-
1
-
-
33745122231
-
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
-
Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34:2887-905
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 2887-2905
-
-
Flaus, A.1
Dma, M.2
Barton, G.J.3
Owen-Hughes, T.4
-
2
-
-
75749101495
-
Chromatin remodelling during development
-
Ho L, Crabtree GR. 2010. Chromatin remodelling during development. Nature 463:474-84
-
(2010)
Nature
, vol.463
, pp. 474-484
-
-
Ho, L.1
Crabtree, G.R.2
-
3
-
-
84876686460
-
From neural development to cognition: Unexpected roles for chromatin
-
Ronan JL, Wu W, Crabtree GR. 2013. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14:347-59
-
(2013)
Nat. Rev. Genet
, vol.14
, pp. 347-359
-
-
Ronan, J.L.1
Wu, W.2
Crabtree, G.R.3
-
4
-
-
79953286186
-
SnapShot: Chromatin remodeling: CHD
-
Sims JK,Wade PA. 2011. SnapShot: Chromatin remodeling: CHD. Cell 144:626e1
-
(2011)
Cell
, vol.144
-
-
Sims Jkwade, P.A.1
-
5
-
-
67650711042
-
ATP-dependent chromatin remodeling in neural development
-
Yoo AS, Crabtree GR. 2009. ATP-dependent chromatin remodeling in neural development. Curr. Opin. Neurobiol. 19:120-26
-
(2009)
Curr. Opin. Neurobiol
, vol.19
, pp. 120-126
-
-
Yoo, A.S.1
Crabtree, G.R.2
-
6
-
-
34447249019
-
An essential switch in subunit composition of a chromatin remodeling complex during neural development
-
Lessard J, Wu JI, Ranish JA, Wan M,Windlow MM, et al. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201-15
-
(2007)
Neuron
, vol.55
, pp. 201-215
-
-
Lessard, J.1
Wu, J.I.2
Ranish, J.A.3
Wan Mwindlow, M.M.4
-
7
-
-
67949083572
-
MicroRNA-mediated switching of chromatinremodelling complexes in neural development
-
Yoo AS, Staahl BT, Chen L, Crabtree GR. 2009. MicroRNA-mediated switching of chromatinremodelling complexes in neural development. Nature 460:642-46
-
(2009)
Nature
, vol.460
, pp. 642-646
-
-
Yoo, A.S.1
Staahl, B.T.2
Chen, L.3
Crabtree, G.R.4
-
8
-
-
77952566675
-
SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes
-
Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, et al. 2010. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38:590-602
-
(2010)
Mol. Cell
, vol.38
, pp. 590-602
-
-
Dechassa, M.L.1
Sabri, A.2
Pondugula, S.3
Kassabov, S.R.4
Chatterjee, N.5
-
9
-
-
43049157587
-
Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription
-
Boeger H, Griesenbeck J, Kornberg RD. 2008. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133:716-26
-
(2008)
Cell
, vol.133
, pp. 716-726
-
-
Boeger, H.1
Griesenbeck, J.2
Kornberg, R.D.3
-
10
-
-
2942574467
-
Removal of promoter nucleosomes by disassembly rather than sliding in vivo
-
Boeger H, Griesenbech J, Strattan JS, Kornberg RD. 2004. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14:667-73
-
(2004)
Mol. Cell
, vol.14
, pp. 667-673
-
-
Boeger, H.1
Griesenbech, J.2
Strattan, J.S.3
Kornberg, R.D.4
-
11
-
-
78751536862
-
Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome
-
Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, et al. 2010. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143:725-36
-
(2010)
Cell
, vol.143
, pp. 725-736
-
-
Luk, E.1
Ranjan, A.2
Fitzgerald, P.C.3
Mizuguchi, G.4
Huang, Y.5
-
12
-
-
0348184963
-
ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
-
Mizuguchi G, Shen X, Landry J,WuWH, Sen S,Wu C. 2004. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343-48
-
(2004)
Science
, vol.303
, pp. 343-348
-
-
Mizuguchi, G.1
Shen, X.2
Landry, J.3
Wu, W.H.4
Sen, S.5
Wu, C.6
-
13
-
-
78651510784
-
Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity
-
Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL. 2011. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200-13
-
(2011)
Cell
, vol.144
, pp. 200-213
-
-
Papamichos-Chronakis, M.1
Watanabe, S.2
Rando, O.J.3
Peterson, C.L.4
-
14
-
-
0035499905
-
Reconstitution of recombinant chromatin establishes a requirement for histone-Tail modifications during chromatin assembly and transcription
-
Loyola A, LeRoy G, Wang YH, ReinbergD. 2001. Reconstitution of recombinant chromatin establishes a requirement for histone-Tail modifications during chromatin assembly and transcription. Genes Dev. 15:2837-51
-
(2001)
Genes Dev
, vol.15
, pp. 2837-2851
-
-
Loyola, A.1
Leroy, G.2
Wang, Y.H.3
Reinberg, D.4
-
15
-
-
20144376151
-
The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres
-
Walfridsson J, Bjerling P, Thalen M, Yoo E-J, Park SD, Ekwall K. 2005. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res. 33:2868-79
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 2868-2879
-
-
Walfridsson, J.1
Bjerling, P.2
Thalen, M.3
Yoo, E.-J.4
Park, S.D.5
Ekwall, K.6
-
16
-
-
0242495784
-
Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p
-
Robinson KM, Schultz MC. 2003. Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p. Mol. Cell. Biol. 23:7937-46
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 7937-7946
-
-
Robinson, K.M.1
Schultz, M.C.2
-
17
-
-
34548272156
-
CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo
-
Konev AY, Tribus M, Park SY, Lim CY, Emelyanov AV, et al. 2007. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087-90
-
(2007)
Science
, vol.317
, pp. 1087-1090
-
-
Konev, A.Y.1
Tribus, M.2
Park, S.Y.3
Lim, C.Y.4
Emelyanov, A.V.5
-
18
-
-
15544369061
-
Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly
-
Lusser A, Urwin DL, Kadonaga JT. 2005. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12:160-66
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 160-166
-
-
Lusser, A.1
Urwin, D.L.2
Kadonaga, J.T.3
-
19
-
-
77953955724
-
The death-Associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3
-
Dran P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. 2010. The death-Associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24:1253-65
-
(2010)
Genes Dev
, vol.24
, pp. 1253-1265
-
-
Dran, P.1
Ouararhni, K.2
Depaux, A.3
Shuaib, M.4
Hamiche, A.5
-
20
-
-
77649099092
-
Distinct factors control histone variant H3.3 localization at specific genomic regions
-
Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elssser SJ, et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678-91
-
(2010)
Cell
, vol.140
, pp. 678-691
-
-
Goldberg, A.D.1
Banaszynski, L.A.2
Noh, K.M.3
Lewis, P.W.4
Elssser, S.J.5
-
21
-
-
77956282773
-
Daxx is an H3.3-specific histone chaperone and cooperateswith ATRXin replication-independent chromatin assembly at telomeres
-
Lewis PW, Elssser SJ, NohKM, Stadler SC, Allis CD. 2010. Daxx is an H3.3-specific histone chaperone and cooperateswith ATRXin replication- independent chromatin assembly at telomeres. Proc.Natl. Acad. Sci. USA 107:14075-80
-
(2010)
Proc.Natl. Acad. Sci. USA
, vol.107
, pp. 14075-14080
-
-
Lewis, P.W.1
Elssser, S.J.2
Noh, K.M.3
Stadler, S.C.4
Allis, C.D.5
-
22
-
-
78049434700
-
Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo
-
Baumann C, Viveiros MM, De La Fuente R. 2010. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet. 6:e1001137
-
(2010)
PLoS Genet
, vol.6
-
-
Baumann, C.1
Viveiros, M.M.2
De La Fuente, R.3
-
23
-
-
79960700556
-
Altered telomeres in tumors with ATRX and DAXX mutations
-
Heaphy CM, deWilde RF, Jiao Y, Edil BH, Shi C, et al. 2011. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425
-
(2011)
Science
, vol.333
, pp. 425
-
-
Heaphy, C.M.1
Dewilde, R.F.2
Jiao, Y.3
Edil, B.H.4
Shi, C.5
-
24
-
-
84869860972
-
Loss of wild-Type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres
-
Bower K, Napier CE, Cole SL, Dagg RA, Lau LMS, et al. 2012. Loss of wild-Type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres. PLoS ONE 7:e50062
-
(2012)
PLoS ONE
, vol.7
-
-
Bower, K.1
Napier, C.E.2
Cole, S.L.3
Dagg, R.A.4
Lms, L.5
-
25
-
-
65649124957
-
Active establishment of centromericCENP-A chromatin by RSF complex
-
Perpelescu M, NozakiN,ObuseC,YangH,Yoda K. 2009. Active establishment of centromericCENP-A chromatin by RSF complex. J. Cell Biol. 185:397-407
-
(2009)
J. Cell Biol
, vol.185
, pp. 397-407
-
-
Perpelescu, M.1
Nozaki, N.2
Obuse, C.3
Yang, H.4
Yoda, K.5
-
26
-
-
36849004886
-
Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
-
Dang W, Bartholomew B. 2007. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27:8306-17
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 8306-8317
-
-
Dang, W.1
Bartholomew, B.2
-
27
-
-
84873566553
-
Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains
-
Hota SK, Bhardwaj SK, Deindl S, Lin YC, Zhuang X, Bartholomew B. 2013. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20:222-29
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 222-229
-
-
Hota, S.K.1
Bhardwaj, S.K.2
Deindl, S.3
Lin, Y.C.4
Zhuang, X.5
Bartholomew, B.6
-
28
-
-
52649141631
-
Architecture of the SWI/SNF-nucleosome complex
-
Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, et al. 2008. Architecture of the SWI/SNF-nucleosome complex. Mol. Cell. Biol. 28:6010-21
-
(2008)
Mol. Cell. Biol
, vol.28
, pp. 6010-6021
-
-
Dechassa, M.L.1
Zhang, B.2
Horowitz-Scherer, R.3
Persinger, J.4
Woodcock, C.L.5
-
29
-
-
77956522905
-
The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor
-
Hauk G, McKnight JN,Nodelman IN, Bowman GD. 2010. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39:711-23
-
(2010)
Mol. Cell
, vol.39
, pp. 711-723
-
-
Hauk, G.1
McKnight, J.N.2
Nodelman, I.N.3
Bowman, G.D.4
-
30
-
-
18744364437
-
Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54
-
Thoma NH, Czyzewski BK, Alexeev AA, Mazin AV, Kowalczykowski SC, Pavletich NP. 2005. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat. Struct. Mol. Biol. 12:350-56
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 350-356
-
-
Thoma, N.H.1
Czyzewski, B.K.2
Alexeev, A.A.3
Mazin, A.V.4
Kowalczykowski, S.C.5
Pavletich, N.P.6
-
31
-
-
18844457346
-
X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA
-
Durr H, Körner C, Müller M, Hickmann V, Hopfner KP. 2005. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121:363-73
-
(2005)
Cell
, vol.121
, pp. 363-373
-
-
Durr, H.1
Körner, C.2
Müller, M.3
Hickmann, V.4
Hopfner, K.P.5
-
32
-
-
79960647770
-
Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP
-
Wollmann P,Cui S, Viswanathan R, BerninghausenO,Wells MN, et al. 2011. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature 475:403-7
-
(2011)
Nature
, vol.475
, pp. 403-407
-
-
Wollmann, P.1
Cui, S.2
Viswanathan, R.3
Berninghausen, O.4
Wells, M.N.5
-
34
-
-
0027182114
-
Helicases: Amino acid sequence comparisons and structure-function relationship
-
Gorbalenya AE, Koonin EV. 1993. Helicases: Amino acid sequence comparisons and structure-function relationship. Curr. Opin. Struct. Biol. 3:419-29
-
(1993)
Curr. Opin. Struct. Biol
, vol.3
, pp. 419-429
-
-
Gorbalenya, A.E.1
Koonin, E.V.2
-
35
-
-
0029157378
-
Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
-
Eisen JA, Sweder KS, Hanawalt PC. 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23:2715-23
-
(1995)
Nucleic Acids Res
, vol.23
, pp. 2715-2723
-
-
Eisen, J.A.1
Sweder, K.S.2
Hanawalt, P.C.3
-
36
-
-
43249090629
-
The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases
-
Szerlong H, Hinata K, Viswanathan R, Erdjument-Bromage H, Tempst P, Cairns BR. 2008. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat. Struct. Mol. Biol. 15:469-76
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 469-476
-
-
Szerlong, H.1
Hinata, K.2
Viswanathan, R.3
Erdjument-Bromage, H.4
Tempst, P.5
Cairns, B.R.6
-
37
-
-
30144436268
-
RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP
-
Dumont S, ChengW, Serebrov V, Beran RJ, Tinoco I Jr, et al. 2006. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439:105-8
-
(2006)
Nature
, vol.439
, pp. 105-108
-
-
Dumont, S.1
Cheng, W.2
Serebrov, V.3
Beran, R.J.4
Tinoco Jr., I.5
-
38
-
-
34547595373
-
Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase
-
Myong S, Bruno MM, Pyle AM, Ha T. 2007. Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317:513-16
-
(2007)
Science
, vol.317
, pp. 513-516
-
-
Myong, S.1
Bruno, M.M.2
Pyle, A.M.3
Ha, T.4
-
39
-
-
80053144268
-
Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase
-
Cheng W, Arunajadai SG, Moffitt JR, Tinoco I Jr, Bustamante C. 2011. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333:1746-49
-
(2011)
Science
, vol.333
, pp. 1746-1749
-
-
Cheng, W.1
Arunajadai, S.G.2
Moffitt, J.R.3
Tinoco Jr., I.4
Bustamante, C.5
-
40
-
-
0034635172
-
Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: Measurement of step size and translocation speed
-
Dillingham MS, Wigley DB, Webb MR. 2000. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39:205-12
-
(2000)
Biochemistry
, vol.39
, pp. 205-212
-
-
Dillingham, M.S.1
Wigley, D.B.2
Webb, M.R.3
-
41
-
-
33845657428
-
UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
-
Lee JY, Yang W. 2006. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127:1349-60
-
(2006)
Cell
, vol.127
, pp. 1349-1360
-
-
Lee, J.Y.1
Yang, W.2
-
42
-
-
77955605175
-
PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps
-
Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J, et al. 2010. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142:544-55
-
(2010)
Cell
, vol.142
, pp. 544-555
-
-
Park, J.1
Myong, S.2
Niedziela-Majka, A.3
Lee, K.S.4
Yu, J.5
-
43
-
-
84873301476
-
ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps
-
Deindl S, Hwang WL, Hota SK, Blosser TR, Prasad P, et al. 2013. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152:442-52
-
(2013)
Cell
, vol.152
, pp. 442-452
-
-
Deindl, S.1
Hwang, W.L.2
Hota, S.K.3
Blosser, T.R.4
Prasad, P.5
-
44
-
-
0030740262
-
Major domain swiveling revealed by the crystal structures of complexes of E coli Rep helicase bound to single-stranded DNA and ADP
-
Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G. 1997. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90:635-47
-
(1997)
Cell
, vol.90
, pp. 635-647
-
-
Korolev, S.1
Hsieh, J.2
Gauss, G.H.3
Lohman, T.M.4
Waksman, G.5
-
45
-
-
0033515425
-
Crystal structures of complexes of PcrADNA helicase with a DNA substrate indicate an inchwormmechanism
-
Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. 1999. Crystal structures of complexes of PcrADNA helicase with a DNA substrate indicate an inchwormmechanism. Cell 97:75-84
-
(1999)
Cell
, vol.97
, pp. 75-84
-
-
Velankar, S.S.1
Soultanas, P.2
Dillingham, M.S.3
Subramanya, H.S.4
Wigley, D.B.5
-
47
-
-
84861551953
-
Disparity in the DNA translocase domains of SWI/SNF and ISW2
-
Dechassa ML, Hota SK, Sen P, Chatterjee N, Prasad P, Bartholomew B. 2012. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Nucleic Acids Res. 40:4412-21
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4412-4421
-
-
Dechassa, M.L.1
Hota, S.K.2
Sen, P.3
Chatterjee, N.4
Prasad, P.5
Bartholomew, B.6
-
48
-
-
84869886446
-
DAXX envelops a histone H3.3- H4 dimer for H3.3-specific recognition
-
Elssser SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ. 2012. DAXX envelops a histone H3.3- H4 dimer for H3.3-specific recognition. Nature 491:560-65
-
(2012)
Nature
, vol.491
, pp. 560-565
-
-
Elssser, S.J.1
Huang, H.2
Lewis, P.W.3
Chin, J.W.4
Allis, C.D.5
Patel, D.J.6
-
49
-
-
26944461283
-
Chromatin remodeling through directional DNA translocation from an internal nucleosomal site
-
Saha A, Wittmeyer J, Cairns BR. 2005. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12:747-55
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 747-755
-
-
Saha, A.1
Wittmeyer, J.2
Cairns, B.R.3
-
50
-
-
4544266390
-
Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex
-
Schwanbeck R, Xiao H, Wu C. 2004. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279:39933-41
-
(2004)
J. Biol. Chem
, vol.279
, pp. 39933-39941
-
-
Schwanbeck, R.1
Xiao, H.2
Wu, C.3
-
51
-
-
33744916194
-
Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
-
Zofall M, Persinger J, Kassabov SR, Bartholomew B. 2006. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13:339-46
-
(2006)
Nat. Struct. Mol. Biol
, vol.13
, pp. 339-346
-
-
Zofall, M.1
Persinger, J.2
Kassabov, S.R.3
Bartholomew, B.4
-
52
-
-
33745839365
-
A PHDfinger ofNURF couples histone H3 lysine 4 trimethylation with chromatin remodelling
-
Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, et al. 2006. A PHDfinger ofNURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86-90
-
(2006)
Nature
, vol.442
, pp. 86-90
-
-
Wysocka, J.1
Swigut, T.2
Xiao, H.3
Milne, T.A.4
Kwon, S.Y.5
-
53
-
-
33745809637
-
Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF
-
Li H, Ilin S, Wang W, Duncan EM, Wysocka J, et al. 2006. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442:91-95
-
(2006)
Nature
, vol.442
, pp. 91-95
-
-
Li, H.1
Ilin, S.2
Wang, W.3
Duncan, E.M.4
Wysocka, J.5
-
54
-
-
60249101576
-
Polybromo-1: The chromatin targeting subunit of the PBAF complex
-
Thompson M. 2009. Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91:309-19
-
(2009)
Biochimie
, vol.91
, pp. 309-319
-
-
Thompson, M.1
-
55
-
-
33847291791
-
Polybromo-L-bromodomains bind histoneH3at specific acetyllysine positions
-
Chandrasekaran R, ThompsonM.2007. Polybromo-L-bromodomains bind histoneH3at specific acetyllysine positions. Biochem. Biophys. Res. Commun. 355:661-66
-
(2007)
Biochem. Biophys. Res. Commun
, vol.355
, pp. 661-666
-
-
Chandrasekaran, R.1
Thompson, M.2
-
56
-
-
0035795579
-
The BAH domain, polybromo and the RSC chromatin remodelling complex
-
Goodwin GH, Nicolas RH. 2001. The BAH domain, polybromo and the RSC chromatin remodelling complex. Gene 268:1-7
-
(2001)
Gene
, vol.268
, pp. 1-7
-
-
Goodwin, G.H.1
Nicolas, R.H.2
-
57
-
-
35848961668
-
How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers
-
Taverna SD, LiH, Ruthenburg AJ, Allis CD, Patel DJ. 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025-40
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 1025-1040
-
-
Taverna, S.D.1
Lih Ruthenburg, A.J.2
Allis, C.D.3
Patel, D.J.4
-
58
-
-
84878944044
-
Readout of epigenetic modifications
-
Patel DJ, Wang Z. 2013. Readout of epigenetic modifications. Annu. Rev. Biochem. 82:81-118
-
(2013)
Annu. Rev. Biochem
, vol.82
, pp. 81-118
-
-
Patel, D.J.1
Wang, Z.2
-
59
-
-
79960063257
-
Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin
-
Eustermann S, Yang JC, AmosR,Chapman LM, JelinskaC, et al. 2011. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18:777-82
-
(2011)
Nat. Struct. Mol. Biol
, vol.18
, pp. 777-782
-
-
Eustermann, S.1
Yang, J.C.2
Amos, R.3
Chapman, L.M.4
Jelinska, C.5
-
60
-
-
34547542492
-
Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatinassociated protein ATRX
-
Argentaro A,Chang J-C, Chapman LM, Kowalczyk MS, Gibbons RJ, et al. 2007. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatinassociated protein ATRX. Proc. Natl. Acad. Sci. USA 104:11939-44
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 11939-11944
-
-
Argentaro, A.1
Chang, J.-C.2
Chapman, L.M.3
Kowalczyk, M.S.4
Gibbons, R.J.5
-
61
-
-
84866114872
-
Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange
-
Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, et al. 2012. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19:884-92
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, pp. 884-892
-
-
Smolle, M.1
Venkatesh, S.2
Gogol, M.M.3
Li, H.4
Zhang, Y.5
-
62
-
-
84866271965
-
HistoneH3 lysine 36methylation targets the Isw1b remodeling complex to chromatin
-
Maltby VE,Martin BJ, Schultze JM, Johnson I, Hentrich T, et al. 2012. HistoneH3 lysine 36methylation targets the Isw1b remodeling complex to chromatin. Mol. Cell. Biol. 32:3479-85
-
(2012)
Mol. Cell. Biol
, vol.32
, pp. 3479-3485
-
-
Maltby, V.E.1
Martin, B.J.2
Schultze, J.M.3
Johnson, I.4
Hentrich, T.5
-
63
-
-
80455178817
-
Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms
-
Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knaak MA, Bartholomew B. 2011. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res. 39:9155-66
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9155-9166
-
-
Chatterjee, N.1
Sinha, D.2
Lemma-Dechassa, M.3
Tan, S.4
Shogren-Knaak, M.A.5
Bartholomew, B.6
-
64
-
-
34547099311
-
Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex
-
SkiniotisG,MoazedD,Walz T. 2007. Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J. Biol. Chem. 282:20804-8
-
(2007)
J. Biol. Chem
, vol.282
, pp. 20804-20808
-
-
Skiniotis, G.1
Moazed, D.2
Walz, T.3
-
65
-
-
0035937419
-
Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
-
Hassan AH, Neely KE, Workman JL. 2001. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817-27
-
(2001)
Cell
, vol.104
, pp. 817-827
-
-
Hassan, A.H.1
Neely, K.E.2
Workman, J.L.3
-
66
-
-
0036847620
-
Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
-
Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, et al. 2002. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369-79
-
(2002)
Cell
, vol.111
, pp. 369-379
-
-
Hassan, A.H.1
Prochasson, P.2
Neely, K.E.3
Galasinski, S.C.4
Chandy, M.5
-
67
-
-
1942535223
-
Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
-
Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR. 2004. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23:1348-59
-
(2004)
EMBO J
, vol.23
, pp. 1348-1359
-
-
Kasten, M.1
Szerlong, H.2
Erdjument-Bromage, H.3
Tempst, P.4
Werner, M.5
Cairns, B.R.6
-
68
-
-
34548231639
-
Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation
-
VanDemark AP, Kasten MM, Ferris E, Heroux A, Hill CP, Cairns BR. 2007. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol. Cell 27:817-28
-
(2007)
Mol. Cell
, vol.27
, pp. 817-828
-
-
Vandemark, A.P.1
Kasten, M.M.2
Ferris, E.3
Heroux, A.4
Hill, C.P.5
Cairns, B.R.6
-
69
-
-
82255164427
-
A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling
-
Sen P, Ghosh P, Pugh BF, Bartholomew B. 2011. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res. 39:9155-66
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9155-9166
-
-
Sen, P.1
Ghosh, P.2
Pugh, B.F.3
Bartholomew, B.4
-
70
-
-
84871880082
-
The SnAC domain of SWI/SNF is a histone anchor required for remodeling
-
Sen P, Vivas P, Dechassa ML, Mooney AM, Poirier MG, Bartholomew B. 2013. The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Mol. Cell. Biol. 33:360-70
-
(2013)
Mol. Cell. Biol
, vol.33
, pp. 360-370
-
-
Sen, P.1
Vivas, P.2
Dechassa, M.L.3
Mooney, A.M.4
Poirier, M.G.5
Bartholomew, B.6
-
71
-
-
74249112844
-
Interaction ofHP1 and Brg1/Brm with the globular domain of histoneH3 is required for HP1-mediated repression
-
LavigneM, Eskeland R, Azebi S, Saint-Andr V, Jang SM, et al. 2009. Interaction ofHP1 and Brg1/Brm with the globular domain of histoneH3 is required for HP1-mediated repression. PLoS Genet. 5:e1000769
-
(2009)
PLoS Genet
, vol.5
-
-
Lavigne, M.1
Eskeland, R.2
Azebi, S.3
Saint-Andr, V.4
Jang, S.M.5
-
72
-
-
28544442465
-
Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange
-
WuWH, Alami S, Luk E,WuCH, Sen S, et al. 2005. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 12:1064-71
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 1064-1071
-
-
Wu, W.H.1
Alami, S.2
Luk, E.3
Wu, C.H.4
Sen, S.5
-
73
-
-
65249187832
-
N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex
-
Wu WH,Wu CH, Ladurner A,Mizuguchi G, Wei D, et al. 2009. N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex. J. Biol. Chem. 284:6200-7
-
(2009)
J. Biol. Chem
, vol.284
, pp. 6200-6207
-
-
Wu, W.H.1
Wu, C.H.2
Ladurner, A.3
Mizuguchi, G.4
Wei, D.5
-
74
-
-
34147197557
-
Dependency of ISW1a chromatin remodeling on extranucleosomal DNA
-
Gangaraju VK, Bartholomew B. 2007. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell. Biol. 27:3217-25
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 3217-3225
-
-
Gangaraju, V.K.1
Bartholomew, B.2
-
75
-
-
2942561969
-
Topography of the ISW2- nucleosome complex: Insights into nucleosome spacing and chromatin remodeling
-
Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. 2004. Topography of the ISW2- nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23:2092-104
-
(2004)
EMBO J
, vol.23
, pp. 2092-2104
-
-
Kagalwala, M.N.1
Glaus, B.J.2
Dang, W.3
Zofall, M.4
Bartholomew, B.5
-
77
-
-
0141922979
-
Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI
-
Grüne T, Brzeski J, Eberharter A, Clapier CR, Corona DF, et al. 2003. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12:449-60
-
(2003)
Mol. Cell
, vol.12
, pp. 449-460
-
-
Grüne, T.1
Brzeski, J.2
Eberharter, A.3
Clapier, C.R.4
Corona, D.F.5
-
78
-
-
79955547248
-
Structure and mechanism of the chromatin remodelling factor ISW1a
-
Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, et al. 2011. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448-53
-
(2011)
Nature
, vol.472
, pp. 448-453
-
-
Yamada, K.1
Frouws, T.D.2
Angst, B.3
Fitzgerald, D.J.4
Deluca, C.5
-
79
-
-
79960065933
-
TheDNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
-
Ryan DP, Sundramoorthy R,MartinD, Singh V, Owen-Hughes T. 2011. TheDNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J. 30:2596-609
-
(2011)
EMBO J
, vol.30
, pp. 2596-2609
-
-
Ryan, D.P.1
Sundramoorthy, R.2
Martin, D.3
Singh, V.4
Owen-Hughes, T.5
-
80
-
-
82755183623
-
Crystal structure of the chromo-helicase DNAbinding protein 1 (Chd1) DNA-binding domain in complex with DNA
-
Sharma A, Jenkins KR, Heroux A, Bowman GD. 2011. Crystal structure of the chromo-helicase DNAbinding protein 1 (Chd1) DNA-binding domain in complex with DNA. J. Biol. Chem. 286:42099-104
-
(2011)
J. Biol. Chem
, vol.286
, pp. 42099-42104
-
-
Sharma, A.1
Jenkins, K.R.2
Heroux, A.3
Bowman, G.D.4
-
82
-
-
84871023769
-
Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes
-
Clapier CR, Cairns BR. 2012. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492:280-84
-
(2012)
Nature
, vol.492
, pp. 280-284
-
-
Clapier, C.R.1
Cairns, B.R.2
-
83
-
-
83255185775
-
Extranucleosomal DNA binding directs nucleosome sliding by Chd1
-
McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD. 2011. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell. Biol. 31:4746-59
-
(2011)
Mol. Cell. Biol
, vol.31
, pp. 4746-4759
-
-
McKnight, J.N.1
Jenkins, K.R.2
Nodelman, I.M.3
Escobar, T.4
Bowman, G.D.5
-
84
-
-
84873643234
-
Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler
-
Patel A, Chakravarthy S, Morrone S, Nodelman IM, McKnight JM, Bowman GD. 2013. Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler. Nucleic Acids Res. 41:1637-48
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 1637-1648
-
-
Patel, A.1
Chakravarthy, S.2
Morrone, S.3
Nodelman, I.M.4
McKnight, J.M.5
Bowman, G.D.6
-
85
-
-
79251545788
-
The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor
-
Udugama M, Sabri A, Bartholomew B. 2010. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31:662-73
-
(2010)
Mol. Cell. Biol
, vol.31
, pp. 662-673
-
-
Udugama, M.1
Sabri, A.2
Bartholomew, B.3
-
86
-
-
84876166087
-
Evidence for monomeric actin function in INO80 chromatin remodeling
-
Kapoor P, Chen M, Winkler DD, Luger K, Shen X. 2013. Evidence for monomeric actin function in INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 20:426-32
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 426-432
-
-
Kapoor, P.1
Chen, M.2
Winkler, D.D.3
Luger, K.4
Shen, X.5
-
87
-
-
84870595949
-
Structure of actin-related protein 8 and its contribution to nucleosome binding
-
GerholdCB, Winkler DD, LakomekK, Seifert FU, Fenn S, et al. 2012. Structure of actin-related protein 8 and its contribution to nucleosome binding. Nucleic Acids Res. 40:11036-46
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11036-11046
-
-
Gerhold, C.B.1
Winkler, D.D.2
Lakomek, K.3
Seifert, F.U.4
Fenn, S.5
-
88
-
-
84876196706
-
Monomeric actin required for INO80 remodeling
-
Bartholomew B. 2013. Monomeric actin required for INO80 remodeling. Nat. Struct. Mol. Biol. 20:405-7
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 405-407
-
-
Bartholomew, B.1
-
89
-
-
33750618397
-
DNA-binding properties of the recombinant high-mobility-grouplike AT-hook-containing region from human BRG1 protein
-
Singh M, DSilva L, Holak TA. 2006. DNA-binding properties of the recombinant high-mobility-grouplike AT-hook-containing region from human BRG1 protein. Biol. Chem. 387:1469-78
-
(2006)
Biol. Chem
, vol.387
, pp. 1469-1478
-
-
Singh, M.1
Dsilva, L.2
Holak, T.A.3
-
90
-
-
0032190230
-
AT-hook motifs identified in a wide variety of DNA-binding proteins
-
Aravind L, Landsman D. 1998. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26:4413-21
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 4413-4421
-
-
Aravind, L.1
Landsman, D.2
-
91
-
-
0036250668
-
ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development
-
Wilsker D, Patsialou A, Dallas PB, Moran E. 2002. ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 13:95-106
-
(2002)
Cell Growth Differ
, vol.13
, pp. 95-106
-
-
Wilsker, D.1
Patsialou, A.2
Dallas, P.B.3
Moran, E.4
-
92
-
-
21444444583
-
Nomenclature of the ARID family of DNA-binding proteins
-
Wilsker D, Probst L, Wain HM, Maltais L, Tucker PW, Moran E. 2005. Nomenclature of the ARID family of DNA-binding proteins. Genomics 86:242-51
-
(2005)
Genomics
, vol.86
, pp. 242-251
-
-
Wilsker, D.1
Probst, L.2
Wain, H.M.3
Maltais, L.4
Tucker, P.W.5
Moran, E.6
-
93
-
-
84862196963
-
Solution structure of SWI1 AT-rich interaction domain from Saccharomyces cerevisiae and its nonspecific binding to DNA
-
Wang T, Zhang J, Zhang X, Tu X. 2012. Solution structure of SWI1 AT-rich interaction domain from Saccharomyces cerevisiae and its nonspecific binding to DNA. Proteins 80:1911-17
-
(2012)
Proteins
, vol.80
, pp. 1911-1917
-
-
Wang, T.1
Zhang, J.2
Zhang, X.3
Tu, X.4
-
94
-
-
2542592428
-
The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes
-
Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, et al. 2004. The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res. 32:1345-53
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 1345-1353
-
-
Wilsker, D.1
Patsialou, A.2
Zumbrun, S.D.3
Kim, S.4
Chen, Y.5
-
95
-
-
18844468317
-
The SWIRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities
-
Aravind L, Iyer LM. 2002. The SWIRM domain: A conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3: 0039
-
(2002)
Genome Biol
, vol.3
, pp. 0039
-
-
Aravind, L.1
Iyer, L.M.2
-
96
-
-
33144483781
-
Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes
-
Da G, Lenkart J, Zhao K, Shiekhattar R, Cairns BR, Marmorstein R. 2006. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc. Natl. Acad. Sci. USA 103:2057-62
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 2057-2062
-
-
Da Lenkart G, J.1
Zhao, K.2
Shiekhattar, R.3
Cairns, B.R.4
Marmorstein, R.5
-
97
-
-
28544433624
-
Structure and chromosomalDNA binding of the SWIRM domain
-
Qian C, Zhang Q, Li S, Zeng L,Walsh MJ, Zhou MM. 2005. Structure and chromosomalDNA binding of the SWIRM domain. Nat. Struct. Mol. Biol. 12:1078-85
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 1078-1085
-
-
Qian, C.1
Zhang, Q.2
Li, S.3
Zeng, L.4
Walsh, M.J.5
Zhou, M.M.6
-
98
-
-
84871867133
-
ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF
-
Chandler RL, Brennan J, Schisler JC, Serber D, Patterson C, Magnuson T. 2013. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol. Cell. Biol. 33:265-80
-
(2013)
Mol. Cell. Biol
, vol.33
, pp. 265-280
-
-
Chandler, R.L.1
Brennan, J.2
Schisler, J.C.3
Serber, D.4
Patterson, C.5
Magnuson, T.6
-
99
-
-
34247390658
-
Structural and functional differences of SWIRM domain subtypes
-
Yoneyama M, Tochio N, Umehara T, Koshiba S, Inoue M, et al. 2007. Structural and functional differences of SWIRM domain subtypes. J. Mol. Biol. 369:222-38
-
(2007)
J. Mol. Biol
, vol.369
, pp. 222-238
-
-
Yoneyama, M.1
Tochio, N.2
Umehara, T.3
Koshiba, S.4
Inoue, M.5
-
100
-
-
0036143156
-
Systematic identification of novel protein domain families associated with nuclear functions
-
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. 2002. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12:47-56
-
(2002)
Genome Res
, vol.12
, pp. 47-56
-
-
Doerks, T.1
Copley, R.R.2
Schultz, J.3
Ponting, C.P.4
Bork, P.5
-
101
-
-
0042671282
-
Involvement of actin-related proteins in ATP-dependent chromatin remodeling
-
Shen X, Ranallo R, Choi C, Wu C. 2003. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12:147-55
-
(2003)
Mol. Cell
, vol.12
, pp. 147-155
-
-
Shen, X.1
Ranallo, R.2
Choi, C.3
Wu, C.4
-
102
-
-
84874502188
-
Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler
-
Schubert HL, Wittmeyer J, Kasten MM, Hinata K, Rawling DC, et al. 2013. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc. Natl. Acad. Sci. USA 110:3345-50
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 3345-3350
-
-
Schubert, H.L.1
Wittmeyer, J.2
Kasten, M.M.3
Hinata, K.4
Rawling, D.C.5
-
103
-
-
79957907752
-
Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin
-
Fenn S, Breitsprecher D, Gerhold CB, Witte G, Faix J, Hopfner KP. 2011. Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin. EMBO J. 30:2153-66
-
(2011)
EMBO J
, vol.30
, pp. 2153-2166
-
-
Fenn, S.1
Breitsprecher, D.2
Gerhold, C.B.3
Witte, G.4
Faix, J.5
Hopfner, K.P.6
-
104
-
-
0032214123
-
Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF
-
Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD. 1998. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2:639-51
-
(1998)
Mol. Cell
, vol.2
, pp. 639-651
-
-
Cairns, B.R.1
Erdjument-Bromage, H.2
Tempst, P.3
Winston, F.4
Kornberg, R.D.5
-
105
-
-
66449130744
-
RVB1/RVB2: Running rings around molecular biology
-
Jha S, Dutta A. 2009. RVB1/RVB2: running rings around molecular biology. Mol. Cell 34:521-33
-
(2009)
Mol. Cell
, vol.34
, pp. 521-533
-
-
Jha, S.1
Dutta, A.2
-
106
-
-
84883870558
-
Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes
-
Nano N, Houry WA. 2013. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos. Trans. R. Soc. B 368:20110399
-
(2013)
Philos. Trans. R. Soc. B
, vol.368
, pp. 20110399
-
-
Nano, N.1
Houry, W.A.2
-
107
-
-
8644257491
-
Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex
-
Jönsson ZO, Jha S,Wohlschlegel JA, Dutta A. 2004. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16:465-77
-
(2004)
Mol. Cell
, vol.16
, pp. 465-477
-
-
Jönsson, Z.O.1
Jha, S.2
Wohlschlegel, J.A.3
Dutta, A.4
-
108
-
-
0036307707
-
Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Aresolution
-
Davey CA, Sargent DF, Luger J, Mder AW, Richmond TJ. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Aresolution. J. Mol. Biol. 319:1097-113
-
(2002)
J. Mol. Biol
, vol.319
, pp. 1097-1113
-
-
Davey, C.A.1
Sargent, D.F.2
Luger, J.3
Mder, A.W.4
Richmond, T.J.5
-
109
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8Aresolution
-
Luger K, Mder AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8Aresolution. Nature 389:251-60
-
(1997)
Nature
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mder, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
110
-
-
1942439629
-
Mechanisms for ATP-dependent chromatin remodelling: Farewell to the tuna-can octamer?
-
Flaus A, Owen-Hughes T. 2004. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14:165-73
-
(2004)
Curr. Opin. Genet. Dev
, vol.14
, pp. 165-173
-
-
Flaus, A.1
Owen-Hughes, T.2
-
111
-
-
77749322697
-
Mechanisms of ATP-dependent nucleosome sliding
-
Bowman GD. 2010. Mechanisms of ATP-dependent nucleosome sliding. Curr. Opin. Struct. Biol. 20:73-81
-
(2010)
Curr. Opin. Struct. Biol
, vol.20
, pp. 73-81
-
-
Bowman, G.D.1
-
112
-
-
0037388372
-
Mechanisms for nucleosome mobilization
-
Flaus A, Owen-Hughes T. 2003. Mechanisms for nucleosome mobilization. Biopolymers 68:563-78
-
(2003)
Biopolymers
, vol.68
, pp. 563-578
-
-
Flaus, A.1
Owen-Hughes, T.2
-
113
-
-
34147191973
-
DNA stretching and extreme kinking in the nucleosome core
-
OngMS, Richmond TJ, Davey CA. 2007. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 368:1067-74
-
(2007)
J. Mol. Biol
, vol.368
, pp. 1067-1074
-
-
Ong, M.S.1
Richmond, T.J.2
Davey, C.A.3
-
114
-
-
0036837861
-
HSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twistdiffusion mechanism
-
Aoyagi S, Hayes JJ. 2002. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twistdiffusion mechanism. Mol. Cell. Biol. 22:7484-90
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 7484-7490
-
-
Aoyagi, S.1
Hayes, J.J.2
-
115
-
-
26944433102
-
Aloop recapture mechanism for ACF-dependent nucleosome remodeling
-
Strohner R,Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstadter J, et al. 2005. A loop recapture mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12:683-90
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 683-690
-
-
Strohner, R.1
Wachsmuth, M.2
Dachauer, K.3
Mazurkiewicz, J.4
Hochstadter, J.5
-
116
-
-
13444259351
-
Chromatin remodeling by DNA bending, not twisting
-
Lorch, Y, Davis B, Kornberg RD. 2005. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102:1329-32
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 1329-1332
-
-
Lorch, Y.1
Davis, B.2
Kornberg, R.D.3
-
117
-
-
0035930334
-
ISWI induces nucleosome sliding on nicked DNA
-
Langst G, Becker PB. 2001. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8:1085-92
-
(2001)
Mol. Cell
, vol.8
, pp. 1085-1092
-
-
Langst, G.1
Becker, P.B.2
-
118
-
-
0035691979
-
Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity
-
Narlikar GJ, Phelan ML, Kingston RE. 2001. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8:1219-30
-
(2001)
Mol. Cell
, vol.8
, pp. 1219-1230
-
-
Narlikar, G.J.1
Phelan, M.L.2
Kingston, R.E.3
-
120
-
-
80555156699
-
SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes
-
Liu N, Peterson CL, Hayes JJ. 2011. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol. Cell. Biol. 31:4165-75
-
(2011)
Mol. Cell. Biol
, vol.31
, pp. 4165-4175
-
-
Liu, N.1
Peterson, C.L.2
Hayes, J.J.3
-
121
-
-
84881166117
-
Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
-
Narlikar GJ, Sundaramoorthy R,Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490-503
-
(2013)
Cell
, vol.154
, pp. 490-503
-
-
Narlikar, G.J.1
Sundaramoorthy, R.2
Owen-Hughes, T.3
-
122
-
-
31544454407
-
Direct observation ofDNAdistortion by the RSC complex
-
Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, et al. 2006. Direct observation ofDNAdistortion by the RSC complex. Mol. Cell 21:417-25
-
(2006)
Mol. Cell
, vol.21
, pp. 417-425
-
-
Lia, G.1
Praly, E.2
Ferreira, H.3
Stockdale, C.4
Tse-Dinh, Y.C.5
-
123
-
-
79958858041
-
The RSC chromatin remodelling ATPase translocates DNA with high force and small step size
-
Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. 2011. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30:2364-72
-
(2011)
EMBO J
, vol.30
, pp. 2364-2372
-
-
Sirinakis, G.1
Clapier, C.R.2
Gao, Y.3
Viswanathan, R.4
Cairns, B.R.5
Zhang, Y.6
-
124
-
-
33947638345
-
DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC
-
Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, et al. 2006. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 24:559-68
-
(2006)
Mol. Cell
, vol.24
, pp. 559-568
-
-
Zhang, Y.1
Smith, C.L.2
Saha, A.3
Grill, S.W.4
Mihardja, S.5
-
125
-
-
0037292355
-
SWI/SNF unwraps, slides, and rewraps the nucleosome
-
Kassabov SR, Zhang B, Persinger J, Bartholomew B. 2003. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11:391-403
-
(2003)
Mol. Cell
, vol.11
, pp. 391-403
-
-
Kassabov, S.R.1
Zhang, B.2
Persinger, J.3
Bartholomew, B.4
-
126
-
-
0032574802
-
Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding
-
Cote J, Peterson CL,Workman JL. 1998. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl. Acad. Sci. USA 95:4947-52
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 4947-4952
-
-
Cote, J.1
Peterson, C.L.2
Workman, J.L.3
-
127
-
-
0036837670
-
High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2
-
Kassabov SR, Henry NM, Zofall M, Tsukiyama T, Bartholomew B. 2002. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol. Cell. Biol. 22:7524-34
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 7524-7534
-
-
Kassabov, S.R.1
Henry, N.M.2
Zofall, M.3
Tsukiyama, T.4
Bartholomew, B.5
-
128
-
-
33847386172
-
The site-specific installation of methyl-lysine analogs into recombinant histones
-
Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, et al. 2007. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003-12
-
(2007)
Cell
, vol.128
, pp. 1003-1012
-
-
Simon, M.D.1
Chu, F.2
Racki, L.R.3
De La Cruz, C.C.4
Burlingame, A.L.5
-
129
-
-
44449099142
-
ATP-dependent chromatin remodeling enzymes:Two heads are not better, just different
-
RackiLR, Narlikar GJ. 2008. ATP-dependent chromatin remodeling enzymes:Two heads are not better, just different. Curr. Opin. Genet. Dev. 18:137-44
-
(2008)
Curr. Opin. Genet. Dev
, vol.18
, pp. 137-144
-
-
Racki, L.R.1
Narlikar, G.J.2
-
130
-
-
72949099482
-
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
-
Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, et al. 2009. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462:1016-21
-
(2009)
Nature
, vol.462
, pp. 1016-1021
-
-
Racki, L.R.1
Yang, J.G.2
Naber, N.3
Partensky, P.D.4
Acevedo, A.5
-
131
-
-
67649668797
-
Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2
-
Gangaraju VK, Prasad P, Srour A, Kagalwala MN, Bartholomew B. 2009. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol. Cell 35:58-69
-
(2009)
Mol. Cell
, vol.35
, pp. 58-69
-
-
Gangaraju, V.K.1
Prasad, P.2
Srour, A.3
Kagalwala, M.N.4
Bartholomew, B.5
-
132
-
-
78650536985
-
HumanI SWIchromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites
-
Erdel F, Schubert T, Marth C, Längst G,Rippe K. 2010.HumanI SWIchromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl. Acad. Sci. USA 107:19873-78
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 19873-19878
-
-
Erdel, F.1
Schubert, T.2
Marth, C.3
Längst, G.4
Rippe, K.5
-
133
-
-
35348984181
-
DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes
-
Rippe K, Schrader A, Riede P, Strohner R, Lehmann E, Längst G. 2007. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl. Acad. Sci. USA 104:15635-40
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 15635-15640
-
-
Rippe, K.1
Schrader, A.2
Riede, P.3
Strohner, R.4
Lehmann, E.5
Längst, G.6
-
134
-
-
33845356072
-
The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing
-
Yang JG, Madrid TS, Sevastopoulos E, Narlihar GJ. 2006. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13:1078-83
-
(2006)
Nat. Struct. Mol. Biol
, vol.13
, pp. 1078-1083
-
-
Yang, J.G.1
Madrid, T.S.2
Sevastopoulos, E.3
Narlihar, G.J.4
-
135
-
-
33749626224
-
Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA
-
Dang W, Kagalwala MN, Bartholomew B. 2006. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26:7388-96
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 7388-7396
-
-
Dang, W.1
Kagalwala, M.N.2
Bartholomew, B.3
-
136
-
-
0033558873
-
Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae
-
TsukiyamaT,Palmer J, Landel CC, Shiloach J,WuC. 1999. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. GenesDev. 13:686-97
-
(1999)
GenesDev
, vol.13
, pp. 686-697
-
-
Tsukiyama, T.1
Palmer, J.2
Landel, C.C.3
Shiloach, J.4
Wu, C.5
-
137
-
-
0037214318
-
Yeast Isw1p forms two separable complexes in vivo
-
Vary JCJr, Gangaraju VJ, Qin J, Landel CC, KooperbergC, et al. 2003. Yeast Isw1p forms two separable complexes in vivo. Mol. Cell. Biol. 23:80-91
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 80-91
-
-
Vary Jr., J.C.1
Gangaraju, V.J.2
Qin, J.3
Landel, C.C.4
Kooperberg, C.5
-
138
-
-
59649124442
-
Nucleosomes can invade DNA territories occupied by their neighbors
-
Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T. 2009. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16:151-58
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 151-158
-
-
Engeholm, M.1
De Jager, M.2
Flaus, A.3
Brenk, R.4
Van Noort, J.5
Owen-Hughes, T.6
-
139
-
-
57149115121
-
Structure of a RSCnucleosome complex and insights into chromatin remodeling
-
Chaban Y, Ezeokonkwo C, Chung W-H, Zhang F, Kornberg RD, et al. 2008. Structure of a RSCnucleosome complex and insights into chromatin remodeling. Nat. Struct. Mol. Biol. 15:1272-77
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 1272-1277
-
-
Chaban, Y.1
Ezeokonkwo, C.2
Chung, W.-H.3
Zhang, F.4
Kornberg, R.D.5
-
140
-
-
34247638974
-
Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method
-
Leschziner AE, Saha A, Wittmeyer J, Zhang Y, Bustamante C, et al. 2007. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc. Natl. Acad. Sci. USA 104:4913-18
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 4913-4918
-
-
Leschziner, A.E.1
Saha, A.2
Wittmeyer, J.3
Zhang, Y.4
Bustamante, C.5
-
141
-
-
67651202518
-
SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter
-
Gkikopoulos T, HavasKM, Dewar J,Owen-Hughes T. 2009. SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter. Mol. Cell. Biol. 29:4057-66
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 4057-4066
-
-
Gkikopoulos, T.1
Havas, K.M.2
Dewar, J.3
Owen-Hughes, T.4
-
142
-
-
0038094501
-
Nucleosomes unfold completely at a transcriptionally active promoter
-
Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. 2003. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11:1587-98
-
(2003)
Mol. Cell
, vol.11
, pp. 1587-1598
-
-
Boeger, H.1
Griesenbeck, J.2
Strattan, J.S.3
Kornberg, R.D.4
-
143
-
-
77955903649
-
Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions
-
Garcia JF, Dumesic PA, Hartley PD, El-Samad H, Madhani HD. 2010. Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions. Genes Dev. 24:1758-71
-
(2010)
Genes Dev
, vol.24
, pp. 1758-1771
-
-
Garcia, J.F.1
Dumesic, P.A.2
Hartley, P.D.3
El-Samad, H.4
Madhani, H.D.5
-
145
-
-
79953775721
-
The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes
-
Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P. 2011. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 30:1277-88
-
(2011)
EMBO J
, vol.30
, pp. 1277-1288
-
-
Wippo, C.J.1
Israel, L.2
Watanabe, S.3
Hochheimer, A.4
Peterson, C.L.5
Korber, P.6
-
146
-
-
0036208153
-
Modulation of ISWI function by site-specific histone acetylation
-
Corona DF, Clapier CR, Becker PB, Tamkun JW. 2002. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3:242-47
-
(2002)
EMBO Rep
, vol.3
, pp. 242-247
-
-
Corona, D.F.1
Clapier, C.R.2
Becker, P.B.3
Tamkun, J.W.4
-
147
-
-
32444434989
-
Histone H4-K16 acetylation controls chromatin structure and protein interactions
-
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. 2006. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844-47
-
(2006)
Science
, vol.311
, pp. 844-847
-
-
Shogren-Knaak, M.1
Ishii, H.2
Sun, J.M.3
Pazin, M.J.4
Davie, J.R.5
Peterson, C.L.6
-
148
-
-
21744434032
-
A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling
-
Smith CL, Peterson CL. 2005. A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol. Cell. Biol. 25:5880-92
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 5880-5892
-
-
Smith, C.L.1
Peterson, C.L.2
-
150
-
-
0028066920
-
Helicase motifs v and VI of the Escherichia coli UvrB protein of the UvrABC endonuclease are essential for the formation of the preincision complex
-
Moolenaar GF, Visse R, Ortiz-Buysse M, Goosen N, van de Putte P. 1994. Helicase motifs V and VI of the Escherichia coli UvrB protein of the UvrABC endonuclease are essential for the formation of the preincision complex. J. Mol. Biol. 240:294-307
-
(1994)
J. Mol. Biol
, vol.240
, pp. 294-307
-
-
Moolenaar, G.F.1
Visse, R.2
Ortiz-Buysse, M.3
Goosen, N.4
Van De Putte, P.5
-
151
-
-
83755181609
-
Identification of residues in chromo-helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding
-
Patel A, McKnight JN, Genzor P, Bowman GD. 2011. Identification of residues in chromo-helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J. Biol. Chem. 286:43984-93
-
(2011)
J. Biol. Chem
, vol.286
, pp. 43984-43993
-
-
Patel, A.1
McKnight, J.N.2
Genzor, P.3
Bowman, G.D.4
-
152
-
-
0034307314
-
Functional selectivity of recombinant mammalian SWI/SNF subunits
-
Kadam S,McAlpine GS, Phelan ML, Kingson RE, Jones KA, Emerson BM. 2000. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14:2441-51
-
(2000)
Genes Dev
, vol.14
, pp. 2441-2451
-
-
Kadam, S.1
McAlpine, G.S.2
Phelan, M.L.3
Kingson, R.E.4
Jones, K.A.5
Emerson, B.M.6
-
153
-
-
0033082238
-
Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits
-
Phelan ML, Sif S, Narlikar GJ, Kingson RE. 1999. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3:247-53
-
(1999)
Mol. Cell
, vol.3
, pp. 247-253
-
-
Phelan, M.L.1
Sif, S.2
Narlikar, G.J.3
Kingson, R.E.4
-
155
-
-
46849103827
-
Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits
-
He X, Fan HY, Garlick JD, Kingston RE. 2008. Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits. Biochemistry 47:7025-33
-
(2008)
Biochemistry
, vol.47
, pp. 7025-7033
-
-
He, X.1
Fan, H.Y.2
Garlick, J.D.3
Kingston, R.E.4
-
156
-
-
84879136007
-
Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways
-
Staahl BT, Tiang J, Wu W, Sun A, Gitler AD. 2013. Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J. Neurosci. 33:10348-61
-
(2013)
J. Neurosci
, vol.33
, pp. 10348-10361
-
-
Staahl, B.T.1
Tiang, J.2
Wu, W.3
Sun, A.4
Gitler, A.D.5
-
157
-
-
84876903184
-
The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory
-
Vogel-Ciernia A, Matheos DP, Barrett RM, Kramr EA, Azzawi S, et al. 2013. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16:552-61
-
(2013)
Nat. Neurosci
, vol.16
, pp. 552-561
-
-
Vogel-Ciernia, A.1
Matheos, D.P.2
Barrett, R.M.3
Kramr, E.A.4
Azzawi, S.5
-
158
-
-
84901587515
-
The SWI/SNF genetic blockade: Effects in cell differentiation, cancer and developmental diseases
-
In press
-
Romero OA, Sanchez-Cespedes M. 2013. The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene. In press
-
(2013)
Oncogene
-
-
Romero, O.A.1
Sanchez-Cespedes, M.2
-
159
-
-
84872810488
-
The spectrum of SWI/SNF mutations, ubiquitous in human cancers
-
Shain AH, Pollack JR. 2013. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8:e55119
-
(2013)
PLoS ONE
, vol.8
-
-
Shain, A.H.1
Pollack, J.R.2
-
160
-
-
0032530154
-
Mitotic inactivation of a human SWI/SNF chromatin remodeling complex
-
Sif S, Stukenberg PT, Kirschner MW, Kingson RE. 1998. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12:2842-51
-
(1998)
Genes Dev
, vol.12
, pp. 2842-2851
-
-
Sif, S.1
Stukenberg, P.T.2
Kirschner, M.W.3
Kingson, R.E.4
-
161
-
-
0030054665
-
The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis
-
Muchardt C, Reyes JC, Bourachot B, Leguoy E, Yaniv M. 1996. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15:3394-402
-
(1996)
EMBO J
, vol.15
, pp. 3394-3402
-
-
Muchardt, C.1
Reyes, J.C.2
Bourachot, B.3
Leguoy, E.4
Yaniv, M.5
-
162
-
-
78650187080
-
Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2
-
Kim JH, Saraf A, Florens L, Washburn M, Workman JL. 2010. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev. 24:2766-71
-
(2010)
Genes Dev
, vol.24
, pp. 2766-2771
-
-
Kim, J.H.1
Saraf, A.2
Florens, L.3
Washburn, M.4
Workman, J.L.5
-
163
-
-
78649827795
-
A switch from hBrm to Brg1 at IFNγ- activated sequences mediates the activation of human genes
-
Zhang Y, Cheng MB, Zhang YJ, Zhong X, Dai H, et al. 2010. A switch from hBrm to Brg1 at IFNγ- activated sequences mediates the activation of human genes. Cell Res. 20:1345-60
-
(2010)
Cell Res
, vol.20
, pp. 1345-1360
-
-
Zhang, Y.1
Cheng, M.B.2
Zhang, Y.J.3
Zhong, X.4
Dai, H.5
-
164
-
-
35648948789
-
Site-specific acetylation of ISWI by GCN5
-
Ferreira R, Eberharter A, Bonaldi T, Chioda M, Imhof A, Becker PB. 2007. Site-specific acetylation of ISWI by GCN5. BMC Mol. Biol. 8:73
-
(2007)
BMC Mol. Biol
, vol.8
, pp. 73
-
-
Ferreira, R.1
Eberharter, A.2
Bonaldi, T.3
Chioda, M.4
Imhof, A.5
Becker, P.B.6
-
165
-
-
72949099668
-
Dynamics of nucleosome remodeling by individual ACF complexes
-
Blosser TR, Yang JG, Stone MD, Narlikar GJ, Zhuang X. 2009. Dynamics of nucleosome remodeling by individual ACF complexes. Nature 462:1022-27
-
(2009)
Nature
, vol.462
, pp. 1022-1027
-
-
Blosser, T.R.1
Yang, J.G.2
Stone, M.D.3
Narlikar, G.J.4
Zhuang, X.5
|