메뉴 건너뛰기




Volumn 83, Issue , 2014, Pages 671-696

Regulating the chromatin landscape: Structural and mechanistic perspectives

Author keywords

ATRX; cancer; CHD; differentiation; epigenetics; histone; INO80; ISWI; nucleosome; SWI SNF; SWR1; transcription

Indexed keywords

ADENOSINE TRIPHOSPHATASE; DNA; DNA HELICASE; HELICASE; HISTONE; ADENOSINE TRIPHOSPHATE; CHROMATIN; NUCLEOSOME; TRANSCRIPTION FACTOR;

EID: 84902168468     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-051810-093157     Document Type: Review
Times cited : (162)

References (165)
  • 1
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34:2887-905
    • (2006) Nucleic Acids Res , vol.34 , pp. 2887-2905
    • Flaus, A.1    Dma, M.2    Barton, G.J.3    Owen-Hughes, T.4
  • 2
    • 75749101495 scopus 로고    scopus 로고
    • Chromatin remodelling during development
    • Ho L, Crabtree GR. 2010. Chromatin remodelling during development. Nature 463:474-84
    • (2010) Nature , vol.463 , pp. 474-484
    • Ho, L.1    Crabtree, G.R.2
  • 3
    • 84876686460 scopus 로고    scopus 로고
    • From neural development to cognition: Unexpected roles for chromatin
    • Ronan JL, Wu W, Crabtree GR. 2013. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14:347-59
    • (2013) Nat. Rev. Genet , vol.14 , pp. 347-359
    • Ronan, J.L.1    Wu, W.2    Crabtree, G.R.3
  • 4
    • 79953286186 scopus 로고    scopus 로고
    • SnapShot: Chromatin remodeling: CHD
    • Sims JK,Wade PA. 2011. SnapShot: Chromatin remodeling: CHD. Cell 144:626e1
    • (2011) Cell , vol.144
    • Sims Jkwade, P.A.1
  • 5
    • 67650711042 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling in neural development
    • Yoo AS, Crabtree GR. 2009. ATP-dependent chromatin remodeling in neural development. Curr. Opin. Neurobiol. 19:120-26
    • (2009) Curr. Opin. Neurobiol , vol.19 , pp. 120-126
    • Yoo, A.S.1    Crabtree, G.R.2
  • 6
    • 34447249019 scopus 로고    scopus 로고
    • An essential switch in subunit composition of a chromatin remodeling complex during neural development
    • Lessard J, Wu JI, Ranish JA, Wan M,Windlow MM, et al. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201-15
    • (2007) Neuron , vol.55 , pp. 201-215
    • Lessard, J.1    Wu, J.I.2    Ranish, J.A.3    Wan Mwindlow, M.M.4
  • 7
    • 67949083572 scopus 로고    scopus 로고
    • MicroRNA-mediated switching of chromatinremodelling complexes in neural development
    • Yoo AS, Staahl BT, Chen L, Crabtree GR. 2009. MicroRNA-mediated switching of chromatinremodelling complexes in neural development. Nature 460:642-46
    • (2009) Nature , vol.460 , pp. 642-646
    • Yoo, A.S.1    Staahl, B.T.2    Chen, L.3    Crabtree, G.R.4
  • 8
    • 77952566675 scopus 로고    scopus 로고
    • SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes
    • Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, et al. 2010. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38:590-602
    • (2010) Mol. Cell , vol.38 , pp. 590-602
    • Dechassa, M.L.1    Sabri, A.2    Pondugula, S.3    Kassabov, S.R.4    Chatterjee, N.5
  • 9
    • 43049157587 scopus 로고    scopus 로고
    • Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription
    • Boeger H, Griesenbeck J, Kornberg RD. 2008. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133:716-26
    • (2008) Cell , vol.133 , pp. 716-726
    • Boeger, H.1    Griesenbeck, J.2    Kornberg, R.D.3
  • 10
    • 2942574467 scopus 로고    scopus 로고
    • Removal of promoter nucleosomes by disassembly rather than sliding in vivo
    • Boeger H, Griesenbech J, Strattan JS, Kornberg RD. 2004. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14:667-73
    • (2004) Mol. Cell , vol.14 , pp. 667-673
    • Boeger, H.1    Griesenbech, J.2    Strattan, J.S.3    Kornberg, R.D.4
  • 11
    • 78751536862 scopus 로고    scopus 로고
    • Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome
    • Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, et al. 2010. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143:725-36
    • (2010) Cell , vol.143 , pp. 725-736
    • Luk, E.1    Ranjan, A.2    Fitzgerald, P.C.3    Mizuguchi, G.4    Huang, Y.5
  • 12
    • 0348184963 scopus 로고    scopus 로고
    • ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
    • Mizuguchi G, Shen X, Landry J,WuWH, Sen S,Wu C. 2004. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343-48
    • (2004) Science , vol.303 , pp. 343-348
    • Mizuguchi, G.1    Shen, X.2    Landry, J.3    Wu, W.H.4    Sen, S.5    Wu, C.6
  • 13
    • 78651510784 scopus 로고    scopus 로고
    • Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity
    • Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL. 2011. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200-13
    • (2011) Cell , vol.144 , pp. 200-213
    • Papamichos-Chronakis, M.1    Watanabe, S.2    Rando, O.J.3    Peterson, C.L.4
  • 14
    • 0035499905 scopus 로고    scopus 로고
    • Reconstitution of recombinant chromatin establishes a requirement for histone-Tail modifications during chromatin assembly and transcription
    • Loyola A, LeRoy G, Wang YH, ReinbergD. 2001. Reconstitution of recombinant chromatin establishes a requirement for histone-Tail modifications during chromatin assembly and transcription. Genes Dev. 15:2837-51
    • (2001) Genes Dev , vol.15 , pp. 2837-2851
    • Loyola, A.1    Leroy, G.2    Wang, Y.H.3    Reinberg, D.4
  • 16
    • 0242495784 scopus 로고    scopus 로고
    • Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p
    • Robinson KM, Schultz MC. 2003. Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p. Mol. Cell. Biol. 23:7937-46
    • (2003) Mol. Cell. Biol , vol.23 , pp. 7937-7946
    • Robinson, K.M.1    Schultz, M.C.2
  • 17
    • 34548272156 scopus 로고    scopus 로고
    • CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo
    • Konev AY, Tribus M, Park SY, Lim CY, Emelyanov AV, et al. 2007. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087-90
    • (2007) Science , vol.317 , pp. 1087-1090
    • Konev, A.Y.1    Tribus, M.2    Park, S.Y.3    Lim, C.Y.4    Emelyanov, A.V.5
  • 18
    • 15544369061 scopus 로고    scopus 로고
    • Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly
    • Lusser A, Urwin DL, Kadonaga JT. 2005. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12:160-66
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 160-166
    • Lusser, A.1    Urwin, D.L.2    Kadonaga, J.T.3
  • 19
    • 77953955724 scopus 로고    scopus 로고
    • The death-Associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3
    • Dran P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. 2010. The death-Associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24:1253-65
    • (2010) Genes Dev , vol.24 , pp. 1253-1265
    • Dran, P.1    Ouararhni, K.2    Depaux, A.3    Shuaib, M.4    Hamiche, A.5
  • 20
    • 77649099092 scopus 로고    scopus 로고
    • Distinct factors control histone variant H3.3 localization at specific genomic regions
    • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elssser SJ, et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678-91
    • (2010) Cell , vol.140 , pp. 678-691
    • Goldberg, A.D.1    Banaszynski, L.A.2    Noh, K.M.3    Lewis, P.W.4    Elssser, S.J.5
  • 21
    • 77956282773 scopus 로고    scopus 로고
    • Daxx is an H3.3-specific histone chaperone and cooperateswith ATRXin replication-independent chromatin assembly at telomeres
    • Lewis PW, Elssser SJ, NohKM, Stadler SC, Allis CD. 2010. Daxx is an H3.3-specific histone chaperone and cooperateswith ATRXin replication- independent chromatin assembly at telomeres. Proc.Natl. Acad. Sci. USA 107:14075-80
    • (2010) Proc.Natl. Acad. Sci. USA , vol.107 , pp. 14075-14080
    • Lewis, P.W.1    Elssser, S.J.2    Noh, K.M.3    Stadler, S.C.4    Allis, C.D.5
  • 22
    • 78049434700 scopus 로고    scopus 로고
    • Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo
    • Baumann C, Viveiros MM, De La Fuente R. 2010. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet. 6:e1001137
    • (2010) PLoS Genet , vol.6
    • Baumann, C.1    Viveiros, M.M.2    De La Fuente, R.3
  • 23
    • 79960700556 scopus 로고    scopus 로고
    • Altered telomeres in tumors with ATRX and DAXX mutations
    • Heaphy CM, deWilde RF, Jiao Y, Edil BH, Shi C, et al. 2011. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425
    • (2011) Science , vol.333 , pp. 425
    • Heaphy, C.M.1    Dewilde, R.F.2    Jiao, Y.3    Edil, B.H.4    Shi, C.5
  • 24
    • 84869860972 scopus 로고    scopus 로고
    • Loss of wild-Type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres
    • Bower K, Napier CE, Cole SL, Dagg RA, Lau LMS, et al. 2012. Loss of wild-Type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres. PLoS ONE 7:e50062
    • (2012) PLoS ONE , vol.7
    • Bower, K.1    Napier, C.E.2    Cole, S.L.3    Dagg, R.A.4    Lms, L.5
  • 25
    • 65649124957 scopus 로고    scopus 로고
    • Active establishment of centromericCENP-A chromatin by RSF complex
    • Perpelescu M, NozakiN,ObuseC,YangH,Yoda K. 2009. Active establishment of centromericCENP-A chromatin by RSF complex. J. Cell Biol. 185:397-407
    • (2009) J. Cell Biol , vol.185 , pp. 397-407
    • Perpelescu, M.1    Nozaki, N.2    Obuse, C.3    Yang, H.4    Yoda, K.5
  • 26
    • 36849004886 scopus 로고    scopus 로고
    • Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
    • Dang W, Bartholomew B. 2007. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27:8306-17
    • (2007) Mol. Cell. Biol , vol.27 , pp. 8306-8317
    • Dang, W.1    Bartholomew, B.2
  • 29
    • 77956522905 scopus 로고    scopus 로고
    • The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor
    • Hauk G, McKnight JN,Nodelman IN, Bowman GD. 2010. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39:711-23
    • (2010) Mol. Cell , vol.39 , pp. 711-723
    • Hauk, G.1    McKnight, J.N.2    Nodelman, I.N.3    Bowman, G.D.4
  • 31
    • 18844457346 scopus 로고    scopus 로고
    • X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA
    • Durr H, Körner C, Müller M, Hickmann V, Hopfner KP. 2005. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121:363-73
    • (2005) Cell , vol.121 , pp. 363-373
    • Durr, H.1    Körner, C.2    Müller, M.3    Hickmann, V.4    Hopfner, K.P.5
  • 32
    • 79960647770 scopus 로고    scopus 로고
    • Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP
    • Wollmann P,Cui S, Viswanathan R, BerninghausenO,Wells MN, et al. 2011. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature 475:403-7
    • (2011) Nature , vol.475 , pp. 403-407
    • Wollmann, P.1    Cui, S.2    Viswanathan, R.3    Berninghausen, O.4    Wells, M.N.5
  • 34
    • 0027182114 scopus 로고
    • Helicases: Amino acid sequence comparisons and structure-function relationship
    • Gorbalenya AE, Koonin EV. 1993. Helicases: Amino acid sequence comparisons and structure-function relationship. Curr. Opin. Struct. Biol. 3:419-29
    • (1993) Curr. Opin. Struct. Biol , vol.3 , pp. 419-429
    • Gorbalenya, A.E.1    Koonin, E.V.2
  • 35
    • 0029157378 scopus 로고
    • Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
    • Eisen JA, Sweder KS, Hanawalt PC. 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23:2715-23
    • (1995) Nucleic Acids Res , vol.23 , pp. 2715-2723
    • Eisen, J.A.1    Sweder, K.S.2    Hanawalt, P.C.3
  • 37
    • 30144436268 scopus 로고    scopus 로고
    • RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP
    • Dumont S, ChengW, Serebrov V, Beran RJ, Tinoco I Jr, et al. 2006. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439:105-8
    • (2006) Nature , vol.439 , pp. 105-108
    • Dumont, S.1    Cheng, W.2    Serebrov, V.3    Beran, R.J.4    Tinoco Jr., I.5
  • 38
    • 34547595373 scopus 로고    scopus 로고
    • Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase
    • Myong S, Bruno MM, Pyle AM, Ha T. 2007. Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317:513-16
    • (2007) Science , vol.317 , pp. 513-516
    • Myong, S.1    Bruno, M.M.2    Pyle, A.M.3    Ha, T.4
  • 39
    • 80053144268 scopus 로고    scopus 로고
    • Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase
    • Cheng W, Arunajadai SG, Moffitt JR, Tinoco I Jr, Bustamante C. 2011. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333:1746-49
    • (2011) Science , vol.333 , pp. 1746-1749
    • Cheng, W.1    Arunajadai, S.G.2    Moffitt, J.R.3    Tinoco Jr., I.4    Bustamante, C.5
  • 40
    • 0034635172 scopus 로고    scopus 로고
    • Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: Measurement of step size and translocation speed
    • Dillingham MS, Wigley DB, Webb MR. 2000. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39:205-12
    • (2000) Biochemistry , vol.39 , pp. 205-212
    • Dillingham, M.S.1    Wigley, D.B.2    Webb, M.R.3
  • 41
    • 33845657428 scopus 로고    scopus 로고
    • UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
    • Lee JY, Yang W. 2006. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127:1349-60
    • (2006) Cell , vol.127 , pp. 1349-1360
    • Lee, J.Y.1    Yang, W.2
  • 42
    • 77955605175 scopus 로고    scopus 로고
    • PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps
    • Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J, et al. 2010. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142:544-55
    • (2010) Cell , vol.142 , pp. 544-555
    • Park, J.1    Myong, S.2    Niedziela-Majka, A.3    Lee, K.S.4    Yu, J.5
  • 43
    • 84873301476 scopus 로고    scopus 로고
    • ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps
    • Deindl S, Hwang WL, Hota SK, Blosser TR, Prasad P, et al. 2013. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152:442-52
    • (2013) Cell , vol.152 , pp. 442-452
    • Deindl, S.1    Hwang, W.L.2    Hota, S.K.3    Blosser, T.R.4    Prasad, P.5
  • 44
    • 0030740262 scopus 로고    scopus 로고
    • Major domain swiveling revealed by the crystal structures of complexes of E coli Rep helicase bound to single-stranded DNA and ADP
    • Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G. 1997. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90:635-47
    • (1997) Cell , vol.90 , pp. 635-647
    • Korolev, S.1    Hsieh, J.2    Gauss, G.H.3    Lohman, T.M.4    Waksman, G.5
  • 45
    • 0033515425 scopus 로고    scopus 로고
    • Crystal structures of complexes of PcrADNA helicase with a DNA substrate indicate an inchwormmechanism
    • Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. 1999. Crystal structures of complexes of PcrADNA helicase with a DNA substrate indicate an inchwormmechanism. Cell 97:75-84
    • (1999) Cell , vol.97 , pp. 75-84
    • Velankar, S.S.1    Soultanas, P.2    Dillingham, M.S.3    Subramanya, H.S.4    Wigley, D.B.5
  • 46
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton MR, Dillingham MS, Wigley DB. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23-50
    • (2007) Annu. Rev. Biochem , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 49
    • 26944461283 scopus 로고    scopus 로고
    • Chromatin remodeling through directional DNA translocation from an internal nucleosomal site
    • Saha A, Wittmeyer J, Cairns BR. 2005. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12:747-55
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 747-755
    • Saha, A.1    Wittmeyer, J.2    Cairns, B.R.3
  • 50
    • 4544266390 scopus 로고    scopus 로고
    • Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex
    • Schwanbeck R, Xiao H, Wu C. 2004. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279:39933-41
    • (2004) J. Biol. Chem , vol.279 , pp. 39933-39941
    • Schwanbeck, R.1    Xiao, H.2    Wu, C.3
  • 51
    • 33744916194 scopus 로고    scopus 로고
    • Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
    • Zofall M, Persinger J, Kassabov SR, Bartholomew B. 2006. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13:339-46
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 339-346
    • Zofall, M.1    Persinger, J.2    Kassabov, S.R.3    Bartholomew, B.4
  • 52
    • 33745839365 scopus 로고    scopus 로고
    • A PHDfinger ofNURF couples histone H3 lysine 4 trimethylation with chromatin remodelling
    • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, et al. 2006. A PHDfinger ofNURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86-90
    • (2006) Nature , vol.442 , pp. 86-90
    • Wysocka, J.1    Swigut, T.2    Xiao, H.3    Milne, T.A.4    Kwon, S.Y.5
  • 53
    • 33745809637 scopus 로고    scopus 로고
    • Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF
    • Li H, Ilin S, Wang W, Duncan EM, Wysocka J, et al. 2006. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442:91-95
    • (2006) Nature , vol.442 , pp. 91-95
    • Li, H.1    Ilin, S.2    Wang, W.3    Duncan, E.M.4    Wysocka, J.5
  • 54
    • 60249101576 scopus 로고    scopus 로고
    • Polybromo-1: The chromatin targeting subunit of the PBAF complex
    • Thompson M. 2009. Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91:309-19
    • (2009) Biochimie , vol.91 , pp. 309-319
    • Thompson, M.1
  • 55
    • 33847291791 scopus 로고    scopus 로고
    • Polybromo-L-bromodomains bind histoneH3at specific acetyllysine positions
    • Chandrasekaran R, ThompsonM.2007. Polybromo-L-bromodomains bind histoneH3at specific acetyllysine positions. Biochem. Biophys. Res. Commun. 355:661-66
    • (2007) Biochem. Biophys. Res. Commun , vol.355 , pp. 661-666
    • Chandrasekaran, R.1    Thompson, M.2
  • 56
    • 0035795579 scopus 로고    scopus 로고
    • The BAH domain, polybromo and the RSC chromatin remodelling complex
    • Goodwin GH, Nicolas RH. 2001. The BAH domain, polybromo and the RSC chromatin remodelling complex. Gene 268:1-7
    • (2001) Gene , vol.268 , pp. 1-7
    • Goodwin, G.H.1    Nicolas, R.H.2
  • 57
    • 35848961668 scopus 로고    scopus 로고
    • How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers
    • Taverna SD, LiH, Ruthenburg AJ, Allis CD, Patel DJ. 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025-40
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 1025-1040
    • Taverna, S.D.1    Lih Ruthenburg, A.J.2    Allis, C.D.3    Patel, D.J.4
  • 58
    • 84878944044 scopus 로고    scopus 로고
    • Readout of epigenetic modifications
    • Patel DJ, Wang Z. 2013. Readout of epigenetic modifications. Annu. Rev. Biochem. 82:81-118
    • (2013) Annu. Rev. Biochem , vol.82 , pp. 81-118
    • Patel, D.J.1    Wang, Z.2
  • 59
    • 79960063257 scopus 로고    scopus 로고
    • Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin
    • Eustermann S, Yang JC, AmosR,Chapman LM, JelinskaC, et al. 2011. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18:777-82
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 777-782
    • Eustermann, S.1    Yang, J.C.2    Amos, R.3    Chapman, L.M.4    Jelinska, C.5
  • 60
    • 34547542492 scopus 로고    scopus 로고
    • Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatinassociated protein ATRX
    • Argentaro A,Chang J-C, Chapman LM, Kowalczyk MS, Gibbons RJ, et al. 2007. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatinassociated protein ATRX. Proc. Natl. Acad. Sci. USA 104:11939-44
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 11939-11944
    • Argentaro, A.1    Chang, J.-C.2    Chapman, L.M.3    Kowalczyk, M.S.4    Gibbons, R.J.5
  • 61
    • 84866114872 scopus 로고    scopus 로고
    • Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange
    • Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, et al. 2012. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19:884-92
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 884-892
    • Smolle, M.1    Venkatesh, S.2    Gogol, M.M.3    Li, H.4    Zhang, Y.5
  • 62
    • 84866271965 scopus 로고    scopus 로고
    • HistoneH3 lysine 36methylation targets the Isw1b remodeling complex to chromatin
    • Maltby VE,Martin BJ, Schultze JM, Johnson I, Hentrich T, et al. 2012. HistoneH3 lysine 36methylation targets the Isw1b remodeling complex to chromatin. Mol. Cell. Biol. 32:3479-85
    • (2012) Mol. Cell. Biol , vol.32 , pp. 3479-3485
    • Maltby, V.E.1    Martin, B.J.2    Schultze, J.M.3    Johnson, I.4    Hentrich, T.5
  • 64
    • 34547099311 scopus 로고    scopus 로고
    • Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex
    • SkiniotisG,MoazedD,Walz T. 2007. Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J. Biol. Chem. 282:20804-8
    • (2007) J. Biol. Chem , vol.282 , pp. 20804-20808
    • Skiniotis, G.1    Moazed, D.2    Walz, T.3
  • 65
    • 0035937419 scopus 로고    scopus 로고
    • Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
    • Hassan AH, Neely KE, Workman JL. 2001. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817-27
    • (2001) Cell , vol.104 , pp. 817-827
    • Hassan, A.H.1    Neely, K.E.2    Workman, J.L.3
  • 66
    • 0036847620 scopus 로고    scopus 로고
    • Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
    • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, et al. 2002. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369-79
    • (2002) Cell , vol.111 , pp. 369-379
    • Hassan, A.H.1    Prochasson, P.2    Neely, K.E.3    Galasinski, S.C.4    Chandy, M.5
  • 67
    • 1942535223 scopus 로고    scopus 로고
    • Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
    • Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR. 2004. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23:1348-59
    • (2004) EMBO J , vol.23 , pp. 1348-1359
    • Kasten, M.1    Szerlong, H.2    Erdjument-Bromage, H.3    Tempst, P.4    Werner, M.5    Cairns, B.R.6
  • 69
    • 82255164427 scopus 로고    scopus 로고
    • A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling
    • Sen P, Ghosh P, Pugh BF, Bartholomew B. 2011. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res. 39:9155-66
    • (2011) Nucleic Acids Res , vol.39 , pp. 9155-9166
    • Sen, P.1    Ghosh, P.2    Pugh, B.F.3    Bartholomew, B.4
  • 71
    • 74249112844 scopus 로고    scopus 로고
    • Interaction ofHP1 and Brg1/Brm with the globular domain of histoneH3 is required for HP1-mediated repression
    • LavigneM, Eskeland R, Azebi S, Saint-Andr V, Jang SM, et al. 2009. Interaction ofHP1 and Brg1/Brm with the globular domain of histoneH3 is required for HP1-mediated repression. PLoS Genet. 5:e1000769
    • (2009) PLoS Genet , vol.5
    • Lavigne, M.1    Eskeland, R.2    Azebi, S.3    Saint-Andr, V.4    Jang, S.M.5
  • 72
    • 28544442465 scopus 로고    scopus 로고
    • Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange
    • WuWH, Alami S, Luk E,WuCH, Sen S, et al. 2005. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 12:1064-71
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 1064-1071
    • Wu, W.H.1    Alami, S.2    Luk, E.3    Wu, C.H.4    Sen, S.5
  • 73
    • 65249187832 scopus 로고    scopus 로고
    • N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex
    • Wu WH,Wu CH, Ladurner A,Mizuguchi G, Wei D, et al. 2009. N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex. J. Biol. Chem. 284:6200-7
    • (2009) J. Biol. Chem , vol.284 , pp. 6200-6207
    • Wu, W.H.1    Wu, C.H.2    Ladurner, A.3    Mizuguchi, G.4    Wei, D.5
  • 74
    • 34147197557 scopus 로고    scopus 로고
    • Dependency of ISW1a chromatin remodeling on extranucleosomal DNA
    • Gangaraju VK, Bartholomew B. 2007. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell. Biol. 27:3217-25
    • (2007) Mol. Cell. Biol , vol.27 , pp. 3217-3225
    • Gangaraju, V.K.1    Bartholomew, B.2
  • 75
    • 2942561969 scopus 로고    scopus 로고
    • Topography of the ISW2- nucleosome complex: Insights into nucleosome spacing and chromatin remodeling
    • Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. 2004. Topography of the ISW2- nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23:2092-104
    • (2004) EMBO J , vol.23 , pp. 2092-2104
    • Kagalwala, M.N.1    Glaus, B.J.2    Dang, W.3    Zofall, M.4    Bartholomew, B.5
  • 77
    • 0141922979 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI
    • Grüne T, Brzeski J, Eberharter A, Clapier CR, Corona DF, et al. 2003. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12:449-60
    • (2003) Mol. Cell , vol.12 , pp. 449-460
    • Grüne, T.1    Brzeski, J.2    Eberharter, A.3    Clapier, C.R.4    Corona, D.F.5
  • 78
    • 79955547248 scopus 로고    scopus 로고
    • Structure and mechanism of the chromatin remodelling factor ISW1a
    • Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, et al. 2011. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448-53
    • (2011) Nature , vol.472 , pp. 448-453
    • Yamada, K.1    Frouws, T.D.2    Angst, B.3    Fitzgerald, D.J.4    Deluca, C.5
  • 79
    • 79960065933 scopus 로고    scopus 로고
    • TheDNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
    • Ryan DP, Sundramoorthy R,MartinD, Singh V, Owen-Hughes T. 2011. TheDNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J. 30:2596-609
    • (2011) EMBO J , vol.30 , pp. 2596-2609
    • Ryan, D.P.1    Sundramoorthy, R.2    Martin, D.3    Singh, V.4    Owen-Hughes, T.5
  • 80
    • 82755183623 scopus 로고    scopus 로고
    • Crystal structure of the chromo-helicase DNAbinding protein 1 (Chd1) DNA-binding domain in complex with DNA
    • Sharma A, Jenkins KR, Heroux A, Bowman GD. 2011. Crystal structure of the chromo-helicase DNAbinding protein 1 (Chd1) DNA-binding domain in complex with DNA. J. Biol. Chem. 286:42099-104
    • (2011) J. Biol. Chem , vol.286 , pp. 42099-42104
    • Sharma, A.1    Jenkins, K.R.2    Heroux, A.3    Bowman, G.D.4
  • 82
    • 84871023769 scopus 로고    scopus 로고
    • Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes
    • Clapier CR, Cairns BR. 2012. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492:280-84
    • (2012) Nature , vol.492 , pp. 280-284
    • Clapier, C.R.1    Cairns, B.R.2
  • 84
    • 84873643234 scopus 로고    scopus 로고
    • Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler
    • Patel A, Chakravarthy S, Morrone S, Nodelman IM, McKnight JM, Bowman GD. 2013. Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler. Nucleic Acids Res. 41:1637-48
    • (2013) Nucleic Acids Res , vol.41 , pp. 1637-1648
    • Patel, A.1    Chakravarthy, S.2    Morrone, S.3    Nodelman, I.M.4    McKnight, J.M.5    Bowman, G.D.6
  • 85
    • 79251545788 scopus 로고    scopus 로고
    • The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor
    • Udugama M, Sabri A, Bartholomew B. 2010. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31:662-73
    • (2010) Mol. Cell. Biol , vol.31 , pp. 662-673
    • Udugama, M.1    Sabri, A.2    Bartholomew, B.3
  • 87
    • 84870595949 scopus 로고    scopus 로고
    • Structure of actin-related protein 8 and its contribution to nucleosome binding
    • GerholdCB, Winkler DD, LakomekK, Seifert FU, Fenn S, et al. 2012. Structure of actin-related protein 8 and its contribution to nucleosome binding. Nucleic Acids Res. 40:11036-46
    • (2012) Nucleic Acids Res , vol.40 , pp. 11036-11046
    • Gerhold, C.B.1    Winkler, D.D.2    Lakomek, K.3    Seifert, F.U.4    Fenn, S.5
  • 88
    • 84876196706 scopus 로고    scopus 로고
    • Monomeric actin required for INO80 remodeling
    • Bartholomew B. 2013. Monomeric actin required for INO80 remodeling. Nat. Struct. Mol. Biol. 20:405-7
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 405-407
    • Bartholomew, B.1
  • 89
    • 33750618397 scopus 로고    scopus 로고
    • DNA-binding properties of the recombinant high-mobility-grouplike AT-hook-containing region from human BRG1 protein
    • Singh M, DSilva L, Holak TA. 2006. DNA-binding properties of the recombinant high-mobility-grouplike AT-hook-containing region from human BRG1 protein. Biol. Chem. 387:1469-78
    • (2006) Biol. Chem , vol.387 , pp. 1469-1478
    • Singh, M.1    Dsilva, L.2    Holak, T.A.3
  • 90
    • 0032190230 scopus 로고    scopus 로고
    • AT-hook motifs identified in a wide variety of DNA-binding proteins
    • Aravind L, Landsman D. 1998. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26:4413-21
    • (1998) Nucleic Acids Res , vol.26 , pp. 4413-4421
    • Aravind, L.1    Landsman, D.2
  • 91
    • 0036250668 scopus 로고    scopus 로고
    • ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development
    • Wilsker D, Patsialou A, Dallas PB, Moran E. 2002. ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 13:95-106
    • (2002) Cell Growth Differ , vol.13 , pp. 95-106
    • Wilsker, D.1    Patsialou, A.2    Dallas, P.B.3    Moran, E.4
  • 93
    • 84862196963 scopus 로고    scopus 로고
    • Solution structure of SWI1 AT-rich interaction domain from Saccharomyces cerevisiae and its nonspecific binding to DNA
    • Wang T, Zhang J, Zhang X, Tu X. 2012. Solution structure of SWI1 AT-rich interaction domain from Saccharomyces cerevisiae and its nonspecific binding to DNA. Proteins 80:1911-17
    • (2012) Proteins , vol.80 , pp. 1911-1917
    • Wang, T.1    Zhang, J.2    Zhang, X.3    Tu, X.4
  • 94
    • 2542592428 scopus 로고    scopus 로고
    • The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes
    • Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, et al. 2004. The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res. 32:1345-53
    • (2004) Nucleic Acids Res , vol.32 , pp. 1345-1353
    • Wilsker, D.1    Patsialou, A.2    Zumbrun, S.D.3    Kim, S.4    Chen, Y.5
  • 95
    • 18844468317 scopus 로고    scopus 로고
    • The SWIRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities
    • Aravind L, Iyer LM. 2002. The SWIRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3: 0039
    • (2002) Genome Biol , vol.3 , pp. 0039
    • Aravind, L.1    Iyer, L.M.2
  • 96
    • 33144483781 scopus 로고    scopus 로고
    • Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes
    • Da G, Lenkart J, Zhao K, Shiekhattar R, Cairns BR, Marmorstein R. 2006. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc. Natl. Acad. Sci. USA 103:2057-62
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 2057-2062
    • Da Lenkart G, J.1    Zhao, K.2    Shiekhattar, R.3    Cairns, B.R.4    Marmorstein, R.5
  • 99
    • 34247390658 scopus 로고    scopus 로고
    • Structural and functional differences of SWIRM domain subtypes
    • Yoneyama M, Tochio N, Umehara T, Koshiba S, Inoue M, et al. 2007. Structural and functional differences of SWIRM domain subtypes. J. Mol. Biol. 369:222-38
    • (2007) J. Mol. Biol , vol.369 , pp. 222-238
    • Yoneyama, M.1    Tochio, N.2    Umehara, T.3    Koshiba, S.4    Inoue, M.5
  • 100
    • 0036143156 scopus 로고    scopus 로고
    • Systematic identification of novel protein domain families associated with nuclear functions
    • Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. 2002. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12:47-56
    • (2002) Genome Res , vol.12 , pp. 47-56
    • Doerks, T.1    Copley, R.R.2    Schultz, J.3    Ponting, C.P.4    Bork, P.5
  • 101
    • 0042671282 scopus 로고    scopus 로고
    • Involvement of actin-related proteins in ATP-dependent chromatin remodeling
    • Shen X, Ranallo R, Choi C, Wu C. 2003. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12:147-55
    • (2003) Mol. Cell , vol.12 , pp. 147-155
    • Shen, X.1    Ranallo, R.2    Choi, C.3    Wu, C.4
  • 103
    • 79957907752 scopus 로고    scopus 로고
    • Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin
    • Fenn S, Breitsprecher D, Gerhold CB, Witte G, Faix J, Hopfner KP. 2011. Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin. EMBO J. 30:2153-66
    • (2011) EMBO J , vol.30 , pp. 2153-2166
    • Fenn, S.1    Breitsprecher, D.2    Gerhold, C.B.3    Witte, G.4    Faix, J.5    Hopfner, K.P.6
  • 104
    • 0032214123 scopus 로고    scopus 로고
    • Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF
    • Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD. 1998. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2:639-51
    • (1998) Mol. Cell , vol.2 , pp. 639-651
    • Cairns, B.R.1    Erdjument-Bromage, H.2    Tempst, P.3    Winston, F.4    Kornberg, R.D.5
  • 105
    • 66449130744 scopus 로고    scopus 로고
    • RVB1/RVB2: Running rings around molecular biology
    • Jha S, Dutta A. 2009. RVB1/RVB2: running rings around molecular biology. Mol. Cell 34:521-33
    • (2009) Mol. Cell , vol.34 , pp. 521-533
    • Jha, S.1    Dutta, A.2
  • 106
    • 84883870558 scopus 로고    scopus 로고
    • Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes
    • Nano N, Houry WA. 2013. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos. Trans. R. Soc. B 368:20110399
    • (2013) Philos. Trans. R. Soc. B , vol.368 , pp. 20110399
    • Nano, N.1    Houry, W.A.2
  • 107
    • 8644257491 scopus 로고    scopus 로고
    • Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex
    • Jönsson ZO, Jha S,Wohlschlegel JA, Dutta A. 2004. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16:465-77
    • (2004) Mol. Cell , vol.16 , pp. 465-477
    • Jönsson, Z.O.1    Jha, S.2    Wohlschlegel, J.A.3    Dutta, A.4
  • 108
    • 0036307707 scopus 로고    scopus 로고
    • Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Aresolution
    • Davey CA, Sargent DF, Luger J, Mder AW, Richmond TJ. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Aresolution. J. Mol. Biol. 319:1097-113
    • (2002) J. Mol. Biol , vol.319 , pp. 1097-1113
    • Davey, C.A.1    Sargent, D.F.2    Luger, J.3    Mder, A.W.4    Richmond, T.J.5
  • 109
  • 110
    • 1942439629 scopus 로고    scopus 로고
    • Mechanisms for ATP-dependent chromatin remodelling: Farewell to the tuna-can octamer?
    • Flaus A, Owen-Hughes T. 2004. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14:165-73
    • (2004) Curr. Opin. Genet. Dev , vol.14 , pp. 165-173
    • Flaus, A.1    Owen-Hughes, T.2
  • 111
    • 77749322697 scopus 로고    scopus 로고
    • Mechanisms of ATP-dependent nucleosome sliding
    • Bowman GD. 2010. Mechanisms of ATP-dependent nucleosome sliding. Curr. Opin. Struct. Biol. 20:73-81
    • (2010) Curr. Opin. Struct. Biol , vol.20 , pp. 73-81
    • Bowman, G.D.1
  • 112
    • 0037388372 scopus 로고    scopus 로고
    • Mechanisms for nucleosome mobilization
    • Flaus A, Owen-Hughes T. 2003. Mechanisms for nucleosome mobilization. Biopolymers 68:563-78
    • (2003) Biopolymers , vol.68 , pp. 563-578
    • Flaus, A.1    Owen-Hughes, T.2
  • 113
    • 34147191973 scopus 로고    scopus 로고
    • DNA stretching and extreme kinking in the nucleosome core
    • OngMS, Richmond TJ, Davey CA. 2007. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 368:1067-74
    • (2007) J. Mol. Biol , vol.368 , pp. 1067-1074
    • Ong, M.S.1    Richmond, T.J.2    Davey, C.A.3
  • 114
    • 0036837861 scopus 로고    scopus 로고
    • HSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twistdiffusion mechanism
    • Aoyagi S, Hayes JJ. 2002. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twistdiffusion mechanism. Mol. Cell. Biol. 22:7484-90
    • (2002) Mol. Cell. Biol , vol.22 , pp. 7484-7490
    • Aoyagi, S.1    Hayes, J.J.2
  • 117
    • 0035930334 scopus 로고    scopus 로고
    • ISWI induces nucleosome sliding on nicked DNA
    • Langst G, Becker PB. 2001. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8:1085-92
    • (2001) Mol. Cell , vol.8 , pp. 1085-1092
    • Langst, G.1    Becker, P.B.2
  • 118
    • 0035691979 scopus 로고    scopus 로고
    • Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity
    • Narlikar GJ, Phelan ML, Kingston RE. 2001. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8:1219-30
    • (2001) Mol. Cell , vol.8 , pp. 1219-1230
    • Narlikar, G.J.1    Phelan, M.L.2    Kingston, R.E.3
  • 119
    • 0037512311 scopus 로고    scopus 로고
    • Distinct strategies to make nucleosomalDNAaccessible
    • FanHY, He X, KingsonRE, Narlikar GJ. 2003. Distinct strategies to make nucleosomalDNAaccessible. Mol. Cell 11:1311-22
    • (2003) Mol. Cell , vol.11 , pp. 1311-1322
    • Fan, H.Y.1    He, X.2    Kingson, R.E.3    Narlikar, G.J.4
  • 120
    • 80555156699 scopus 로고    scopus 로고
    • SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes
    • Liu N, Peterson CL, Hayes JJ. 2011. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol. Cell. Biol. 31:4165-75
    • (2011) Mol. Cell. Biol , vol.31 , pp. 4165-4175
    • Liu, N.1    Peterson, C.L.2    Hayes, J.J.3
  • 121
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar GJ, Sundaramoorthy R,Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490-503
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 123
    • 79958858041 scopus 로고    scopus 로고
    • The RSC chromatin remodelling ATPase translocates DNA with high force and small step size
    • Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. 2011. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30:2364-72
    • (2011) EMBO J , vol.30 , pp. 2364-2372
    • Sirinakis, G.1    Clapier, C.R.2    Gao, Y.3    Viswanathan, R.4    Cairns, B.R.5    Zhang, Y.6
  • 124
    • 33947638345 scopus 로고    scopus 로고
    • DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC
    • Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, et al. 2006. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24:559-68
    • (2006) Mol. Cell , vol.24 , pp. 559-568
    • Zhang, Y.1    Smith, C.L.2    Saha, A.3    Grill, S.W.4    Mihardja, S.5
  • 126
    • 0032574802 scopus 로고    scopus 로고
    • Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding
    • Cote J, Peterson CL,Workman JL. 1998. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl. Acad. Sci. USA 95:4947-52
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 4947-4952
    • Cote, J.1    Peterson, C.L.2    Workman, J.L.3
  • 127
    • 0036837670 scopus 로고    scopus 로고
    • High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2
    • Kassabov SR, Henry NM, Zofall M, Tsukiyama T, Bartholomew B. 2002. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol. Cell. Biol. 22:7524-34
    • (2002) Mol. Cell. Biol , vol.22 , pp. 7524-7534
    • Kassabov, S.R.1    Henry, N.M.2    Zofall, M.3    Tsukiyama, T.4    Bartholomew, B.5
  • 128
    • 33847386172 scopus 로고    scopus 로고
    • The site-specific installation of methyl-lysine analogs into recombinant histones
    • Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, et al. 2007. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003-12
    • (2007) Cell , vol.128 , pp. 1003-1012
    • Simon, M.D.1    Chu, F.2    Racki, L.R.3    De La Cruz, C.C.4    Burlingame, A.L.5
  • 129
    • 44449099142 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling enzymes:Two heads are not better, just different
    • RackiLR, Narlikar GJ. 2008. ATP-dependent chromatin remodeling enzymes:Two heads are not better, just different. Curr. Opin. Genet. Dev. 18:137-44
    • (2008) Curr. Opin. Genet. Dev , vol.18 , pp. 137-144
    • Racki, L.R.1    Narlikar, G.J.2
  • 130
    • 72949099482 scopus 로고    scopus 로고
    • The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
    • Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, et al. 2009. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462:1016-21
    • (2009) Nature , vol.462 , pp. 1016-1021
    • Racki, L.R.1    Yang, J.G.2    Naber, N.3    Partensky, P.D.4    Acevedo, A.5
  • 131
    • 67649668797 scopus 로고    scopus 로고
    • Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2
    • Gangaraju VK, Prasad P, Srour A, Kagalwala MN, Bartholomew B. 2009. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol. Cell 35:58-69
    • (2009) Mol. Cell , vol.35 , pp. 58-69
    • Gangaraju, V.K.1    Prasad, P.2    Srour, A.3    Kagalwala, M.N.4    Bartholomew, B.5
  • 132
    • 78650536985 scopus 로고    scopus 로고
    • HumanI SWIchromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites
    • Erdel F, Schubert T, Marth C, Längst G,Rippe K. 2010.HumanI SWIchromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl. Acad. Sci. USA 107:19873-78
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 19873-19878
    • Erdel, F.1    Schubert, T.2    Marth, C.3    Längst, G.4    Rippe, K.5
  • 133
    • 35348984181 scopus 로고    scopus 로고
    • DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes
    • Rippe K, Schrader A, Riede P, Strohner R, Lehmann E, Längst G. 2007. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. USA 104:15635-40
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15635-15640
    • Rippe, K.1    Schrader, A.2    Riede, P.3    Strohner, R.4    Lehmann, E.5    Längst, G.6
  • 134
    • 33845356072 scopus 로고    scopus 로고
    • The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing
    • Yang JG, Madrid TS, Sevastopoulos E, Narlihar GJ. 2006. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13:1078-83
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 1078-1083
    • Yang, J.G.1    Madrid, T.S.2    Sevastopoulos, E.3    Narlihar, G.J.4
  • 135
    • 33749626224 scopus 로고    scopus 로고
    • Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA
    • Dang W, Kagalwala MN, Bartholomew B. 2006. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26:7388-96
    • (2006) Mol. Cell. Biol , vol.26 , pp. 7388-7396
    • Dang, W.1    Kagalwala, M.N.2    Bartholomew, B.3
  • 136
    • 0033558873 scopus 로고    scopus 로고
    • Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae
    • TsukiyamaT,Palmer J, Landel CC, Shiloach J,WuC. 1999. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. GenesDev. 13:686-97
    • (1999) GenesDev , vol.13 , pp. 686-697
    • Tsukiyama, T.1    Palmer, J.2    Landel, C.C.3    Shiloach, J.4    Wu, C.5
  • 140
    • 34247638974 scopus 로고    scopus 로고
    • Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method
    • Leschziner AE, Saha A, Wittmeyer J, Zhang Y, Bustamante C, et al. 2007. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc. Natl. Acad. Sci. USA 104:4913-18
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 4913-4918
    • Leschziner, A.E.1    Saha, A.2    Wittmeyer, J.3    Zhang, Y.4    Bustamante, C.5
  • 141
    • 67651202518 scopus 로고    scopus 로고
    • SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter
    • Gkikopoulos T, HavasKM, Dewar J,Owen-Hughes T. 2009. SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter. Mol. Cell. Biol. 29:4057-66
    • (2009) Mol. Cell. Biol , vol.29 , pp. 4057-4066
    • Gkikopoulos, T.1    Havas, K.M.2    Dewar, J.3    Owen-Hughes, T.4
  • 142
    • 0038094501 scopus 로고    scopus 로고
    • Nucleosomes unfold completely at a transcriptionally active promoter
    • Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. 2003. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11:1587-98
    • (2003) Mol. Cell , vol.11 , pp. 1587-1598
    • Boeger, H.1    Griesenbeck, J.2    Strattan, J.S.3    Kornberg, R.D.4
  • 143
    • 77955903649 scopus 로고    scopus 로고
    • Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions
    • Garcia JF, Dumesic PA, Hartley PD, El-Samad H, Madhani HD. 2010. Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions. Genes Dev. 24:1758-71
    • (2010) Genes Dev , vol.24 , pp. 1758-1771
    • Garcia, J.F.1    Dumesic, P.A.2    Hartley, P.D.3    El-Samad, H.4    Madhani, H.D.5
  • 145
    • 79953775721 scopus 로고    scopus 로고
    • The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes
    • Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P. 2011. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 30:1277-88
    • (2011) EMBO J , vol.30 , pp. 1277-1288
    • Wippo, C.J.1    Israel, L.2    Watanabe, S.3    Hochheimer, A.4    Peterson, C.L.5    Korber, P.6
  • 146
    • 0036208153 scopus 로고    scopus 로고
    • Modulation of ISWI function by site-specific histone acetylation
    • Corona DF, Clapier CR, Becker PB, Tamkun JW. 2002. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3:242-47
    • (2002) EMBO Rep , vol.3 , pp. 242-247
    • Corona, D.F.1    Clapier, C.R.2    Becker, P.B.3    Tamkun, J.W.4
  • 148
    • 21744434032 scopus 로고    scopus 로고
    • A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling
    • Smith CL, Peterson CL. 2005. A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol. Cell. Biol. 25:5880-92
    • (2005) Mol. Cell. Biol , vol.25 , pp. 5880-5892
    • Smith, C.L.1    Peterson, C.L.2
  • 149
    • 0028925960 scopus 로고
    • Structure and function of the UvrB protein
    • Hsu DS, Kim ST, Sun Q, Sancar A. 1995. Structure and function of the UvrB protein. J. Biol. Chem. 270:8319-27
    • (1995) J. Biol. Chem , vol.270 , pp. 8319-8327
    • Hsu, D.S.1    Kim, S.T.2    Sun, Q.3    Sancar, A.4
  • 150
    • 0028066920 scopus 로고
    • Helicase motifs v and VI of the Escherichia coli UvrB protein of the UvrABC endonuclease are essential for the formation of the preincision complex
    • Moolenaar GF, Visse R, Ortiz-Buysse M, Goosen N, van de Putte P. 1994. Helicase motifs V and VI of the Escherichia coli UvrB protein of the UvrABC endonuclease are essential for the formation of the preincision complex. J. Mol. Biol. 240:294-307
    • (1994) J. Mol. Biol , vol.240 , pp. 294-307
    • Moolenaar, G.F.1    Visse, R.2    Ortiz-Buysse, M.3    Goosen, N.4    Van De Putte, P.5
  • 151
    • 83755181609 scopus 로고    scopus 로고
    • Identification of residues in chromo-helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding
    • Patel A, McKnight JN, Genzor P, Bowman GD. 2011. Identification of residues in chromo-helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J. Biol. Chem. 286:43984-93
    • (2011) J. Biol. Chem , vol.286 , pp. 43984-43993
    • Patel, A.1    McKnight, J.N.2    Genzor, P.3    Bowman, G.D.4
  • 153
    • 0033082238 scopus 로고    scopus 로고
    • Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits
    • Phelan ML, Sif S, Narlikar GJ, Kingson RE. 1999. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3:247-53
    • (1999) Mol. Cell , vol.3 , pp. 247-253
    • Phelan, M.L.1    Sif, S.2    Narlikar, G.J.3    Kingson, R.E.4
  • 154
    • 33749396882 scopus 로고    scopus 로고
    • Human ACF1 alters the remodeling strategy of SNF2h
    • He X, FanHY, Narlikar GJ, Kingson RE. 2006. Human ACF1 alters the remodeling strategy of SNF2h. J. Biol. Chem. 281:28636-47
    • (2006) J. Biol. Chem , vol.281 , pp. 28636-28647
    • He, X.1    Fan, H.Y.2    Narlikar, G.J.3    Kingson, R.E.4
  • 155
    • 46849103827 scopus 로고    scopus 로고
    • Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits
    • He X, Fan HY, Garlick JD, Kingston RE. 2008. Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits. Biochemistry 47:7025-33
    • (2008) Biochemistry , vol.47 , pp. 7025-7033
    • He, X.1    Fan, H.Y.2    Garlick, J.D.3    Kingston, R.E.4
  • 156
    • 84879136007 scopus 로고    scopus 로고
    • Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways
    • Staahl BT, Tiang J, Wu W, Sun A, Gitler AD. 2013. Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J. Neurosci. 33:10348-61
    • (2013) J. Neurosci , vol.33 , pp. 10348-10361
    • Staahl, B.T.1    Tiang, J.2    Wu, W.3    Sun, A.4    Gitler, A.D.5
  • 157
    • 84876903184 scopus 로고    scopus 로고
    • The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory
    • Vogel-Ciernia A, Matheos DP, Barrett RM, Kramr EA, Azzawi S, et al. 2013. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16:552-61
    • (2013) Nat. Neurosci , vol.16 , pp. 552-561
    • Vogel-Ciernia, A.1    Matheos, D.P.2    Barrett, R.M.3    Kramr, E.A.4    Azzawi, S.5
  • 158
    • 84901587515 scopus 로고    scopus 로고
    • The SWI/SNF genetic blockade: Effects in cell differentiation, cancer and developmental diseases
    • In press
    • Romero OA, Sanchez-Cespedes M. 2013. The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene. In press
    • (2013) Oncogene
    • Romero, O.A.1    Sanchez-Cespedes, M.2
  • 159
    • 84872810488 scopus 로고    scopus 로고
    • The spectrum of SWI/SNF mutations, ubiquitous in human cancers
    • Shain AH, Pollack JR. 2013. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8:e55119
    • (2013) PLoS ONE , vol.8
    • Shain, A.H.1    Pollack, J.R.2
  • 160
    • 0032530154 scopus 로고    scopus 로고
    • Mitotic inactivation of a human SWI/SNF chromatin remodeling complex
    • Sif S, Stukenberg PT, Kirschner MW, Kingson RE. 1998. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12:2842-51
    • (1998) Genes Dev , vol.12 , pp. 2842-2851
    • Sif, S.1    Stukenberg, P.T.2    Kirschner, M.W.3    Kingson, R.E.4
  • 161
    • 0030054665 scopus 로고    scopus 로고
    • The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis
    • Muchardt C, Reyes JC, Bourachot B, Leguoy E, Yaniv M. 1996. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15:3394-402
    • (1996) EMBO J , vol.15 , pp. 3394-3402
    • Muchardt, C.1    Reyes, J.C.2    Bourachot, B.3    Leguoy, E.4    Yaniv, M.5
  • 162
    • 78650187080 scopus 로고    scopus 로고
    • Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2
    • Kim JH, Saraf A, Florens L, Washburn M, Workman JL. 2010. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev. 24:2766-71
    • (2010) Genes Dev , vol.24 , pp. 2766-2771
    • Kim, J.H.1    Saraf, A.2    Florens, L.3    Washburn, M.4    Workman, J.L.5
  • 163
    • 78649827795 scopus 로고    scopus 로고
    • A switch from hBrm to Brg1 at IFNγ- activated sequences mediates the activation of human genes
    • Zhang Y, Cheng MB, Zhang YJ, Zhong X, Dai H, et al. 2010. A switch from hBrm to Brg1 at IFNγ- activated sequences mediates the activation of human genes. Cell Res. 20:1345-60
    • (2010) Cell Res , vol.20 , pp. 1345-1360
    • Zhang, Y.1    Cheng, M.B.2    Zhang, Y.J.3    Zhong, X.4    Dai, H.5
  • 165


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.