsu, A., et al. Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes. J. Biol. Chem. 283 (2008), 9828–9835.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 9828-9835
-
-
Takaya, T.1
Kawamura, T.2
Morimoto, T.3
Ono, K.4
Kita, T.5
Shimatsu, A.6
-
64
-
-
0141753974
-
Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation
-
[64] Shikama, N., Lutz, W., Kretzschmar, R., Sauter, N., Roth, J.F., Marino, S., et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22 (2003), 5175–5185.
-
(2003)
EMBO J.
, vol.22
, pp. 5175-5185
-
-
Shikama, N.1
Lutz, W.2
Kretzschmar, R.3
Sauter, N.4
Roth, J.F.5
Marino, S.6
-
65
-
-
17644445419
-
Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300
-
[65] Yao, T.P., Oh, S.P., Fuchs, M., Zhou, N.D., Ch'ng, L.E., Newsome, D., et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93 (1998), 361–372.
-
(1998)
Cell
, vol.93
, pp. 361-372
-
-
Yao, T.P.1
Oh, S.P.2
Fuchs, M.3
Zhou, N.D.4
Ch'ng, L.E.5
Newsome, D.6
-
66
-
-
33644837326
-
Control of cardiac growth by histone acetylation/deacetylation
-
[66] Backs, J., Olson, E.N., Control of cardiac growth by histone acetylation/deacetylation. Circ. Res. 98 (2006), 15–24.
-
(2006)
Circ. Res.
, vol.98
, pp. 15-24
-
-
Backs, J.1
Olson, E.N.2
-
67
-
-
34447511648
-
Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility
-
[67] Montgomery, R.L., Davis, C.A., Potthoff, M.J., Haberland, M., Fielitz, J., Qi, X., et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21 (2007), 1790–1802.
-
(2007)
Genes Dev.
, vol.21
, pp. 1790-1802
-
-
Montgomery, R.L.1
Davis, C.A.2
Potthoff, M.J.3
Haberland, M.4
Fielitz, J.5
Qi, X.6
-
68
-
-
77956604362
-
Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation
-
[68] Trivedi, C.M., Zhu, W., Wang, Q., Jia, C., Kee, H.J., Li, L., et al. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev. Cell 19 (2010), 450–459.
-
(2010)
Dev. Cell
, vol.19
, pp. 450-459
-
-
Trivedi, C.M.1
Zhu, W.2
Wang, Q.3
Jia, C.4
Kee, H.J.5
Li, L.6
-
69
-
-
55849084700
-
Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice
-
[69] Montgomery, R.L., Potthoff, M.J., Haberland, M., Qi, X., Matsuzaki, S., Humphries, K.M., et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118 (2008), 3588–3597.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3588-3597
-
-
Montgomery, R.L.1
Potthoff, M.J.2
Haberland, M.3
Qi, X.4
Matsuzaki, S.5
Humphries, K.M.6
-
70
-
-
55549099609
-
Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy
-
[70] Trivedi, C.M., Lu, M.M., Wang, Q., Epstein, J.A., Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J. Biol. Chem. 283 (2008), 26484–26489.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 26484-26489
-
-
Trivedi, C.M.1
Lu, M.M.2
Wang, Q.3
Epstein, J.A.4
-
71
-
-
0034635987
-
Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases
-
[71] Lu, J., McKinsey, T.A., Nicol, R.L., Olson, E.N., Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 4070–4075.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 4070-4075
-
-
Lu, J.1
McKinsey, T.A.2
Nicol, R.L.3
Olson, E.N.4
-
72
-
-
4544358659
-
Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development
-
[72] Chang, S., McKinsey, T.A., Zhang, C.L., Richardson, J.A., Hill, J.A., Olson, E.N., Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell Biol. 24 (2004), 8467–8476.
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 8467-8476
-
-
Chang, S.1
McKinsey, T.A.2
Zhang, C.L.3
Richardson, J.A.4
Hill, J.A.5
Olson, E.N.6
-
73
-
-
0037162697
-
Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
-
[73] Zhang, C.L., McKinsey, T.A., Chang, S., Antos, C.L., Hill, J.A., Olson, E.N., Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110 (2002), 479–488.
-
(2002)
Cell
, vol.110
, pp. 479-488
-
-
Zhang, C.L.1
McKinsey, T.A.2
Chang, S.3
Antos, C.L.4
Hill, J.A.5
Olson, E.N.6
-
74
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient micelopmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
[74] Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient micelopmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 10794–10799.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
Manis, J.P.4
Gu, Y.5
Patel, P.6
-
75
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
[75] Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A., Gupta, M.P., Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119 (2009), 2758–2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
76
-
-
84929088095
-
SIRT3 deficiency impairs mitochondrial and contractile function in the heart
-
[76] Koentges, C., Pfeil, K., Schnick, T., Wiese, S., Dahlbock, R., Cimolai, M.C., et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res. Cardiol., 110, 2015, 36.
-
(2015)
Basic Res. Cardiol.
, vol.110
, pp. 36
-
-
Koentges, C.1
Pfeil, K.2
Schnick, T.3
Wiese, S.4
Dahlbock, R.5
Cimolai, M.C.6
-
77
-
-
84869201195
-
The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
-
[77] Sundaresan, N.R., Vasudevan, P., Zhong, L., Kim, G., Samant, S., Parekh, V., et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18 (2012), 1643–1650.
-
(2012)
Nat. Med.
, vol.18
, pp. 1643-1650
-
-
Sundaresan, N.R.1
Vasudevan, P.2
Zhong, L.3
Kim, G.4
Samant, S.5
Parekh, V.6
-
78
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
[78] Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102 (2008), 703–710.
-
(2008)
Circ. Res.
, vol.102
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
Kostin, S.4
Boettger, T.5
Kubin, T.6
-
79
-
-
84856707310
-
Polycomb repressive complex 2 regulates normal development of the mouse heart
-
[79] He, A., Ma, Q., Cao, J., von Gise, A., Zhou, P., Xie, H., et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ. Res. 110 (2012), 406–415.
-
(2012)
Circ. Res.
, vol.110
, pp. 406-415
-
-
He, A.1
Ma, Q.2
Cao, J.3
von Gise, A.4
Zhou, P.5
Xie, H.6
-
80
-
-
84856505104
-
Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival
-
[80] Chen, L., Ma, Y., Kim, E.Y., Yu, W., Schwartz, R.J., Qian, L., et al. Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival. PLoS One, 7, 2012, e31005.
-
(2012)
PLoS One
, vol.7
, pp. e31005
-
-
Chen, L.1
Ma, Y.2
Kim, E.Y.3
Yu, W.4
Schwartz, R.J.5
Qian, L.6
-
81
-
-
84862777974
-
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
-
[81] Delgado-Olguin, P., Huang, Y., Li, X., Christodoulou, D., Seidman, C.E., Seidman, J.G., et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat. Genet. 44 (2012), 343–347.
-
(2012)
Nat. Genet.
, vol.44
, pp. 343-347
-
-
Delgado-Olguin, P.1
Huang, Y.2
Li, X.3
Christodoulou, D.4
Seidman, C.E.5
Seidman, J.G.6
-
82
-
-
84882766972
-
Developmental fate and cellular maturity encoded in human regulatory DNA landscapes
-
[82] Stergachis, A.B., Neph, S., Reynolds, A., Humbert, R., Miller, B., Paige, S.L., et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154 (2013), 888–903.
-
(2013)
Cell
, vol.154
, pp. 888-903
-
-
Stergachis, A.B.1
Neph, S.2
Reynolds, A.3
Humbert, R.4
Miller, B.5
Paige, S.L.6
-
83
-
-
0036578662
-
Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis
-
[83] Gottlieb, P.D., Pierce, S.A., Sims, R.J., Yamagishi, H., Weihe, E.K., Harriss, J.V., et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet. 31 (2002), 25–32.
-
(2002)
Nat. Genet.
, vol.31
, pp. 25-32
-
-
Gottlieb, P.D.1
Pierce, S.A.2
Sims, R.J.3
Yamagishi, H.4
Weihe, E.K.5
Harriss, J.V.6
-
84
-
-
84925874969
-
Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses
-
[84] Rasmussen, T.L., Ma, Y., Park, C.Y., Harriss, J., Pierce, S.A., Dekker, J.D., et al. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One, 10, 2015, e0121765.
-
(2015)
PLoS One
, vol.10
, pp. e0121765
-
-
Rasmussen, T.L.1
Ma, Y.2
Park, C.Y.3
Harriss, J.4
Pierce, S.A.5
Dekker, J.D.6
-
85
-
-
33644542409
-
SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos
-
[85] Tan, X., Rotllant, J., Li, H., De Deyne, P., Du, S.J., SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 2713–2718.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 2713-2718
-
-
Tan, X.1
Rotllant, J.2
Li, H.3
De Deyne, P.4
Du, S.J.5
-
86
-
-
52949107241
-
The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure
-
[86] Jones, B., Su, H., Bhat, A., Lei, H., Bajko, J., Hevi, S., et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet., 4, 2008, e1000190.
-
(2008)
PLoS Genet.
, vol.4
, pp. e1000190
-
-
Jones, B.1
Su, H.2
Bhat, A.3
Lei, H.4
Bajko, J.5
Hevi, S.6
-
87
-
-
79551607266
-
DOT1L regulates dystrophin expression and is critical for cardiac function
-
[87] Nguyen, A.T., Xiao, B., Neppl, R.L., Kallin, E.M., Li, J., Chen, T., et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25 (2011), 263–274.
-
(2011)
Genes Dev.
, vol.25
, pp. 263-274
-
-
Nguyen, A.T.1
Xiao, B.2
Neppl, R.L.3
Kallin, E.M.4
Li, J.5
Chen, T.6
-
88
-
-
0032772975
-
Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background
-
[88] Takeuchi, T., Kojima, M., Nakajima, K., Kondo, S., Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech. Dev. 86 (1999), 29–38.
-
(1999)
Mech. Dev.
, vol.86
, pp. 29-38
-
-
Takeuchi, T.1
Kojima, M.2
Nakajima, K.3
Kondo, S.4
-
89
-
-
0038010027
-
jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression
-
[89] Toyoda, M., Shirato, H., Nakajima, K., Kojima, M., Takahashi, M., Kubota, M., et al. jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Dev. Cell 5 (2003), 85–97.
-
(2003)
Dev. Cell
, vol.5
, pp. 85-97
-
-
Toyoda, M.1
Shirato, H.2
Nakajima, K.3
Kojima, M.4
Takahashi, M.5
Kubota, M.6
-
90
-
-
24744466509
-
Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein
-
[90] Jung, J., Kim, T.G., Lyons, G.E., Kim, H.R., Lee, Y., Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J. Biol. Chem. 280 (2005), 30916–30923.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 30916-30923
-
-
Jung, J.1
Kim, T.G.2
Lyons, G.E.3
Kim, H.R.4
Lee, Y.5
-
91
-
-
36749082438
-
Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases
-
[91] Hong, S., Cho, Y.W., Yu, L.R., Yu, H., Veenstra, T.D., Ge, K., Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 18439–18444.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 18439-18444
-
-
Hong, S.1
Cho, Y.W.2
Yu, L.R.3
Yu, H.4
Veenstra, T.D.5
Ge, K.6
-
92
-
-
84855957128
-
UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program
-
[92] Lee, S., Lee, J.W., Lee, S.K., UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev. Cell 22 (2012), 25–37.
-
(2012)
Dev. Cell
, vol.22
, pp. 25-37
-
-
Lee, S.1
Lee, J.W.2
Lee, S.K.3
-
93
-
-
84864663969
-
X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner
-
[93] Welstead, G.G., Creyghton, M.P., Bilodeau, S., Cheng, A.W., Markoulaki, S., Young, R.A., et al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 13004–13009.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 13004-13009
-
-
Welstead, G.G.1
Creyghton, M.P.2
Bilodeau, S.3
Cheng, A.W.4
Markoulaki, S.5
Young, R.A.6
-
94
-
-
84884820418
-
Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells
-
[94] Ohtani, K., Zhao, C., Dobreva, G., Manavski, Y., Kluge, B., Braun, T., et al. Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ. Res. 113 (2013), 856–862.
-
(2013)
Circ. Res.
, vol.113
, pp. 856-862
-
-
Ohtani, K.1
Zhao, C.2
Dobreva, G.3
Manavski, Y.4
Kluge, B.5
Braun, T.6
-
95
-
-
0026708177
-
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
-
[95] Li, E., Bestor, T.H., Jaenisch, R., Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69 (1992), 915–926.
-
(1992)
Cell
, vol.69
, pp. 915-926
-
-
Li, E.1
Bestor, T.H.2
Jaenisch, R.3
-
96
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
[96] Okano, M., Bell, D.W., Haber, D.A., Li, E., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 (1999), 247–257.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
97
-
-
84907386402
-
DNA methylation is developmentally regulated for genes essential for cardiogenesis
-
[97] Chamberlain, A.A., Lin, M., Lister, R.L., Maslov, A.A., Wang, Y., Suzuki, M., et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J. Am. Heart Assoc., 3, 2014, e000976.
-
(2014)
J. Am. Heart Assoc.
, vol.3
, pp. e000976
-
-
Chamberlain, A.A.1
Lin, M.2
Lister, R.L.3
Maslov, A.A.4
Wang, Y.5
Suzuki, M.6
-
98
-
-
84939160465
-
Cardiac myocyte de novo dna methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice
-
[98] Nuhrenberg, T.G., Hammann, N., Schnick, T., Preissl, S., Witten, A., Stoll, M., et al. Cardiac myocyte de novo dna methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS One, 10, 2015, e0131019.
-
(2015)
PLoS One
, vol.10
, pp. e0131019
-
-
Nuhrenberg, T.G.1
Hammann, N.2
Schnick, T.3
Preissl, S.4
Witten, A.5
Stoll, M.6
-
99
-
-
64349091471
-
Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells
-
[99] Ball, M.P., Li, J.B., Gao, Y., Lee, J.H., LeProust, E.M., Park, I.H., et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27 (2009), 361–368.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 361-368
-
-
Ball, M.P.1
Li, J.B.2
Gao, Y.3
Lee, J.H.4
LeProust, E.M.5
Park, I.H.6
-
100
-
-
84896712746
-
Endothelin-1 promotes cardiomyocyte terminal differentiation in the developing heart via heightened DNA methylation
-
[100] Paradis, A., Xiao, D., Zhou, J., Zhang, L., Endothelin-1 promotes cardiomyocyte terminal differentiation in the developing heart via heightened DNA methylation. Int. J. Med. Sci. 11 (2014), 373–380.
-
(2014)
Int. J. Med. Sci.
, vol.11
, pp. 373-380
-
-
Paradis, A.1
Xiao, D.2
Zhou, J.3
Zhang, L.4
-
101
-
-
84906314395
-
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs
-
[101] Matkovich, S.J., Edwards, J.R., Grossenheider, T.C., de Guzman Strong, C., Dorn, G.W. 2nd, Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 12264–12269.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 12264-12269
-
-
Matkovich, S.J.1
Edwards, J.R.2
Grossenheider, T.C.3
de Guzman Strong, C.4
Dorn, G.W.5
-
102
-
-
84928233559
-
Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs
-
[102] Ounzain, S., Micheletti, R., Beckmann, T., Schroen, B., Alexanian, M., Pezzuto, I., et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 36 (2015), 353–368.
-
(2015)
Eur. Heart J.
, vol.36
, pp. 353-368
-
-
Ounzain, S.1
Micheletti, R.2
Beckmann, T.3
Schroen, B.4
Alexanian, M.5
Pezzuto, I.6
-
103
-
-
84908020927
-
A long noncoding RNA protects the heart from pathological hypertrophy
-
[103] Han, P., Li, W., Lin, C.H., Yang, J., Shang, C., Nurnberg, S.T., et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514 (2014), 102–106.
-
(2014)
Nature
, vol.514
, pp. 102-106
-
-
Han, P.1
Li, W.2
Lin, C.H.3
Yang, J.4
Shang, C.5
Nurnberg, S.T.6
-
104
-
-
77954222814
-
Chromatin regulation by Brg1 underlies heart muscle development and disease
-
[104] Hang, C.T., Yang, J., Han, P., Cheng, H.L., Shang, C., Ashley, E., et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466 (2010), 62–67.
-
(2010)
Nature
, vol.466
, pp. 62-67
-
-
Hang, C.T.1
Yang, J.2
Han, P.3
Cheng, H.L.4
Shang, C.5
Ashley, E.6
-
105
-
-
84873300214
-
Braveheart, a long noncoding RNA required for cardiovascular lineage commitment
-
[105] Klattenhoff, C.A., Scheuermann, J.C., Surface, L.E., Bradley, R.K., Fields, P.A., Steinhauser, M.L., et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152 (2013), 570–583.
-
(2013)
Cell
, vol.152
, pp. 570-583
-
-
Klattenhoff, C.A.1
Scheuermann, J.C.2
Surface, L.E.3
Bradley, R.K.4
Fields, P.A.5
Steinhauser, M.L.6
-
106
-
-
0001981347
-
Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei
-
[106] Gurdon, J.B., Elsdale, T.R., Fischberg, M., Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182 (1958), 64–65.
-
(1958)
Nature
, vol.182
, pp. 64-65
-
-
Gurdon, J.B.1
Elsdale, T.R.2
Fischberg, M.3
-
107
-
-
0023663888
-
Expression of a single transfected cDNA converts fibroblasts to myoblasts
-
[107] Davis, R.L., Weintraub, H., Lassar, A.B., Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51 (1987), 987–1000.
-
(1987)
Cell
, vol.51
, pp. 987-1000
-
-
Davis, R.L.1
Weintraub, H.2
Lassar, A.B.3
-
108
-
-
77649162059
-
Direct conversion of fibroblasts to functional neurons by defined factors
-
[108] Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., Wernig, M., Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463 (2010), 1035–1041.
-
(2010)
Nature
, vol.463
, pp. 1035-1041
-
-
Vierbuchen, T.1
Ostermeier, A.2
Pang, Z.P.3
Kokubu, Y.4
Sudhof, T.C.5
Wernig, M.6
-
109
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
[109] Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142 (2010), 375–386.
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
Fu, J.D.2
Delgado-Olguin, P.3
Vedantham, V.4
Hayashi, Y.5
Bruneau, B.G.6
-
110
-
-
2542455620
-
Stepwise reprogramming of B cells into macrophages
-
[110] Xie, H., Ye, M., Feng, R., Graf, T., Stepwise reprogramming of B cells into macrophages. Cell 117 (2004), 663–676.
-
(2004)
Cell
, vol.117
, pp. 663-676
-
-
Xie, H.1
Ye, M.2
Feng, R.3
Graf, T.4
-
111
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
[111] Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006), 663–676.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
112
-
-
78650996389
-
Reprogramming factor expression initiates widespread targeted chromatin remodeling
-
[112] Koche, R.P., Smith, Z.D., Adli, M., Gu, H., Ku, M., Gnirke, A., et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8 (2011), 96–105.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 96-105
-
-
Koche, R.P.1
Smith, Z.D.2
Adli, M.3
Gu, H.4
Ku, M.5
Gnirke, A.6
-
113
-
-
79954414897
-
Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network
-
[113] Ang, Y.-S., Tsai, S.-Y., Lee, D.-F., Monk, J., Su, J., Ratnakumar, K., et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145 (2011), 183–197.
-
(2011)
Cell
, vol.145
, pp. 183-197
-
-
Ang, Y.-S.1
Tsai, S.-Y.2
Lee, D.-F.3
Monk, J.4
Su, J.5
Ratnakumar, K.6
-
114
-
-
84927768496
-
Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming
-
[114] Hirsch, C.L., Coban Akdemir, Z., Wang, L., Jayakumaran, G., Trcka, D., Weiss, A., et al, Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes Dev. 29 (2015), 803–816.
-
(2015)
Genes Dev.
, vol.29
, pp. 803-816
-
-
Hirsch, C.L.1
Coban Akdemir, Z.2
Wang, L.3
Jayakumaran, G.4
Trcka, D.5
Weiss, A.6
-
115
-
-
46949085597
-
Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
-
[115] Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26 (2008), 795–797.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 795-797
-
-
Huangfu, D.1
Maehr, R.2
Guo, W.3
Eijkelenboom, A.4
Snitow, M.5
Chen, A.E.6
-
116
-
-
84870058502
-
Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome
-
[116] Soufi, A., Donahue, G., Zaret, K.S., Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151 (2012), 994–1004.
-
(2012)
Cell
, vol.151
, pp. 994-1004
-
-
Soufi, A.1
Donahue, G.2
Zaret, K.S.3
-
117
-
-
84871990064
-
H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
-
[117] Chen, J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45 (2013), 34–42.
-
(2013)
Nat. Genet.
, vol.45
, pp. 34-42
-
-
Chen, J.1
Liu, H.2
Liu, J.3
Qi, J.4
Wei, B.5
Yang, J.6
-
118
-
-
79955625071
-
Constitutive heterochromatin reorganization during somatic cell reprogramming
-
[118] Fussner, E., Djuric, U., Strauss, M., Hotta, A., Perez-Iratxeta, C., Lanner, F., et al. Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J. 30 (2011), 1778–1789.
-
(2011)
EMBO J.
, vol.30
, pp. 1778-1789
-
-
Fussner, E.1
Djuric, U.2
Strauss, M.3
Hotta, A.4
Perez-Iratxeta, C.5
Lanner, F.6
-
119
-
-
84859218238
-
Chromatin-modifying enzymes as modulators of reprogramming
-
[119] Onder, T.T., Kara, N., Cherry, A., Sinha, A.U., Zhu, N., Bernt, K.M., et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483 (2012), 598–602.
-
(2012)
Nature
, vol.483
, pp. 598-602
-
-
Onder, T.T.1
Kara, N.2
Cherry, A.3
Sinha, A.U.4
Zhu, N.5
Bernt, K.M.6
-
120
-
-
84865112255
-
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
-
[120] Mansour, A.A., Gafni, O., Weinberger, L., Zviran, A., Ayyash, M., Rais, Y., et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488 (2012), 409–413.
-
(2012)
Nature
, vol.488
, pp. 409-413
-
-
Mansour, A.A.1
Gafni, O.2
Weinberger, L.3
Zviran, A.4
Ayyash, M.5
Rais, Y.6
-
121
-
-
84866369892
-
Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
-
[121] Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K., et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150 (2012), 1209–1222.
-
(2012)
Cell
, vol.150
, pp. 1209-1222
-
-
Buganim, Y.1
Faddah, D.A.2
Cheng, A.W.3
Itskovich, E.4
Markoulaki, S.5
Ganz, K.6
-
122
-
-
84937203002
-
Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency
-
[122] Cacchiarelli, D., Trapnell, C., Ziller, M.J., Soumillon, M., Cesana, M., Karnik, R., et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162 (2015), 412–424.
-
(2015)
Cell
, vol.162
, pp. 412-424
-
-
Cacchiarelli, D.1
Trapnell, C.2
Ziller, M.J.3
Soumillon, M.4
Cesana, M.5
Karnik, R.6
-
123
-
-
84874781927
-
Cell reprogramming requires silencing of a core subset of polycomb targets
-
[123] Fragola, G., Germain, P.-L., Laise, P., Cuomo, A., Blasimme, A., Gross, F., et al. Cell reprogramming requires silencing of a core subset of polycomb targets. PLoS Genet., 9, 2013, e1003292.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003292
-
-
Fragola, G.1
Germain, P.-L.2
Laise, P.3
Cuomo, A.4
Blasimme, A.5
Gross, F.6
-
124
-
-
84871586080
-
A molecular roadmap of reprogramming somatic cells into iPS cells
-
[124] Polo, J.M., Anderssen, E., Walsh, R.M., Schwarz, B.A., Nefzger, C.M., Lim, S.M., et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151 (2012), 1617–1632.
-
(2012)
Cell
, vol.151
, pp. 1617-1632
-
-
Polo, J.M.1
Anderssen, E.2
Walsh, R.M.3
Schwarz, B.A.4
Nefzger, C.M.5
Lim, S.M.6
-
125
-
-
84878260646
-
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
-
[125] Pastor, W.A., Aravind, L., Rao, A., TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14 (2013), 341–356.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
Aravind, L.2
Rao, A.3
-
126
-
-
84875370281
-
NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
-
[126] Costa, Y., Ding, J., Theunissen, T.W., Faiola, F., Hore, T.A., Shliaha, P.V., et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495 (2013), 370–374.
-
(2013)
Nature
, vol.495
, pp. 370-374
-
-
Costa, Y.1
Ding, J.2
Theunissen, T.W.3
Faiola, F.4
Hore, T.A.5
Shliaha, P.V.6
-
127
-
-
68749110887
-
Nanog is the gateway to the pluripotent ground state
-
[127] Silva, J., Nichols, J., Theunissen, T.W., Guo, G., van Oosten, A.L., Barrandon, O., et al. Nanog is the gateway to the pluripotent ground state. Cell 138 (2009), 722–737.
-
(2009)
Cell
, vol.138
, pp. 722-737
-
-
Silva, J.1
Nichols, J.2
Theunissen, T.W.3
Guo, G.4
van Oosten, A.L.5
Barrandon, O.6
-
128
-
-
79956318370
-
De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state
-
[128] Pawlak, M., Jaenisch, R., De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev. 25 (2011), 1035–1040.
-
(2011)
Genes Dev.
, vol.25
, pp. 1035-1040
-
-
Pawlak, M.1
Jaenisch, R.2
-
129
-
-
84863626782
-
Heart repair by reprogramming non-myocytes with cardiac transcription factors
-
[129] Song, K., Nam, Y.J., Luo, X., Qi, X., Tan, W., Huang, G.N., et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485 (2012), 599–604.
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
Nam, Y.J.2
Luo, X.3
Qi, X.4
Tan, W.5
Huang, G.N.6
-
130
-
-
84875848994
-
Reprogramming of human fibroblasts toward a cardiac fate
-
[130] Nam, Y.J., Song, K., Luo, X., Daniel, E., Lambeth, K., West, K., et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 5588–5593.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 5588-5593
-
-
Nam, Y.J.1
Song, K.2
Luo, X.3
Daniel, E.4
Lambeth, K.5
West, K.6
-
131
-
-
84861642380
-
MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes
-
[131] Jayawardena, T.M., Egemnazarov, B., Finch, E.A., Zhang, L., Payne, J.A., Pandya, K., et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110 (2012), 1465–1473.
-
(2012)
Circ. Res.
, vol.110
, pp. 1465-1473
-
-
Jayawardena, T.M.1
Egemnazarov, B.2
Finch, E.A.3
Zhang, L.4
Payne, J.A.5
Pandya, K.6
-
132
-
-
84864696029
-
Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors
-
[132] Islas, J.F., Liu, Y., Weng, K.C., Robertson, M.J., Zhang, S., Prejusa, A., et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 13016–13021.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 13016-13021
-
-
Islas, J.F.1
Liu, Y.2
Weng, K.C.3
Robertson, M.J.4
Zhang, S.5
Prejusa, A.6
-
133
-
-
79952273710
-
Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy
-
[133] Efe, J.A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13 (2011), 215–222.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 215-222
-
-
Efe, J.A.1
Hilcove, S.2
Kim, J.3
Zhou, H.4
Ouyang, K.5
Wang, G.6
-
134
-
-
84895921071
-
Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4
-
[134] Wang, H., Cao, N., Spencer, C.I., Nie, B., Ma, T., Xu, T., et al. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 6 (2014), 951–960.
-
(2014)
Cell Rep.
, vol.6
, pp. 951-960
-
-
Wang, H.1
Cao, N.2
Spencer, C.I.3
Nie, B.4
Ma, T.5
Xu, T.6
-
135
-
-
84883753931
-
Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state
-
[135] Fu, J.D., Stone, N.R., Liu, L., Spencer, C.I., Qian, L., Hayashi, Y., et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 1 (2013), 235–247.
-
(2013)
Stem Cell Rep.
, vol.1
, pp. 235-247
-
-
Fu, J.D.1
Stone, N.R.2
Liu, L.3
Spencer, C.I.4
Qian, L.5
Hayashi, Y.6
-
136
-
-
84911381525
-
A neonatal blueprint for cardiac regeneration
-
[136] Porrello, E.R., Olson, E.N., A neonatal blueprint for cardiac regeneration. Stem Cell Res. 13 (2014), 556–570.
-
(2014)
Stem Cell Res.
, vol.13
, pp. 556-570
-
-
Porrello, E.R.1
Olson, E.N.2
|