-
1
-
-
84895735915
-
Review: Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites
-
A. Pol, S.P. Gross, and R.G. Parton Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites J. Cell Biol. 204 2014 635 646
-
(2014)
J. Cell Biol.
, vol.204
, pp. 635-646
-
-
Pol, A.1
Gross, S.P.2
Parton, R.G.3
-
2
-
-
84861913952
-
Lipid droplets and cellular lipid metabolism
-
T.C. Walther, and R.V. Farese Jr. Lipid droplets and cellular lipid metabolism Annu. Rev. Biochem. 81 2012 687 714
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 687-714
-
-
Walther, T.C.1
Farese, R.V.2
-
4
-
-
79953297691
-
DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes
-
C.A. Harris, J.T. Haas, R.S. Streeper, S.J. Stone, M. Kumari, K. Yang, X. Han, N. Brownell, R.W. Gross, R. Zechner, and R.V. Farese Jr. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes J. Lipid Res. 52 2011 657 667
-
(2011)
J. Lipid Res.
, vol.52
, pp. 657-667
-
-
Harris, C.A.1
Haas, J.T.2
Streeper, R.S.3
Stone, S.J.4
Kumari, M.5
Yang, K.6
Han, X.7
Brownell, N.8
Gross, R.W.9
Zechner, R.10
Farese, R.V.11
-
5
-
-
0036135597
-
Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae
-
D. Sorger, and G. Daum Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae J. Bacteriol. 184 2002 519 524
-
(2002)
J. Bacteriol.
, vol.184
, pp. 519-524
-
-
Sorger, D.1
Daum, G.2
-
6
-
-
0034612345
-
Phospholipid:diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants
-
A. Dahlqvist, U. Stahl, M. Lenman, A. Banas, M. Lee, L. Sandager, H. Ronne, and S. Stymne Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants Proc. Natl. Acad. Sci. U. S. A. 97 2000 6487 6492
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 6487-6492
-
-
Dahlqvist, A.1
Stahl, U.2
Lenman, M.3
Banas, A.4
Lee, M.5
Sandager, L.6
Ronne, H.7
Stymne, S.8
-
7
-
-
0034717265
-
A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast
-
P. Oelkers, A. Tinkelenberg, N. Erdeniz, D. Cromley, J.T. Billheimer, and S.L. Sturley A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast J. Biol. Chem. 275 2000 15609 15612
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 15609-15612
-
-
Oelkers, P.1
Tinkelenberg, A.2
Erdeniz, N.3
Cromley, D.4
Billheimer, J.T.5
Sturley, S.L.6
-
8
-
-
0033974053
-
Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae
-
D. Zweytick, E. Leitner, S.D. Kohlwein, C. Yu, J. Rothblatt, and G. Daum Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae Eur. J. Biochem. /FEBS 267 2000 1075 1082
-
(2000)
Eur. J. Biochem. /FEBS
, vol.267
, pp. 1075-1082
-
-
Zweytick, D.1
Leitner, E.2
Kohlwein, S.D.3
Yu, C.4
Rothblatt, J.5
Daum, G.6
-
9
-
-
0037088637
-
The DGA1 gene determines a second triglyceride synthetic pathway in yeast
-
P. Oelkers, D. Cromley, M. Padamsee, J.T. Billheimer, and S.L. Sturley The DGA1 gene determines a second triglyceride synthetic pathway in yeast J. Biol. Chem. 277 2002 8877 8881
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 8877-8881
-
-
Oelkers, P.1
Cromley, D.2
Padamsee, M.3
Billheimer, J.T.4
Sturley, S.L.5
-
10
-
-
0029835340
-
Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase
-
C. Yu, N.J. Kennedy, C.C. Chang, and J.A. Rothblatt Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase J. Biol. Chem. 271 1996 24157 24163
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 24157-24163
-
-
Yu, C.1
Kennedy, N.J.2
Chang, C.C.3
Rothblatt, J.A.4
-
11
-
-
77952331856
-
Triacylglycerol homeostasis: Insights from yeast
-
S.D. Kohlwein Triacylglycerol homeostasis: insights from yeast J. Biol. Chem. 285 2010 15663 15667
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15663-15667
-
-
Kohlwein, S.D.1
-
12
-
-
47749150637
-
Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae
-
T. Czabany, A. Wagner, D. Zweytick, K. Lohner, E. Leitner, E. Ingolic, and G. Daum Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae J. Biol. Chem. 283 2008 17065 17074
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 17065-17074
-
-
Czabany, T.1
Wagner, A.2
Zweytick, D.3
Lohner, K.4
Leitner, E.5
Ingolic, E.6
Daum, G.7
-
13
-
-
84899904022
-
Yeast lipid metabolism at a glance
-
L. Klug, and G. Daum Yeast lipid metabolism at a glance FEMS Yeast Res. 14 2014 369 388
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 369-388
-
-
Klug, L.1
Daum, G.2
-
14
-
-
84871820511
-
Lipid droplets and peroxisomes: Key players in cellular lipid homeostasis or a matter of fat - Store 'em up or burn 'em down
-
S.D. Kohlwein, M. Veenhuis, and I.J. van der Klei Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat - store 'em up or burn 'em down Genetics 193 2013 1 50
-
(2013)
Genetics
, vol.193
, pp. 1-50
-
-
Kohlwein, S.D.1
Veenhuis, M.2
Van Der Klei, I.J.3
-
15
-
-
0033571069
-
Phosphatidic acid, a key intermediate in lipid metabolism
-
K. Athenstaedt, and G. Daum Phosphatidic acid, a key intermediate in lipid metabolism Eur. J. Biochem./FEBS 266 1999 1 16
-
(1999)
Eur. J. Biochem./FEBS
, vol.266
, pp. 1-16
-
-
Athenstaedt, K.1
Daum, G.2
-
16
-
-
0035834657
-
The initial step of the glycerolipid pathway: Identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae
-
Z. Zheng, and J. Zou The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae J. Biol. Chem. 276 2001 41710 41716
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 41710-41716
-
-
Zheng, Z.1
Zou, J.2
-
19
-
-
33751216445
-
Roles of phosphatidate phosphatase enzymes in lipid metabolism
-
G.M. Carman, and G.S. Han Roles of phosphatidate phosphatase enzymes in lipid metabolism Trends Biochem. Sci. 31 2006 694 699
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 694-699
-
-
Carman, G.M.1
Han, G.S.2
-
20
-
-
0029920267
-
Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae
-
G.M. Carman, and G.M. Zeimetz Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae J. Biol. Chem. 271 1996 13293 13296
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 13293-13296
-
-
Carman, G.M.1
Zeimetz, G.M.2
-
21
-
-
0032730257
-
Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes
-
G.M. Carman, and S.A. Henry Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes Prog. Lipid Res. 38 1999 361 399
-
(1999)
Prog. Lipid Res.
, vol.38
, pp. 361-399
-
-
Carman, G.M.1
Henry, S.A.2
-
22
-
-
77953591461
-
The Kennedy pathway - De novo synthesis of phosphatidylethanolamine and phosphatidylcholine
-
F. Gibellini, and T.K. Smith The Kennedy pathway - de novo synthesis of phosphatidylethanolamine and phosphatidylcholine IUBMB Life 62 2010 414 428
-
(2010)
IUBMB Life
, vol.62
, pp. 414-428
-
-
Gibellini, F.1
Smith, T.K.2
-
23
-
-
84857424979
-
Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae
-
S.A. Henry, S.D. Kohlwein, and G.M. Carman Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae Genetics 190 2012 317 349
-
(2012)
Genetics
, vol.190
, pp. 317-349
-
-
Henry, S.A.1
Kohlwein, S.D.2
Carman, G.M.3
-
24
-
-
84875367136
-
Protein correlation profiles identify lipid droplet proteins with high confidence
-
N. Krahmer, M. Hilger, N. Kory, F. Wilfling, G. Stoehr, M. Mann, R.V. Farese Jr.; and T.C. Walther Protein correlation profiles identify lipid droplet proteins with high confidence Mol. Cell. Proteomics: MCP 12 2013 1115 1126
-
(2013)
Mol. Cell. Proteomics: MCP
, vol.12
, pp. 1115-1126
-
-
Krahmer, N.1
Hilger, M.2
Kory, N.3
Wilfling, F.4
Stoehr, G.5
Mann, M.6
Farese, R.V.7
Walther, T.C.8
-
25
-
-
84856072854
-
Packaging of fat: An evolving model of lipid droplet assembly and expansion
-
D.L. Brasaemle, and N.E. Wolins Packaging of fat: an evolving model of lipid droplet assembly and expansion J. Biol. Chem. 287 2012 2273 2279
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2273-2279
-
-
Brasaemle, D.L.1
Wolins, N.E.2
-
26
-
-
3843131947
-
A yeast strain lacking lipid particles bears a defect in ergosterol formation
-
D. Sorger, K. Athenstaedt, C. Hrastnik, and G. Daum A yeast strain lacking lipid particles bears a defect in ergosterol formation J. Biol. Chem. 279 2004 31190 31196
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 31190-31196
-
-
Sorger, D.1
Athenstaedt, K.2
Hrastnik, C.3
Daum, G.4
-
27
-
-
0037155261
-
Storage lipid synthesis is non-essential in yeast
-
L. Sandager, M.H. Gustavsson, U. Stahl, A. Dahlqvist, E. Wiberg, A. Banas, M. Lenman, H. Ronne, and S. Stymne Storage lipid synthesis is non-essential in yeast J. Biol. Chem. 277 2002 6478 6482
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 6478-6482
-
-
Sandager, L.1
Gustavsson, M.H.2
Stahl, U.3
Dahlqvist, A.4
Wiberg, E.5
Banas, A.6
Lenman, M.7
Ronne, H.8
Stymne, S.9
-
28
-
-
71449102613
-
Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast
-
J. Petschnigg, H. Wolinski, D. Kolb, G. Zellnig, C.F. Kurat, K. Natter, and S.D. Kohlwein Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast J. Biol. Chem. 284 2009 30981 30993
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 30981-30993
-
-
Petschnigg, J.1
Wolinski, H.2
Kolb, D.3
Zellnig, G.4
Kurat, C.F.5
Natter, K.6
Kohlwein, S.D.7
-
29
-
-
84864863755
-
The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: Implications for the biogenesis of lipid droplets
-
V. Choudhary, N. Jacquier, and R. Schneiter The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets Commun. Integr. Biol. 4 2011 781 784
-
(2011)
Commun. Integr. Biol.
, vol.4
, pp. 781-784
-
-
Choudhary, V.1
Jacquier, N.2
Schneiter, R.3
-
30
-
-
80054685861
-
Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae
-
M. Pagac, H.V. de la Mora, C. Duperrex, C. Roubaty, C. Vionnet, and A. Conzelmann Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae J. Biol. Chem. 286 2011 36438 36447
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 36438-36447
-
-
Pagac, M.1
De La Mora, H.V.2
Duperrex, C.3
Roubaty, C.4
Vionnet, C.5
Conzelmann, A.6
-
31
-
-
84875326507
-
Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
-
F. Wilfling, H. Wang, J.T. Haas, N. Krahmer, T.J. Gould, A. Uchida, J.X. Cheng, M. Graham, R. Christiano, F. Frohlich, X. Liu, K.K. Buhman, R.A. Coleman, J. Bewersdorf, R.V. Farese Jr.; and T.C. Walther Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets Dev. Cell 24 2013 384 399
-
(2013)
Dev. Cell
, vol.24
, pp. 384-399
-
-
Wilfling, F.1
Wang, H.2
Haas, J.T.3
Krahmer, N.4
Gould, T.J.5
Uchida, A.6
Cheng, J.X.7
Graham, M.8
Christiano, R.9
Frohlich, F.10
Liu, X.11
Buhman, K.K.12
Coleman, R.A.13
Bewersdorf, J.14
Farese, R.V.15
Walther, T.C.16
-
32
-
-
79960398841
-
Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae
-
N. Jacquier, V. Choudhary, M. Mari, A. Toulmay, F. Reggiori, and R. Schneiter Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae J. Cell Sci. 124 2011 2424 2437
-
(2011)
J. Cell Sci.
, vol.124
, pp. 2424-2437
-
-
Jacquier, N.1
Choudhary, V.2
Mari, M.3
Toulmay, A.4
Reggiori, F.5
Schneiter, R.6
-
34
-
-
34147152663
-
Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic
-
R. Bartz, W.H. Li, B. Venables, J.K. Zehmer, M.R. Roth, R. Welti, R.G. Anderson, P. Liu, and K.D. Chapman Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic J. Lipid Res. 48 2007 837 847
-
(2007)
J. Lipid Res.
, vol.48
, pp. 837-847
-
-
Bartz, R.1
Li, W.H.2
Venables, B.3
Zehmer, J.K.4
Roth, M.R.5
Welti, R.6
Anderson, R.G.7
Liu, P.8
Chapman, K.D.9
-
35
-
-
81755161505
-
Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets proteome
-
K. Grillitsch, M. Connerth, H. Kofeler, T.N. Arrey, B. Rietschel, B. Wagner, M. Karas, and G. Daum Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome Biochim. Biophys. Acta 1811 2011 1165 1176
-
(2011)
Biochim. Biophys. Acta
, vol.1811
, pp. 1165-1176
-
-
Grillitsch, K.1
Connerth, M.2
Kofeler, H.3
Arrey, T.N.4
Rietschel, B.5
Wagner, B.6
Karas, M.7
Daum, G.8
-
36
-
-
79955486102
-
The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets
-
O. Adeyo, P.J. Horn, S. Lee, D.D. Binns, A. Chandrahas, K.D. Chapman, and J.M. Goodman The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets J. Cell Biol. 192 2011 1043 1055
-
(2011)
J. Cell Biol.
, vol.192
, pp. 1043-1055
-
-
Adeyo, O.1
Horn, P.J.2
Lee, S.3
Binns, D.D.4
Chandrahas, A.5
Chapman, K.D.6
Goodman, J.M.7
-
37
-
-
71449118409
-
Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization
-
J.R. Skinner, T.M. Shew, D.M. Schwartz, A. Tzekov, C.M. Lepus, N.A. Abumrad, and N.E. Wolins Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization J. Biol. Chem. 284 2009 30941 30948
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 30941-30948
-
-
Skinner, J.R.1
Shew, T.M.2
Schwartz, D.M.3
Tzekov, A.4
Lepus, C.M.5
Abumrad, N.A.6
Wolins, N.E.7
-
39
-
-
21244480972
-
The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth
-
H. Santos-Rosa, J. Leung, N. Grimsey, S. Peak-Chew, and S. Siniossoglou The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth EMBO J. 24 2005 1931 1941
-
(2005)
EMBO J.
, vol.24
, pp. 1931-1941
-
-
Santos-Rosa, H.1
Leung, J.2
Grimsey, N.3
Peak-Chew, S.4
Siniossoglou, S.5
-
40
-
-
78651385378
-
Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in Saccharomyces cerevisiae: Identification of SER(602), THR(723), and SER(744) as the sites phosphorylated by CDC28 (CDK1)-encoded cyclin-dependent kinase
-
H.S. Choi, W.M. Su, J.M. Morgan, G.S. Han, Z. Xu, E. Karanasios, S. Siniossoglou, and G.M. Carman Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in Saccharomyces cerevisiae: identification of SER(602), THR(723), AND SER(744) as the sites phosphorylated by CDC28 (CDK1)-encoded cyclin-dependent kinase J. Biol. Chem. 286 2011 1486 1498
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 1486-1498
-
-
Choi, H.S.1
Su, W.M.2
Morgan, J.M.3
Han, G.S.4
Xu, Z.5
Karanasios, E.6
Siniossoglou, S.7
Carman, G.M.8
-
41
-
-
84859488188
-
Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism
-
H.S. Choi, W.M. Su, G.S. Han, D. Plote, Z. Xu, and G.M. Carman Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism J. Biol. Chem. 287 2012 11290 11301
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 11290-11301
-
-
Choi, H.S.1
Su, W.M.2
Han, G.S.3
Plote, D.4
Xu, Z.5
Carman, G.M.6
-
42
-
-
0032538863
-
A novel complex of membrane proteins required for formation of a spherical nucleus
-
S. Siniossoglou, H. Santos-Rosa, J. Rappsilber, M. Mann, and E. Hurt A novel complex of membrane proteins required for formation of a spherical nucleus EMBO J. 17 1998 6449 6464
-
(1998)
EMBO J.
, vol.17
, pp. 6449-6464
-
-
Siniossoglou, S.1
Santos-Rosa, H.2
Rappsilber, J.3
Mann, M.4
Hurt, E.5
-
43
-
-
59149106049
-
Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis
-
G.M. Carman, and G.S. Han Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis J. Biol. Chem. 284 2009 2593 2597
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 2593-2597
-
-
Carman, G.M.1
Han, G.S.2
-
44
-
-
78049319504
-
A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase
-
E. Karanasios, G.S. Han, Z. Xu, G.M. Carman, and S. Siniossoglou A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase Proc. Natl. Acad. Sci. U. S. A. 107 2010 17539 17544
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 17539-17544
-
-
Karanasios, E.1
Han, G.S.2
Xu, Z.3
Carman, G.M.4
Siniossoglou, S.5
-
45
-
-
84879625305
-
Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p
-
E. Karanasios, A.D. Barbosa, H. Sembongi, M. Mari, G.S. Han, F. Reggiori, G.M. Carman, and S. Siniossoglou Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p Mol. Biol. Cell 24 2013 2124 2133
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 2124-2133
-
-
Karanasios, E.1
Barbosa, A.D.2
Sembongi, H.3
Mari, M.4
Han, G.S.5
Reggiori, F.6
Carman, G.M.7
Siniossoglou, S.8
-
46
-
-
84873206436
-
Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases
-
S. Siniossoglou Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases Biochim. Biophys. Acta 1831 2013 575 581
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 575-581
-
-
Siniossoglou, S.1
-
47
-
-
84925285545
-
Phosphatidate phosphatase-1 is functionally conserved in lipid synthesis and storage from human to yeast
-
Z. Fang, S. Wang, X. Du, P. Shi, and Z. Huang Phosphatidate phosphatase-1 is functionally conserved in lipid synthesis and storage from human to yeast Acta Biol. Hung. 65 2014 481 492
-
(2014)
Acta Biol. Hung.
, vol.65
, pp. 481-492
-
-
Fang, Z.1
Wang, S.2
Du, X.3
Shi, P.4
Huang, Z.5
-
48
-
-
84877615840
-
Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling
-
L.S. Csaki, J.R. Dwyer, L.G. Fong, P. Tontonoz, S.G. Young, and K. Reue Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling Prog. Lipid Res. 52 2013 305 316
-
(2013)
Prog. Lipid Res.
, vol.52
, pp. 305-316
-
-
Csaki, L.S.1
Dwyer, J.R.2
Fong, L.G.3
Tontonoz, P.4
Young, S.G.5
Reue, K.6
-
49
-
-
84882290578
-
COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
-
A.R. Thiam, B. Antonny, J. Wang, J. Delacotte, F. Wilfling, T.C. Walther, R. Beck, J.E. Rothman, and F. Pincet COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function Proc. Natl. Acad. Sci. U. S. A. 110 2013 13244 13249
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 13244-13249
-
-
Thiam, A.R.1
Antonny, B.2
Wang, J.3
Delacotte, J.4
Wilfling, F.5
Walther, T.C.6
Beck, R.7
Rothman, J.E.8
Pincet, F.9
-
50
-
-
79960933880
-
A role for phosphatidic acid in the formation of "supersized" lipid droplets
-
W. Fei, G. Shui, Y. Zhang, N. Krahmer, C. Ferguson, T.S. Kapterian, R.C. Lin, I.W. Dawes, A.J. Brown, P. Li, X. Huang, R.G. Parton, M.R. Wenk, T.C. Walther, and H. Yang A role for phosphatidic acid in the formation of "supersized" lipid droplets PLoS Genet. 7 2011 e1002201
-
(2011)
PLoS Genet.
, vol.7
-
-
Fei, W.1
Shui, G.2
Zhang, Y.3
Krahmer, N.4
Ferguson, C.5
Kapterian, T.S.6
Lin, R.C.7
Dawes, I.W.8
Brown, A.J.9
Li, P.10
Huang, X.11
Parton, R.G.12
Wenk, M.R.13
Walther, T.C.14
Yang, H.15
-
51
-
-
44449095056
-
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
-
Y. Guo, T.C. Walther, M. Rao, N. Stuurman, G. Goshima, K. Terayama, J.S. Wong, R.D. Vale, P. Walter, and R.V. Farese Functional genomic screen reveals genes involved in lipid-droplet formation and utilization Nature 453 2008 657 661
-
(2008)
Nature
, vol.453
, pp. 657-661
-
-
Guo, Y.1
Walther, T.C.2
Rao, M.3
Stuurman, N.4
Goshima, G.5
Terayama, K.6
Wong, J.S.7
Vale, R.D.8
Walter, P.9
Farese, R.V.10
-
52
-
-
80053927108
-
Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
-
N. Krahmer, Y. Guo, F. Wilfling, M. Hilger, S. Lingrell, K. Heger, H.W. Newman, M. Schmidt-Supprian, D.E. Vance, M. Mann, R.V. Farese Jr.; and T.C. Walther Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase Cell Metab. 14 2011 504 515
-
(2011)
Cell Metab.
, vol.14
, pp. 504-515
-
-
Krahmer, N.1
Guo, Y.2
Wilfling, F.3
Hilger, M.4
Lingrell, S.5
Heger, K.6
Newman, H.W.7
Schmidt-Supprian, M.8
Vance, D.E.9
Mann, M.10
Farese, R.V.11
Walther, T.C.12
-
53
-
-
79958712557
-
Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine
-
C. Moessinger, L. Kuerschner, J. Spandl, A. Shevchenko, and C. Thiele Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine J. Biol. Chem. 286 2011 21330 21339
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21330-21339
-
-
Moessinger, C.1
Kuerschner, L.2
Spandl, J.3
Shevchenko, A.4
Thiele, C.5
-
55
-
-
38349127584
-
Evolutionarily conserved gene family important for fat storage
-
B. Kadereit, P. Kumar, W.J. Wang, D. Miranda, E.L. Snapp, N. Severina, I. Torregroza, T. Evans, and D.L. Silver Evolutionarily conserved gene family important for fat storage Proc. Natl. Acad. Sci. U. S. A. 105 2008 94 99
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 94-99
-
-
Kadereit, B.1
Kumar, P.2
Wang, W.J.3
Miranda, D.4
Snapp, E.L.5
Severina, N.6
Torregroza, I.7
Evans, T.8
Silver, D.L.9
-
56
-
-
82755163040
-
Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2
-
D.A. Miranda, T.R. Koves, D.A. Gross, A. Chadt, H. Al-Hasani, G.W. Cline, G.J. Schwartz, D.M. Muoio, and D.L. Silver Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2 J. Biol. Chem. 286 2011 42188 42199
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 42188-42199
-
-
Miranda, D.A.1
Koves, T.R.2
Gross, D.A.3
Chadt, A.4
Al-Hasani, H.5
Cline, G.W.6
Schwartz, G.J.7
Muoio, D.M.8
Silver, D.L.9
-
57
-
-
84898071985
-
Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue
-
D.A. Miranda, J.H. Kim, L.N. Nguyen, W. Cheng, B.C. Tan, V.J. Goh, J.S. Tan, J. Yaligar, B.P. Kn, S.S. Velan, H. Wang, and D.L. Silver Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue J. Biol. Chem. 289 2014 9560 9572
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 9560-9572
-
-
Miranda, D.A.1
Kim, J.H.2
Nguyen, L.N.3
Cheng, W.4
Tan, B.C.5
Goh, V.J.6
Tan, J.S.7
Yaligar, J.8
Kn, B.P.9
Velan, S.S.10
Wang, H.11
Silver, D.L.12
-
58
-
-
84971299729
-
A conserved family of proteins facilitates nascent lipid droplet budding from the ER
-
V. Choudhary, N. Ojha, A. Golden, and W.A. Prinz A conserved family of proteins facilitates nascent lipid droplet budding from the ER J. Cell Biol. 211 2015 261 271
-
(2015)
J. Cell Biol.
, vol.211
, pp. 261-271
-
-
Choudhary, V.1
Ojha, N.2
Golden, A.3
Prinz, W.A.4
-
59
-
-
84861432786
-
Seipin: From human disease to molecular mechanism
-
B.R. Cartwright, and J.M. Goodman Seipin: from human disease to molecular mechanism J. Lipid Res. 53 2012 1042 1055
-
(2012)
J. Lipid Res.
, vol.53
, pp. 1042-1055
-
-
Cartwright, B.R.1
Goodman, J.M.2
-
60
-
-
39049151385
-
Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast
-
W. Fei, G. Shui, B. Gaeta, X. Du, L. Kuerschner, P. Li, A.J. Brown, M.R. Wenk, R.G. Parton, and H. Yang Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast J. Cell Biol. 180 2008 473 482
-
(2008)
J. Cell Biol.
, vol.180
, pp. 473-482
-
-
Fei, W.1
Shui, G.2
Gaeta, B.3
Du, X.4
Kuerschner, L.5
Li, P.6
Brown, A.J.7
Wenk, M.R.8
Parton, R.G.9
Yang, H.10
-
61
-
-
38049184643
-
The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology
-
K.M. Szymanski, D. Binns, R. Bartz, N.V. Grishin, W.P. Li, A.K. Agarwal, A. Garg, R.G. Anderson, and J.M. Goodman The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology Proc. Natl. Acad. Sci. U. S. A. 104 2007 20890 20895
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 20890-20895
-
-
Szymanski, K.M.1
Binns, D.2
Bartz, R.3
Grishin, N.V.4
Li, W.P.5
Agarwal, A.K.6
Garg, A.7
Anderson, R.G.8
Goodman, J.M.9
-
62
-
-
84903362768
-
Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16
-
C.W. Wang, Y.H. Miao, and Y.S. Chang Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16 J. Cell Sci. 127 2014 1214 1228
-
(2014)
J. Cell Sci.
, vol.127
, pp. 1214-1228
-
-
Wang, C.W.1
Miao, Y.H.2
Chang, Y.S.3
-
63
-
-
84922780683
-
Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology
-
B.R. Cartwright, D.D. Binns, C.L. Hilton, S. Han, Q. Gao, and J.M. Goodman Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology Mol. Biol. Cell 26 2015 726 739
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 726-739
-
-
Cartwright, B.R.1
Binns, D.D.2
Hilton, C.L.3
Han, S.4
Gao, Q.5
Goodman, J.M.6
-
64
-
-
84924061517
-
Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis
-
M.M. Talukder, M.F. Sim, S. O'Rahilly, J.M. Edwardson, and J.J. Rochford Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis Mol. Metab. 4 2015 199 209
-
(2015)
Mol. Metab.
, vol.4
, pp. 199-209
-
-
Talukder, M.M.1
Sim, M.F.2
O'Rahilly, S.3
Edwardson, J.M.4
Rochford, J.J.5
-
65
-
-
0141509906
-
Adipocyte protein S3-12 coats nascent lipid droplets
-
N.E. Wolins, J.R. Skinner, M.J. Schoenfish, A. Tzekov, K.G. Bensch, and P.E. Bickel Adipocyte protein S3-12 coats nascent lipid droplets J. Biol. Chem. 278 2003 37713 37721
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37713-37721
-
-
Wolins, N.E.1
Skinner, J.R.2
Schoenfish, M.J.3
Tzekov, A.4
Bensch, K.G.5
Bickel, P.E.6
-
66
-
-
84895764551
-
Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
-
A. Kassan, A. Herms, A. Fernandez-Vidal, M. Bosch, N.L. Schieber, B.J. Reddy, A. Fajardo, M. Gelabert-Baldrich, F. Tebar, C. Enrich, S.P. Gross, R.G. Parton, and A. Pol Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains J. Cell Biol. 203 2013 985 1001
-
(2013)
J. Cell Biol.
, vol.203
, pp. 985-1001
-
-
Kassan, A.1
Herms, A.2
Fernandez-Vidal, A.3
Bosch, M.4
Schieber, N.L.5
Reddy, B.J.6
Fajardo, A.7
Gelabert-Baldrich, M.8
Tebar, F.9
Enrich, C.10
Gross, S.P.11
Parton, R.G.12
Pol, A.13
-
68
-
-
66149107375
-
TIP47 functions in the biogenesis of lipid droplets
-
A.V. Bulankina, A. Deggerich, D. Wenzel, K. Mutenda, J.G. Wittmann, M.G. Rudolph, K.N. Burger, and S. Honing TIP47 functions in the biogenesis of lipid droplets J. Cell Biol. 185 2009 641 655
-
(2009)
J. Cell Biol.
, vol.185
, pp. 641-655
-
-
Bulankina, A.V.1
Deggerich, A.2
Wenzel, D.3
Mutenda, K.4
Wittmann, J.G.5
Rudolph, M.G.6
Burger, K.N.7
Honing, S.8
-
69
-
-
70350128630
-
Identification of novel spartin-interactors shows spartin is a multifunctional protein
-
M. Milewska, J. McRedmond, and P.C. Byrne Identification of novel spartin-interactors shows spartin is a multifunctional protein J. Neurochem. 111 2009 1022 1030
-
(2009)
J. Neurochem.
, vol.111
, pp. 1022-1030
-
-
Milewska, M.1
McRedmond, J.2
Byrne, P.C.3
-
70
-
-
79953147165
-
Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region
-
J. Spandl, D. Lohmann, L. Kuerschner, C. Moessinger, and C. Thiele Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region J. Biol. Chem. 286 2011 5599 5606
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5599-5606
-
-
Spandl, J.1
Lohmann, D.2
Kuerschner, L.3
Moessinger, C.4
Thiele, C.5
-
71
-
-
64049118343
-
A role for ubiquitin ligases and spartin/SPG20 in lipid droplet turnover
-
S.W. Eastman, M. Yassaee, and P.D. Bieniasz A role for ubiquitin ligases and spartin/SPG20 in lipid droplet turnover J. Cell Biol. 184 2009 881 894
-
(2009)
J. Cell Biol.
, vol.184
, pp. 881-894
-
-
Eastman, S.W.1
Yassaee, M.2
Bieniasz, P.D.3
-
72
-
-
80054801259
-
Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control
-
E.J. Klemm, E. Spooner, and H.L. Ploegh Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control J. Biol. Chem. 286 2011 37602 37614
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 37602-37614
-
-
Klemm, E.J.1
Spooner, E.2
Ploegh, H.L.3
-
73
-
-
33745593021
-
Characterization of the Drosophila lipid droplet subproteome
-
M. Beller, D. Riedel, L. Jansch, G. Dieterich, J. Wehland, H. Jackle, and R.P. Kuhnlein Characterization of the Drosophila lipid droplet subproteome Mol. Cell. Proteomics: MCP 5 2006 1082 1094
-
(2006)
Mol. Cell. Proteomics: MCP
, vol.5
, pp. 1082-1094
-
-
Beller, M.1
Riedel, D.2
Jansch, L.3
Dieterich, G.4
Wehland, J.5
Jackle, H.6
Kuhnlein, R.P.7
-
74
-
-
81055148267
-
The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics
-
J. Bouchoux, F. Beilstein, T. Pauquai, I.C. Guerrera, D. Chateau, N. Ly, M. Alqub, C. Klein, J. Chambaz, M. Rousset, J.M. Lacorte, E. Morel, and S. Demignot The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics Biology of the Cell/Under the Auspices of the European Cell Biology Organization 103 2011 499 517
-
(2011)
Biology of the Cell/Under the Auspices of the European Cell Biology Organization
, vol.103
, pp. 499-517
-
-
Bouchoux, J.1
Beilstein, F.2
Pauquai, T.3
Guerrera, I.C.4
Chateau, D.5
Ly, N.6
Alqub, M.7
Klein, C.8
Chambaz, J.9
Rousset, M.10
Lacorte, J.M.11
Morel, E.12
Demignot, S.13
-
75
-
-
84860436155
-
Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse
-
Y. Ding, Y. Wu, R. Zeng, and K. Liao Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse Acta Biochim. Biophys. Sin. 44 2012 394 406
-
(2012)
Acta Biochim. Biophys. Sin.
, vol.44
, pp. 394-406
-
-
Ding, Y.1
Wu, Y.2
Zeng, R.3
Liao, K.4
-
76
-
-
84868558195
-
Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris
-
V.A. Ivashov, K. Grillitsch, H. Koefeler, E. Leitner, D. Baeumlisberger, M. Karas, and G. Daum Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris Biochim. Biophys. Acta 1831 2013 282 290
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 282-290
-
-
Ivashov, V.A.1
Grillitsch, K.2
Koefeler, H.3
Leitner, E.4
Baeumlisberger, D.5
Karas, M.6
Daum, G.7
-
77
-
-
8744267532
-
Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
-
D.L. Brasaemle, G. Dolios, L. Shapiro, and R. Wang Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes J. Biol. Chem. 279 2004 46835 46842
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 46835-46842
-
-
Brasaemle, D.L.1
Dolios, G.2
Shapiro, L.3
Wang, R.4
-
78
-
-
66349128492
-
PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores
-
P.E. Bickel, J.T. Tansey, and M.A. Welte PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores Biochim. Biophys. Acta 1791 2009 419 440
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 419-440
-
-
Bickel, P.E.1
Tansey, J.T.2
Welte, M.A.3
-
79
-
-
77950607704
-
Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins
-
A.R. Kimmel, D.L. Brasaemle, M. McAndrews-Hill, C. Sztalryd, and C. Londos Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins J. Lipid Res. 51 2010 468 471
-
(2010)
J. Lipid Res.
, vol.51
, pp. 468-471
-
-
Kimmel, A.R.1
Brasaemle, D.L.2
McAndrews-Hill, M.3
Sztalryd, C.4
Londos, C.5
-
80
-
-
0037200026
-
Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium
-
S. Miura, J.W. Gan, J. Brzostowski, M.J. Parisi, C.J. Schultz, C. Londos, B. Oliver, and A.R. Kimmel Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium J. Biol. Chem. 277 2002 32253 32257
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 32253-32257
-
-
Miura, S.1
Gan, J.W.2
Brzostowski, J.3
Parisi, M.J.4
Schultz, C.J.5
Londos, C.6
Oliver, B.7
Kimmel, A.R.8
-
81
-
-
84944870560
-
Perilipin-related protein regulates lipid metabolism in C. Elegans
-
A.A. Chughtai, F. Kassak, M. Kostrouchova, J.P. Novotny, M.W. Krause, V. Saudek, Z. Kostrouch, and M. Kostrouchova Perilipin-related protein regulates lipid metabolism in C. elegans PeerJ 3 2015 e1213
-
(2015)
PeerJ
, vol.3
-
-
Chughtai, A.A.1
Kassak, F.2
Kostrouchova, M.3
Novotny, J.P.4
Krause, M.W.5
Saudek, V.6
Kostrouch, Z.7
Kostrouchova, M.8
-
82
-
-
0034861995
-
The murine perilipin gene: The lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin
-
X. Lu, J. Gruia-Gray, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, C. Londos, and A.R. Kimmel The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin Mamm. Genome: official journal of the International Mammalian Genome Society 12 2001 741 749
-
(2001)
Mamm. Genome: Official Journal of the International Mammalian Genome Society
, vol.12
, pp. 741-749
-
-
Lu, X.1
Gruia-Gray, J.2
Copeland, N.G.3
Gilbert, D.J.4
Jenkins, N.A.5
Londos, C.6
Kimmel, A.R.7
-
83
-
-
30044445455
-
Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway
-
G. Xu, C. Sztalryd, X. Lu, J.T. Tansey, J. Gan, H. Dorward, A.R. Kimmel, and C. Londos Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway J. Biol. Chem. 280 2005 42841 42847
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 42841-42847
-
-
Xu, G.1
Sztalryd, C.2
Lu, X.3
Tansey, J.T.4
Gan, J.5
Dorward, H.6
Kimmel, A.R.7
Londos, C.8
-
84
-
-
0036786517
-
ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts
-
M. Imamura, T. Inoguchi, S. Ikuyama, S. Taniguchi, K. Kobayashi, N. Nakashima, and H. Nawata ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts Am. J. Physiol. Endocrinol. Metab. 283 2002 E775 E783
-
(2002)
Am. J. Physiol. Endocrinol. Metab.
, vol.283
, pp. E775-E783
-
-
Imamura, M.1
Inoguchi, T.2
Ikuyama, S.3
Taniguchi, S.4
Kobayashi, K.5
Nakashima, N.6
Nawata, H.7
-
85
-
-
33749058310
-
A proposed model of fat packaging by exchangeable lipid droplet proteins
-
N.E. Wolins, D.L. Brasaemle, and P.E. Bickel A proposed model of fat packaging by exchangeable lipid droplet proteins FEBS Lett. 580 2006 5484 5491
-
(2006)
FEBS Lett.
, vol.580
, pp. 5484-5491
-
-
Wolins, N.E.1
Brasaemle, D.L.2
Bickel, P.E.3
-
86
-
-
67349106073
-
Perilipin A and the control of triacylglycerol metabolism
-
D.L. Brasaemle, V. Subramanian, A. Garcia, A. Marcinkiewicz, and A. Rothenberg Perilipin A and the control of triacylglycerol metabolism Mol. Cell. Biochem. 326 2009 15 21
-
(2009)
Mol. Cell. Biochem.
, vol.326
, pp. 15-21
-
-
Brasaemle, D.L.1
Subramanian, V.2
Garcia, A.3
Marcinkiewicz, A.4
Rothenberg, A.5
-
87
-
-
8844226709
-
Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
-
R. Zimmermann, J.G. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-Gruenberger, M. Riederer, A. Lass, G. Neuberger, F. Eisenhaber, A. Hermetter, and R. Zechner Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase Science 306 2004 1383 1386
-
(2004)
Science
, vol.306
, pp. 1383-1386
-
-
Zimmermann, R.1
Strauss, J.G.2
Haemmerle, G.3
Schoiswohl, G.4
Birner-Gruenberger, R.5
Riederer, M.6
Lass, A.7
Neuberger, G.8
Eisenhaber, F.9
Hermetter, A.10
Zechner, R.11
-
88
-
-
33846029180
-
Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism
-
M. Schweiger, R. Schreiber, G. Haemmerle, A. Lass, C. Fledelius, P. Jacobsen, H. Tornqvist, R. Zechner, and R. Zimmermann Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism J. Biol. Chem. 281 2006 40236 40241
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 40236-40241
-
-
Schweiger, M.1
Schreiber, R.2
Haemmerle, G.3
Lass, A.4
Fledelius, C.5
Jacobsen, P.6
Tornqvist, H.7
Zechner, R.8
Zimmermann, R.9
-
89
-
-
79955958008
-
Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance
-
U. Taschler, F.P. Radner, C. Heier, R. Schreiber, M. Schweiger, G. Schoiswohl, K. Preiss-Landl, D. Jaeger, B. Reiter, H.C. Koefeler, J. Wojciechowski, C. Theussl, J.M. Penninger, A. Lass, G. Haemmerle, R. Zechner, and R. Zimmermann Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance J. Biol. Chem. 286 2011 17467 17477
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 17467-17477
-
-
Taschler, U.1
Radner, F.P.2
Heier, C.3
Schreiber, R.4
Schweiger, M.5
Schoiswohl, G.6
Preiss-Landl, K.7
Jaeger, D.8
Reiter, B.9
Koefeler, H.C.10
Wojciechowski, J.11
Theussl, C.12
Penninger, J.M.13
Lass, A.14
Haemmerle, G.15
Zechner, R.16
Zimmermann, R.17
-
90
-
-
38149068433
-
The small G proteins of the Arf family and their regulators
-
A.K. Gillingham, and S. Munro The small G proteins of the Arf family and their regulators Annu. Rev. Cell Dev. Biol. 23 2007 579 611
-
(2007)
Annu. Rev. Cell Dev. Biol.
, vol.23
, pp. 579-611
-
-
Gillingham, A.K.1
Munro, S.2
-
91
-
-
34548150017
-
Dynamic activity of lipid droplets: Protein phosphorylation and GTP-mediated protein translocation
-
R. Bartz, J.K. Zehmer, M. Zhu, Y. Chen, G. Serrero, Y. Zhao, and P. Liu Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation J. Proteome Res. 6 2007 3256 3265
-
(2007)
J. Proteome Res.
, vol.6
, pp. 3256-3265
-
-
Bartz, R.1
Zehmer, J.K.2
Zhu, M.3
Chen, Y.4
Serrero, G.5
Zhao, Y.6
Liu, P.7
-
92
-
-
25144470244
-
Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells
-
N. Nakamura, Y. Banno, and K. Tamiya-Koizumi Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells Biochem. Biophys. Res. Commun. 335 2005 117 123
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.335
, pp. 117-123
-
-
Nakamura, N.1
Banno, Y.2
Tamiya-Koizumi, K.3
-
93
-
-
56849110119
-
COPI complex is a regulator of lipid homeostasis
-
M. Beller, C. Sztalryd, N. Southall, M. Bell, H. Jackle, D.S. Auld, and B. Oliver COPI complex is a regulator of lipid homeostasis PLoS Biol. 6 2008 e292
-
(2008)
PLoS Biol.
, vol.6
-
-
Beller, M.1
Sztalryd, C.2
Southall, N.3
Bell, M.4
Jackle, H.5
Auld, D.S.6
Oliver, B.7
-
94
-
-
84898715853
-
Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
-
F. Wilfling, A.R. Thiam, M.J. Olarte, J. Wang, R. Beck, T.J. Gould, E.S. Allgeyer, F. Pincet, J. Bewersdorf, R.V. Farese Jr.; and T.C. Walther Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting eLife 3 2014 e01607
-
(2014)
ELife
, vol.3
-
-
Wilfling, F.1
Thiam, A.R.2
Olarte, M.J.3
Wang, J.4
Beck, R.5
Gould, T.J.6
Allgeyer, E.S.7
Pincet, F.8
Bewersdorf, J.9
Farese, R.V.10
Walther, T.C.11
-
96
-
-
48749103552
-
FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets
-
N. Nishino, Y. Tamori, S. Tateya, T. Kawaguchi, T. Shibakusa, W. Mizunoya, K. Inoue, R. Kitazawa, S. Kitazawa, Y. Matsuki, R. Hiramatsu, S. Masubuchi, A. Omachi, K. Kimura, M. Saito, T. Amo, S. Ohta, T. Yamaguchi, T. Osumi, J. Cheng, T. Fujimoto, H. Nakao, K. Nakao, A. Aiba, H. Okamura, T. Fushiki, and M. Kasuga FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets J. Clin. Invest. 118 2008 2808 2821
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2808-2821
-
-
Nishino, N.1
Tamori, Y.2
Tateya, S.3
Kawaguchi, T.4
Shibakusa, T.5
Mizunoya, W.6
Inoue, K.7
Kitazawa, R.8
Kitazawa, S.9
Matsuki, Y.10
Hiramatsu, R.11
Masubuchi, S.12
Omachi, A.13
Kimura, K.14
Saito, M.15
Amo, T.16
Ohta, S.17
Yamaguchi, T.18
Osumi, T.19
Cheng, J.20
Fujimoto, T.21
Nakao, H.22
Nakao, K.23
Aiba, A.24
Okamura, H.25
Fushiki, T.26
Kasuga, M.27
more..
-
97
-
-
84862908504
-
Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
-
J. Gong, Z. Sun, L. Wu, W. Xu, N. Schieber, D. Xu, G. Shui, H. Yang, R.G. Parton, and P. Li Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites J. Cell Biol. 195 2011 953 963
-
(2011)
J. Cell Biol.
, vol.195
, pp. 953-963
-
-
Gong, J.1
Sun, Z.2
Wu, L.3
Xu, W.4
Schieber, N.5
Xu, D.6
Shui, G.7
Yang, H.8
Parton, R.G.9
Li, P.10
-
98
-
-
84875871194
-
Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes
-
Z. Sun, J. Gong, H. Wu, W. Xu, L. Wu, D. Xu, J. Gao, J.W. Wu, H. Yang, M. Yang, and P. Li Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes Nat. Commun. 4 2013 1594
-
(2013)
Nat. Commun.
, vol.4
, pp. 1594
-
-
Sun, Z.1
Gong, J.2
Wu, H.3
Xu, W.4
Wu, L.5
Xu, D.6
Gao, J.7
Wu, J.W.8
Yang, H.9
Yang, M.10
Li, P.11
-
99
-
-
84907327727
-
Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth
-
L. Wu, D. Xu, L. Zhou, B. Xie, L. Yu, H. Yang, L. Huang, J. Ye, H. Deng, Y.A. Yuan, S. Chen, and P. Li Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth Dev. Cell 30 2014 378 393
-
(2014)
Dev. Cell
, vol.30
, pp. 378-393
-
-
Wu, L.1
Xu, D.2
Zhou, L.3
Xie, B.4
Yu, L.5
Yang, H.6
Huang, L.7
Ye, J.8
Deng, H.9
Yuan, Y.A.10
Chen, S.11
Li, P.12
-
100
-
-
84899428316
-
Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes
-
T.H. Grahn, R. Kaur, J. Yin, M. Schweiger, V.M. Sharma, M.J. Lee, Y. Ido, C.M. Smas, R. Zechner, A. Lass, and V. Puri Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes J. Biol. Chem. 289 2014 12029 12039
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 12029-12039
-
-
Grahn, T.H.1
Kaur, R.2
Yin, J.3
Schweiger, M.4
Sharma, V.M.5
Lee, M.J.6
Ido, Y.7
Smas, C.M.8
Zechner, R.9
Lass, A.10
Puri, V.11
-
101
-
-
84901419238
-
Fat-specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of transcription factor Egr1 on transcription of adipose triglyceride lipase
-
M. Singh, R. Kaur, M.J. Lee, R.T. Pickering, V.M. Sharma, V. Puri, and K.V. Kandror Fat-specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of transcription factor Egr1 on transcription of adipose triglyceride lipase J. Biol. Chem. 289 2014 14481 14487
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 14481-14487
-
-
Singh, M.1
Kaur, R.2
Lee, M.J.3
Pickering, R.T.4
Sharma, V.M.5
Puri, V.6
Kandror, K.V.7
-
102
-
-
0031931498
-
Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles
-
R. Leber, K. Landl, E. Zinser, H. Ahorn, A. Spok, S.D. Kohlwein, F. Turnowsky, and G. Daum Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles Mol. Biol. Cell 9 1998 375 386
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 375-386
-
-
Leber, R.1
Landl, K.2
Zinser, E.3
Ahorn, H.4
Spok, A.5
Kohlwein, S.D.6
Turnowsky, F.7
Daum, G.8
-
103
-
-
84863237087
-
Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets
-
M. Suzuki, T. Otsuka, Y. Ohsaki, J. Cheng, T. Taniguchi, H. Hashimoto, H. Taniguchi, and T. Fujimoto Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets Mol. Biol. Cell 23 2012 800 810
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 800-810
-
-
Suzuki, M.1
Otsuka, T.2
Ohsaki, Y.3
Cheng, J.4
Taniguchi, T.5
Hashimoto, H.6
Taniguchi, H.7
Fujimoto, T.8
-
104
-
-
33744755382
-
Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B
-
Y. Ohsaki, J. Cheng, A. Fujita, T. Tokumoto, and T. Fujimoto Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B Mol. Biol. Cell 17 2006 2674 2683
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 2674-2683
-
-
Ohsaki, Y.1
Cheng, J.2
Fujita, A.3
Tokumoto, T.4
Fujimoto, T.5
-
105
-
-
49649118638
-
Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100
-
Y. Ohsaki, J. Cheng, M. Suzuki, A. Fujita, and T. Fujimoto Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100 J. Cell Sci. 121 2008 2415 2422
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2415-2422
-
-
Ohsaki, Y.1
Cheng, J.2
Suzuki, M.3
Fujita, A.4
Fujimoto, T.5
-
106
-
-
84930577438
-
Lipid droplets are essential for efficient clearance of cytosolic inclusion bodies
-
O. Moldavski, T. Amen, S. Levin-Zaidman, M. Eisenstein, I. Rogachev, A. Brandis, D. Kaganovich, and M. Schuldiner Lipid droplets are essential for efficient clearance of cytosolic inclusion bodies Dev. Cell 33 2015 603 610
-
(2015)
Dev. Cell
, vol.33
, pp. 603-610
-
-
Moldavski, O.1
Amen, T.2
Levin-Zaidman, S.3
Eisenstein, M.4
Rogachev, I.5
Brandis, A.6
Kaganovich, D.7
Schuldiner, M.8
-
107
-
-
84927623326
-
Hepatitis C virus and lipid droplets: Finding a niche
-
A. Filipe, and J. McLauchlan Hepatitis C virus and lipid droplets: finding a niche Trends Mol. Med. 21 2015 34 42
-
(2015)
Trends Mol. Med.
, vol.21
, pp. 34-42
-
-
Filipe, A.1
McLauchlan, J.2
-
109
-
-
47649114826
-
Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner
-
S. Boulant, M.W. Douglas, L. Moody, A. Budkowska, P. Targett-Adams, and J. McLauchlan Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner Traffic 9 2008 1268 1282
-
(2008)
Traffic
, vol.9
, pp. 1268-1282
-
-
Boulant, S.1
Douglas, M.W.2
Moody, L.3
Budkowska, A.4
Targett-Adams, P.5
McLauchlan, J.6
-
110
-
-
84883350018
-
Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets
-
S. Salloum, H. Wang, C. Ferguson, R.G. Parton, and A.W. Tai Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets PLoS Pathog. 9 2013 e1003513
-
(2013)
PLoS Pathog.
, vol.9
-
-
Salloum, S.1
Wang, H.2
Ferguson, C.3
Parton, R.G.4
Tai, A.W.5
-
111
-
-
19044396066
-
Characterization of low- and very-low-density hepatitis C virus RNA-containing particles
-
P. Andre, F. Komurian-Pradel, S. Deforges, M. Perret, J.L. Berland, M. Sodoyer, S. Pol, C. Brechot, G. Paranhos-Baccala, and V. Lotteau Characterization of low- and very-low-density hepatitis C virus RNA-containing particles J. Virol. 76 2002 6919 6928
-
(2002)
J. Virol.
, vol.76
, pp. 6919-6928
-
-
Andre, P.1
Komurian-Pradel, F.2
Deforges, S.3
Perret, M.4
Berland, J.L.5
Sodoyer, M.6
Pol, S.7
Brechot, C.8
Paranhos-Baccala, G.9
Lotteau, V.10
-
112
-
-
79958815982
-
Unique ties between hepatitis C virus replication and intracellular lipids
-
E. Herker, and M. Ott Unique ties between hepatitis C virus replication and intracellular lipids Trends Endocrinol. Metab.: TEM 22 2011 241 248
-
(2011)
Trends Endocrinol. Metab.: TEM
, vol.22
, pp. 241-248
-
-
Herker, E.1
Ott, M.2
-
113
-
-
77953300336
-
Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication
-
W. Cheung, M. Gill, A. Esposito, C.F. Kaminski, N. Courousse, S. Chwetzoff, G. Trugnan, N. Keshavan, A. Lever, and U. Desselberger Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication J. Virol. 84 2010 6782 6798
-
(2010)
J. Virol.
, vol.84
, pp. 6782-6798
-
-
Cheung, W.1
Gill, M.2
Esposito, A.3
Kaminski, C.F.4
Courousse, N.5
Chwetzoff, S.6
Trugnan, G.7
Keshavan, N.8
Lever, A.9
Desselberger, U.10
-
114
-
-
73449101533
-
Dengue virus capsid protein usurps lipid droplets for viral particle formation
-
M.M. Samsa, J.A. Mondotte, N.G. Iglesias, I. Assuncao-Miranda, G. Barbosa-Lima, A.T. Da Poian, P.T. Bozza, and A.V. Gamarnik Dengue virus capsid protein usurps lipid droplets for viral particle formation PLoS Pathog. 5 2009 e1000632
-
(2009)
PLoS Pathog.
, vol.5
-
-
Samsa, M.M.1
Mondotte, J.A.2
Iglesias, N.G.3
Assuncao-Miranda, I.4
Barbosa-Lima, G.5
Da Poian, A.T.6
Bozza, P.T.7
Gamarnik, A.V.8
-
115
-
-
48249118352
-
Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole
-
J.L. Cocchiaro, Y. Kumar, E.R. Fischer, T. Hackstadt, and R.H. Valdivia Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole Proc. Natl. Acad. Sci. U. S. A. 105 2008 9379 9384
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 9379-9384
-
-
Cocchiaro, J.L.1
Kumar, Y.2
Fischer, E.R.3
Hackstadt, T.4
Valdivia, R.H.5
-
116
-
-
84887989063
-
Lipid droplets and Mycobacterium leprae infection
-
A.A. Elamin, M. Stehr, and M. Singh Lipid droplets and Mycobacterium leprae infection J. Pathol. 2012 2012 361374
-
(2012)
J. Pathol.
, vol.2012
, pp. 361374
-
-
Elamin, A.A.1
Stehr, M.2
Singh, M.3
-
117
-
-
84867654401
-
Emerging roles for lipid droplets in immunity and host-pathogen interactions
-
H.A. Saka, and R. Valdivia Emerging roles for lipid droplets in immunity and host-pathogen interactions Annu. Rev. Cell Dev. Biol. 28 2012 411 437
-
(2012)
Annu. Rev. Cell Dev. Biol.
, vol.28
, pp. 411-437
-
-
Saka, H.A.1
Valdivia, R.2
-
118
-
-
55349100857
-
Antimicrobial action of histone H2B in Escherichia coli: Evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase T
-
H. Kawasaki, T. Koyama, J.M. Conlon, F. Yamakura, and S. Iwamuro Antimicrobial action of histone H2B in Escherichia coli: evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase T Biochimie 90 2008 1693 1702
-
(2008)
Biochimie
, vol.90
, pp. 1693-1702
-
-
Kawasaki, H.1
Koyama, T.2
Conlon, J.M.3
Yamakura, F.4
Iwamuro, S.5
-
119
-
-
52449132868
-
Potential roles of histones in host defense as antimicrobial agents
-
H. Kawasaki, and S. Iwamuro Potential roles of histones in host defense as antimicrobial agents Infect. Disord. Drug Targets 8 2008 195 205
-
(2008)
Infect. Disord. Drug Targets
, vol.8
, pp. 195-205
-
-
Kawasaki, H.1
Iwamuro, S.2
-
120
-
-
70349158577
-
Histone H4 is a major component of the antimicrobial action of human sebocytes
-
D.Y. Lee, C.M. Huang, T. Nakatsuji, D. Thiboutot, S.A. Kang, M. Monestier, and R.L. Gallo Histone H4 is a major component of the antimicrobial action of human sebocytes J. Invest. Dermatol. 129 2009 2489 2496
-
(2009)
J. Invest. Dermatol.
, vol.129
, pp. 2489-2496
-
-
Lee, D.Y.1
Huang, C.M.2
Nakatsuji, T.3
Thiboutot, D.4
Kang, S.A.5
Monestier, M.6
Gallo, R.L.7
-
121
-
-
84869489094
-
Lipid droplets control the maternal histone supply of Drosophila embryos
-
Z. Li, K. Thiel, P.J. Thul, M. Beller, R.P. Kuhnlein, and M.A. Welte Lipid droplets control the maternal histone supply of Drosophila embryos Curr. Biol.: CB 22 2012 2104 2113
-
(2012)
Curr. Biol.: CB
, vol.22
, pp. 2104-2113
-
-
Li, Z.1
Thiel, K.2
Thul, P.J.3
Beller, M.4
Kuhnlein, R.P.5
Welte, M.A.6
-
122
-
-
84869508534
-
A novel role for lipid droplets in the organismal antibacterial response
-
P. Anand, S. Cermelli, Z. Li, A. Kassan, M. Bosch, R. Sigua, L. Huang, A.J. Ouellette, A. Pol, M.A. Welte, and S.P. Gross A novel role for lipid droplets in the organismal antibacterial response eLife 1 2012 e00003
-
(2012)
ELife
, vol.1
-
-
Anand, P.1
Cermelli, S.2
Li, Z.3
Kassan, A.4
Bosch, M.5
Sigua, R.6
Huang, L.7
Ouellette, A.J.8
Pol, A.9
Welte, M.A.10
Gross, S.P.11
-
123
-
-
84904055571
-
Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development
-
Z. Li, M.R. Johnson, Z. Ke, L. Chen, and M.A. Welte Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development Curr. Biol.: CB 24 2014 1485 1491
-
(2014)
Curr. Biol.: CB
, vol.24
, pp. 1485-1491
-
-
Li, Z.1
Johnson, M.R.2
Ke, Z.3
Chen, L.4
Welte, M.A.5
-
124
-
-
83655192651
-
Viperin: A multifunctional, interferon-inducible protein that regulates virus replication
-
J.Y. Seo, R. Yaneva, and P. Cresswell Viperin: a multifunctional, interferon-inducible protein that regulates virus replication Cell Host Microbe 10 2011 534 539
-
(2011)
Cell Host Microbe
, vol.10
, pp. 534-539
-
-
Seo, J.Y.1
Yaneva, R.2
Cresswell, P.3
-
125
-
-
84896692039
-
The role of viperin in the innate antiviral response
-
K.J. Helbig, and M.R. Beard The role of viperin in the innate antiviral response J. Mol. Biol. 426 2014 1210 1219
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 1210-1219
-
-
Helbig, K.J.1
Beard, M.R.2
-
126
-
-
80055046485
-
The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A
-
K.J. Helbig, N.S. Eyre, E. Yip, S. Narayana, K. Li, G. Fiches, E.M. McCartney, R.K. Jangra, S.M. Lemon, and M.R. Beard The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A Hepatology 54 2011 1506 1517
-
(2011)
Hepatology
, vol.54
, pp. 1506-1517
-
-
Helbig, K.J.1
Eyre, N.S.2
Yip, E.3
Narayana, S.4
Li, K.5
Fiches, G.6
McCartney, E.M.7
Jangra, R.K.8
Lemon, S.M.9
Beard, M.R.10
-
127
-
-
84876848344
-
Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin
-
K.J. Helbig, J.M. Carr, J.K. Calvert, S. Wati, J.N. Clarke, N.S. Eyre, S.K. Narayana, G.N. Fiches, E.M. McCartney, and M.R. Beard Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin PLoS Negl. Trop. Dis. 7 2013 e2178
-
(2013)
PLoS Negl. Trop. Dis.
, vol.7
-
-
Helbig, K.J.1
Carr, J.M.2
Calvert, J.K.3
Wati, S.4
Clarke, J.N.5
Eyre, N.S.6
Narayana, S.K.7
Fiches, G.N.8
McCartney, E.M.9
Beard, M.R.10
-
128
-
-
84883461543
-
Hereditary spastic paraplegia: Clinico-pathologic features and emerging molecular mechanisms
-
J.K. Fink Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms Acta Neuropathol. 126 2013 307 328
-
(2013)
Acta Neuropathol.
, vol.126
, pp. 307-328
-
-
Fink, J.K.1
-
129
-
-
84870879483
-
Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia
-
J.H. Schuurs-Hoeijmakers, M.T. Geraghty, E.J. Kamsteeg, S. Ben-Salem, S.T. de Bot, B. Nijhof, V. van de II, M. van der Graaf, A.C. Nobau, I. Otte-Holler, S. Vermeer, A.C. Smith, P. Humphreys, J. Schwartzentruber, B.R. Ali, S.A. Al-Yahyaee, S. Tariq, T. Pramathan, R. Bayoumi, H.P. Kremer, B.P. van de Warrenburg, W.M. van den Akker, C. Gilissen, J.A. Veltman, I.M. Janssen, A.T. Vulto-van Silfhout, S. van der Velde-Visser, D.J. Lefeber, A. Diekstra, C.E. Erasmus, M.A. Willemsen, L.E. Vissers, M. Lammens, H. van Bokhoven, H.G. Brunner, R.A. Wevers, A. Schenck, L. Al-Gazali, B.B. de Vries, and A.P. de Brouwer Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia Am. J. Hum. Genet. 91 2012 1073 1081
-
(2012)
Am. J. Hum. Genet.
, vol.91
, pp. 1073-1081
-
-
Schuurs-Hoeijmakers, J.H.1
Geraghty, M.T.2
Kamsteeg, E.J.3
Ben-Salem, S.4
De Bot, S.T.5
Nijhof, B.6
Van De Ii, V.7
Van Der Graaf, M.8
Nobau, A.C.9
Otte-Holler, I.10
Vermeer, S.11
Smith, A.C.12
Humphreys, P.13
Schwartzentruber, J.14
Ali, B.R.15
Al-Yahyaee, S.A.16
Tariq, S.17
Pramathan, T.18
Bayoumi, R.19
Kremer, H.P.20
Van De Warrenburg, B.P.21
Van Den Akker, W.M.22
Gilissen, C.23
Veltman, J.A.24
Janssen, I.M.25
Vulto-Van Silfhout, A.T.26
Van Der Velde-Visser, S.27
Lefeber, D.J.28
Diekstra, A.29
Erasmus, C.E.30
Willemsen, M.A.31
Vissers, L.E.32
Lammens, M.33
Van Bokhoven, H.34
Brunner, H.G.35
Wevers, R.A.36
Schenck, A.37
Al-Gazali, L.38
De Vries, B.B.39
De Brouwer, A.P.40
more..
-
130
-
-
84907892277
-
The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase
-
J.M. Inloes, K.L. Hsu, M.M. Dix, A. Viader, K. Masuda, T. Takei, M.R. Wood, and B.F. Cravatt The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase Proc. Natl. Acad. Sci. U. S. A. 111 2014 14924 14929
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 14924-14929
-
-
Inloes, J.M.1
Hsu, K.L.2
Dix, M.M.3
Viader, A.4
Masuda, K.5
Takei, T.6
Wood, M.R.7
Cravatt, B.F.8
-
131
-
-
84878535012
-
A conserved role for atlastin GTPases in regulating lipid droplet size
-
R.W. Klemm, J.P. Norton, R.A. Cole, C.S. Li, S.H. Park, M.M. Crane, L. Li, D. Jin, A. Boye-Doe, T.Y. Liu, Y. Shibata, H. Lu, T.A. Rapoport, R.V. Farese Jr.; C. Blackstone, Y. Guo, and H.Y. Mak A conserved role for atlastin GTPases in regulating lipid droplet size Cell Rep. 3 2013 1465 1475
-
(2013)
Cell Rep.
, vol.3
, pp. 1465-1475
-
-
Klemm, R.W.1
Norton, J.P.2
Cole, R.A.3
Li, C.S.4
Park, S.H.5
Crane, M.M.6
Li, L.7
Jin, D.8
Boye-Doe, A.9
Liu, T.Y.10
Shibata, Y.11
Lu, H.12
Rapoport, T.A.13
Farese, R.V.14
Blackstone, C.15
Guo, Y.16
Mak, H.Y.17
-
132
-
-
77951172861
-
Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network
-
S.H. Park, P.P. Zhu, R.L. Parker, and C. Blackstone Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network J. Clin. Invest. 120 2010 1097 1110
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1097-1110
-
-
Park, S.H.1
Zhu, P.P.2
Parker, R.L.3
Blackstone, C.4
-
133
-
-
84896113149
-
Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology
-
J. Falk, M. Rohde, M.M. Bekhite, S. Neugebauer, P. Hemmerich, M. Kiehntopf, T. Deufel, C.A. Hubner, and C. Beetz Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology Hum. Mutat. 35 2014 497 504
-
(2014)
Hum. Mutat.
, vol.35
, pp. 497-504
-
-
Falk, J.1
Rohde, M.2
Bekhite, M.M.3
Neugebauer, S.4
Hemmerich, P.5
Kiehntopf, M.6
Deufel, T.7
Hubner, C.A.8
Beetz, C.9
-
134
-
-
84930333672
-
Spastin binds to lipid droplets and affects lipid metabolism
-
C. Papadopoulos, G. Orso, G. Mancuso, M. Herholz, S. Gumeni, N. Tadepalle, C. Jungst, A. Tzschichholz, A. Schauss, S. Honing, A. Trifunovic, A. Daga, and E.I. Rugarli Spastin binds to lipid droplets and affects lipid metabolism PLoS Genet. 11 2015 e1005149
-
(2015)
PLoS Genet.
, vol.11
-
-
Papadopoulos, C.1
Orso, G.2
Mancuso, G.3
Herholz, M.4
Gumeni, S.5
Tadepalle, N.6
Jungst, C.7
Tzschichholz, A.8
Schauss, A.9
Honing, S.10
Trifunovic, A.11
Daga, A.12
Rugarli, E.I.13
-
135
-
-
84922551462
-
Glial beta-oxidation regulates Drosophila energy metabolism
-
J.G. Schulz, A. Laranjeira, L. Van Huffel, A. Gartner, S. Vilain, J. Bastianen, P.P. Van Veldhoven, and C.G. Dotti Glial beta-oxidation regulates Drosophila energy metabolism Sci. Report. 5 2015 7805
-
(2015)
Sci. Report.
, vol.5
, pp. 7805
-
-
Schulz, J.G.1
Laranjeira, A.2
Van Huffel, L.3
Gartner, A.4
Vilain, S.5
Bastianen, J.6
Van Veldhoven, P.P.7
Dotti, C.G.8
-
136
-
-
84920995154
-
Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration
-
L. Liu, K. Zhang, H. Sandoval, S. Yamamoto, M. Jaiswal, E. Sanz, Z. Li, J. Hui, B.H. Graham, A. Quintana, and H.J. Bellen Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration Cell 160 2015 177 190
-
(2015)
Cell
, vol.160
, pp. 177-190
-
-
Liu, L.1
Zhang, K.2
Sandoval, H.3
Yamamoto, S.4
Jaiswal, M.5
Sanz, E.6
Li, Z.7
Hui, J.8
Graham, B.H.9
Quintana, A.10
Bellen, H.J.11
-
137
-
-
4744341229
-
Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes
-
V. Subramanian, A. Rothenberg, C. Gomez, A.W. Cohen, A. Garcia, S. Bhattacharyya, L. Shapiro, G. Dolios, R. Wang, M.P. Lisanti, and D.L. Brasaemle Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes J. Biol. Chem. 279 2004 42062 42071
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 42062-42071
-
-
Subramanian, V.1
Rothenberg, A.2
Gomez, C.3
Cohen, A.W.4
Garcia, A.5
Bhattacharyya, S.6
Shapiro, L.7
Dolios, G.8
Wang, R.9
Lisanti, M.P.10
Brasaemle, D.L.11
-
138
-
-
77951245602
-
The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase
-
A. Gruber, I. Cornaciu, A. Lass, M. Schweiger, M. Poeschl, C. Eder, M. Kumari, G. Schoiswohl, H. Wolinski, S.D. Kohlwein, R. Zechner, R. Zimmermann, and M. Oberer The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase J. Biol. Chem. 285 2010 12289 12298
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12289-12298
-
-
Gruber, A.1
Cornaciu, I.2
Lass, A.3
Schweiger, M.4
Poeschl, M.5
Eder, C.6
Kumari, M.7
Schoiswohl, G.8
Wolinski, H.9
Kohlwein, S.D.10
Zechner, R.11
Zimmermann, R.12
Oberer, M.13
-
139
-
-
79955549893
-
Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein
-
H. Wang, M. Bell, U. Sreenivasan, H. Hu, J. Liu, K. Dalen, C. Londos, T. Yamaguchi, M.A. Rizzo, R. Coleman, D. Gong, D. Brasaemle, and C. Sztalryd Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein J. Biol. Chem. 286 2011 15707 15715
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 15707-15715
-
-
Wang, H.1
Bell, M.2
Sreenivasan, U.3
Hu, H.4
Liu, J.5
Dalen, K.6
Londos, C.7
Yamaguchi, T.8
Rizzo, M.A.9
Coleman, R.10
Gong, D.11
Brasaemle, D.12
Sztalryd, C.13
-
140
-
-
84974618286
-
Lipid droplet mobilization: The different ways to loosen the purse strings
-
S. D'Andrea Lipid droplet mobilization: the different ways to loosen the purse strings Biochimie 2015
-
(2015)
Biochimie
-
-
D'Andrea, S.1
-
141
-
-
35448981935
-
Autophagy: From phenomenology to molecular understanding in less than a decade
-
D.J. Klionsky Autophagy: from phenomenology to molecular understanding in less than a decade Nat. Rev. Mol. Cell Biol. 8 2007 931 937
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 931-937
-
-
Klionsky, D.J.1
-
142
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
B. Levine, and D.J. Klionsky Development by self-digestion: molecular mechanisms and biological functions of autophagy Dev. Cell 6 2004 463 477
-
(2004)
Dev. Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
143
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
M. Tsukada, and Y. Ohsumi Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae FEBS Lett. 333 1993 169 174
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
144
-
-
0029953575
-
Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway
-
T.M. Harding, A. Hefner-Gravink, M. Thumm, and D.J. Klionsky Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway J. Biol. Chem. 271 1996 17621 17624
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 17621-17624
-
-
Harding, T.M.1
Hefner-Gravink, A.2
Thumm, M.3
Klionsky, D.J.4
-
145
-
-
0031038649
-
AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae
-
M. Schlumpberger, E. Schaeffeler, M. Straub, M. Bredschneider, D.H. Wolf, and M. Thumm AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae J. Bacteriol. 179 1997 1068 1076
-
(1997)
J. Bacteriol.
, vol.179
, pp. 1068-1076
-
-
Schlumpberger, M.1
Schaeffeler, E.2
Straub, M.3
Bredschneider, M.4
Wolf, D.H.5
Thumm, M.6
-
146
-
-
38949108670
-
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
-
D.J. Klionsky, H. Abeliovich, P. Agostinis, D.K. Agrawal, G. Aliev, D.S. Askew, M. Baba, E.H. Baehrecke, B.A. Bahr, A. Ballabio, B.A. Bamber, D.C. Bassham, E. Bergamini, X. Bi, M. Biard-Piechaczyk, J.S. Blum, D.E. Bredesen, J.L. Brodsky, J.H. Brumell, U.T. Brunk, W. Bursch, N. Camougrand, E. Cebollero, F. Cecconi, Y. Chen, L.S. Chin, A. Choi, C.T. Chu, J. Chung, P.G. Clarke, R.S. Clark, S.G. Clarke, C. Clave, J.L. Cleveland, P. Codogno, M.I. Colombo, A. Coto-Montes, J.M. Cregg, A.M. Cuervo, J. Debnath, F. Demarchi, P.B. Dennis, P.A. Dennis, V. Deretic, R.J. Devenish, F. Di Sano, J.F. Dice, M. Difiglia, S. Dinesh-Kumar, C.W. Distelhorst, M. Djavaheri-Mergny, F.C. Dorsey, W. Droge, M. Dron, W.A. Dunn Jr.; M. Duszenko, N.T. Eissa, Z. Elazar, A. Esclatine, E.L. Eskelinen, L. Fesus, K.D. Finley, J.M. Fuentes, J. Fueyo, K. Fujisaki, B. Galliot, F.B. Gao, D.A. Gewirtz, S.B. Gibson, A. Gohla, A.L. Goldberg, R. Gonzalez, C. Gonzalez-Estevez, S. Gorski, R.A. Gottlieb, D. Haussinger, Y.W. He, K. Heidenreich, J.A. Hill, M. Hoyer-Hansen, X. Hu, W.P. Huang, A. Iwasaki, M. Jaattela, W.T. Jackson, X. Jiang, S. Jin, T. Johansen, J.U. Jung, M. Kadowaki, C. Kang, A. Kelekar, D.H. Kessel, J.A. Kiel, H.P. Kim, A. Kimchi, T.J. Kinsella, K. Kiselyov, K. Kitamoto, E. Knecht, M. Komatsu, E. Kominami, S. Kondo, A.L. Kovacs, G. Kroemer, C.Y. Kuan, R. Kumar, M. Kundu, J. Landry, M. Laporte, W. Le, H.Y. Lei, M.J. Lenardo, B. Levine, A. Lieberman, K.L. Lim, F.C. Lin, W. Liou, L.F. Liu, G. Lopez-Berestein, C. Lopez-Otin, B. Lu, K.F. Macleod, W. Malorni, W. Martinet, K. Matsuoka, J. Mautner, A.J. Meijer, A. Melendez, P. Michels, G. Miotto, W.P. Mistiaen, N. Mizushima, B. Mograbi, I. Monastyrska, M.N. Moore, P.I. Moreira, Y. Moriyasu, T. Motyl, C. Munz, L.O. Murphy, N.I. Naqvi, T.P. Neufeld, I. Nishino, R.A. Nixon, T. Noda, B. Nurnberg, M. Ogawa, N.L. Oleinick, L.J. Olsen, B. Ozpolat, S. Paglin, G.E. Palmer, I. Papassideri, M. Parkes, D.H. Perlmutter, G. Perry, M. Piacentini, R. Pinkas-Kramarski, M. Prescott, T. Proikas-Cezanne, N. Raben, A. Rami, F. Reggiori, B. Rohrer, D.C. Rubinsztein, K.M. Ryan, J. Sadoshima, H. Sakagami, Y. Sakai, M. Sandri, C. Sasakawa, M. Sass, C. Schneider, P.O. Seglen, O. Seleverstov, J. Settleman, J.J. Shacka, I.M. Shapiro, A. Sibirny, E.C. Silva-Zacarin, H.U. Simon, C. Simone, A. Simonsen, M.A. Smith, K. Spanel-Borowski, V. Srinivas, M. Steeves, H. Stenmark, P.E. Stromhaug, C.S. Subauste, S. Sugimoto, D. Sulzer, T. Suzuki, M.S. Swanson, I. Tabas, F. Takeshita, N.J. Talbot, Z. Talloczy, K. Tanaka, K. Tanaka, I. Tanida, G.S. Taylor, J.P. Taylor, A. Terman, G. Tettamanti, C.B. Thompson, M. Thumm, A.M. Tolkovsky, S.A. Tooze, R. Truant, L.V. Tumanovska, Y. Uchiyama, T. Ueno, N.L. Uzcategui, I. van der Klei, E.C. Vaquero, T. Vellai, M.W. Vogel, H.G. Wang, P. Webster, J.W. Wiley, Z. Xi, G. Xiao, J. Yahalom, J.M. Yang, G. Yap, X.M. Yin, T. Yoshimori, L. Yu, Z. Yue, M. Yuzaki, O. Zabirnyk, X. Zheng, X. Zhu, and R.L. Deter Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes Autophagy 4 2008 151 175
-
(2008)
Autophagy
, vol.4
, pp. 151-175
-
-
Klionsky, D.J.1
Abeliovich, H.2
Agostinis, P.3
Agrawal, D.K.4
Aliev, G.5
Askew, D.S.6
Baba, M.7
Baehrecke, E.H.8
Bahr, B.A.9
Ballabio, A.10
Bamber, B.A.11
Bassham, D.C.12
Bergamini, E.13
Bi, X.14
Biard-Piechaczyk, M.15
Blum, J.S.16
Bredesen, D.E.17
Brodsky, J.L.18
Brumell, J.H.19
Brunk, U.T.20
Bursch, W.21
Camougrand, N.22
Cebollero, E.23
Cecconi, F.24
Chen, Y.25
Chin, L.S.26
Choi, A.27
Chu, C.T.28
Chung, J.29
Clarke, P.G.30
Clark, R.S.31
Clarke, S.G.32
Clave, C.33
Cleveland, J.L.34
Codogno, P.35
Colombo, M.I.36
Coto-Montes, A.37
Cregg, J.M.38
Cuervo, A.M.39
Debnath, J.40
Demarchi, F.41
Dennis, P.B.42
Dennis, P.A.43
Deretic, V.44
Devenish, R.J.45
Di Sano, F.46
Dice, J.F.47
Difiglia, M.48
Dinesh-Kumar, S.49
Distelhorst, C.W.50
Djavaheri-Mergny, M.51
Dorsey, F.C.52
Droge, W.53
Dron, M.54
Dunn, W.A.55
Duszenko, M.56
Eissa, N.T.57
Elazar, Z.58
Esclatine, A.59
Eskelinen, E.L.60
Fesus, L.61
Finley, K.D.62
Fuentes, J.M.63
Fueyo, J.64
Fujisaki, K.65
Galliot, B.66
Gao, F.B.67
Gewirtz, D.A.68
Gibson, S.B.69
Gohla, A.70
Goldberg, A.L.71
Gonzalez, R.72
Gonzalez-Estevez, C.73
Gorski, S.74
Gottlieb, R.A.75
Haussinger, D.76
He, Y.W.77
Heidenreich, K.78
Hill, J.A.79
Hoyer-Hansen, M.80
Hu, X.81
Huang, W.P.82
Iwasaki, A.83
Jaattela, M.84
Jackson, W.T.85
Jiang, X.86
Jin, S.87
Johansen, T.88
Jung, J.U.89
Kadowaki, M.90
Kang, C.91
Kelekar, A.92
Kessel, D.H.93
Kiel, J.A.94
Kim, H.P.95
Kimchi, A.96
Kinsella, T.J.97
Kiselyov, K.98
Kitamoto, K.99
more..
-
147
-
-
77956404377
-
Eaten alive: A history of macroautophagy
-
Z. Yang, and D.J. Klionsky Eaten alive: a history of macroautophagy Nat. Cell Biol. 12 2010 814 822
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
148
-
-
79952501324
-
Microautophagy of cytosolic proteins by late endosomes
-
R. Sahu, S. Kaushik, C.C. Clement, E.S. Cannizzo, B. Scharf, A. Follenzi, I. Potolicchio, E. Nieves, A.M. Cuervo, and L. Santambrogio Microautophagy of cytosolic proteins by late endosomes Dev. Cell 20 2011 131 139
-
(2011)
Dev. Cell
, vol.20
, pp. 131-139
-
-
Sahu, R.1
Kaushik, S.2
Clement, C.C.3
Cannizzo, E.S.4
Scharf, B.5
Follenzi, A.6
Potolicchio, I.7
Nieves, E.8
Cuervo, A.M.9
Santambrogio, L.10
-
149
-
-
84891741302
-
Chaperone-mediated autophagy: Roles in disease and aging
-
A.M. Cuervo, and E. Wong Chaperone-mediated autophagy: roles in disease and aging Cell Res. 24 2014 92 104
-
(2014)
Cell Res.
, vol.24
, pp. 92-104
-
-
Cuervo, A.M.1
Wong, E.2
-
150
-
-
79957881200
-
Chasing the elusive mammalian microautophagy
-
L. Santambrogio, and A.M. Cuervo Chasing the elusive mammalian microautophagy Autophagy 7 2011 652 654
-
(2011)
Autophagy
, vol.7
, pp. 652-654
-
-
Santambrogio, L.1
Cuervo, A.M.2
-
151
-
-
0033791650
-
Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells
-
J. Kim, and D.J. Klionsky Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells Annu. Rev. Biochem. 69 2000 303 342
-
(2000)
Annu. Rev. Biochem.
, vol.69
, pp. 303-342
-
-
Kim, J.1
Klionsky, D.J.2
-
153
-
-
84858328465
-
Reticulophagy and ribophagy: Regulated degradation of protein production factories
-
E. Cebollero, F. Reggiori, and C. Kraft Reticulophagy and ribophagy: regulated degradation of protein production factories Int. J. Cell Biol. 2012 2012 182834
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 182834
-
-
Cebollero, E.1
Reggiori, F.2
Kraft, C.3
-
154
-
-
84859736977
-
Aggrephagy: Selective disposal of protein aggregates by macroautophagy
-
T. Lamark, and T. Johansen Aggrephagy: selective disposal of protein aggregates by macroautophagy Int. J. Cell Biol. 2012 2012 736905
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 736905
-
-
Lamark, T.1
Johansen, T.2
-
155
-
-
0347626252
-
Autophagy: A regulated bulk degradation process inside cells
-
T. Yoshimori Autophagy: a regulated bulk degradation process inside cells Biochem. Biophys. Res. Commun. 313 2004 453 458
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.313
, pp. 453-458
-
-
Yoshimori, T.1
-
156
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
X.H. Liang, S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, and B. Levine Induction of autophagy and inhibition of tumorigenesis by beclin 1 Nature 402 1999 672 676
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
Brown, K.4
Kempkes, B.5
Hibshoosh, H.6
Levine, B.7
-
157
-
-
0025200830
-
Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae
-
P.K. Herman, and S.D. Emr Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae Mol. Cell. Biol. 10 1990 6742 6754
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 6742-6754
-
-
Herman, P.K.1
Emr, S.D.2
-
158
-
-
0035809160
-
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae
-
A. Kihara, T. Noda, N. Ishihara, and Y. Ohsumi Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae J. Cell Biol. 152 2001 519 530
-
(2001)
J. Cell Biol.
, vol.152
, pp. 519-530
-
-
Kihara, A.1
Noda, T.2
Ishihara, N.3
Ohsumi, Y.4
-
159
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
H.E. Polson, J. de Lartigue, D.J. Rigden, M. Reedijk, S. Urbe, M.J. Clague, and S.A. Tooze Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation Autophagy 6 2010 506 522
-
(2010)
Autophagy
, vol.6
, pp. 506-522
-
-
Polson, H.E.1
De Lartigue, J.2
Rigden, D.J.3
Reedijk, M.4
Urbe, S.5
Clague, M.J.6
Tooze, S.A.7
-
160
-
-
84896909604
-
Detection of WIPI1 mRNA as an indicator of autophagosome formation
-
S. Tsuyuki, M. Takabayashi, M. Kawazu, K. Kudo, A. Watanabe, Y. Nagata, Y. Kusama, and K. Yoshida Detection of WIPI1 mRNA as an indicator of autophagosome formation Autophagy 10 2014 497 513
-
(2014)
Autophagy
, vol.10
, pp. 497-513
-
-
Tsuyuki, S.1
Takabayashi, M.2
Kawazu, M.3
Kudo, K.4
Watanabe, A.5
Nagata, Y.6
Kusama, Y.7
Yoshida, K.8
-
161
-
-
43149125546
-
Organization of the pre-autophagosomal structure responsible for autophagosome formation
-
T. Kawamata, Y. Kamada, Y. Kabeya, T. Sekito, and Y. Ohsumi Organization of the pre-autophagosomal structure responsible for autophagosome formation Mol. Biol. Cell 19 2008 2039 2050
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2039-2050
-
-
Kawamata, T.1
Kamada, Y.2
Kabeya, Y.3
Sekito, T.4
Ohsumi, Y.5
-
162
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Y. Kamada, T. Funakoshi, T. Shintani, K. Nagano, M. Ohsumi, and Y. Ohsumi Tor-mediated induction of autophagy via an Apg1 protein kinase complex J. Cell Biol. 150 2000 1507 1513
-
(2000)
J. Cell Biol.
, vol.150
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
163
-
-
0034614934
-
Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways
-
T. Noda, J. Kim, W.P. Huang, M. Baba, C. Tokunaga, Y. Ohsumi, and D.J. Klionsky Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways J. Cell Biol. 148 2000 465 480
-
(2000)
J. Cell Biol.
, vol.148
, pp. 465-480
-
-
Noda, T.1
Kim, J.2
Huang, W.P.3
Baba, M.4
Tokunaga, C.5
Ohsumi, Y.6
Klionsky, D.J.7
-
164
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
H.I. Mack, B. Zheng, J.M. Asara, and S.M. Thomas AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization Autophagy 8 2012 1197 1214
-
(2012)
Autophagy
, vol.8
, pp. 1197-1214
-
-
Mack, H.I.1
Zheng, B.2
Asara, J.M.3
Thomas, S.M.4
-
165
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D.C. Rubinsztein Plasma membrane contributes to the formation of pre-autophagosomal structures Nat. Cell Biol. 12 2010 747 757
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
166
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation Nat. Cell Biol. 11 2009 1433 1437
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
167
-
-
27644544004
-
Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts
-
F. Reggiori, T. Shintani, U. Nair, and D.J. Klionsky Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts Autophagy 1 2005 101 109
-
(2005)
Autophagy
, vol.1
, pp. 101-109
-
-
Reggiori, F.1
Shintani, T.2
Nair, U.3
Klionsky, D.J.4
-
168
-
-
75749135725
-
The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy
-
W.L. Yen, T. Shintani, U. Nair, Y. Cao, B.C. Richardson, Z. Li, F.M. Hughson, M. Baba, and D.J. Klionsky The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy J. Cell Biol. 188 2010 101 114
-
(2010)
J. Cell Biol.
, vol.188
, pp. 101-114
-
-
Yen, W.L.1
Shintani, T.2
Nair, U.3
Cao, Y.4
Richardson, B.C.5
Li, Z.6
Hughson, F.M.7
Baba, M.8
Klionsky, D.J.9
-
170
-
-
0032545292
-
A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
-
N. Mizushima, H. Sugita, T. Yoshimori, and Y. Ohsumi A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy J. Biol. Chem. 273 1998 33889 33892
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 33889-33892
-
-
Mizushima, N.1
Sugita, H.2
Yoshimori, T.3
Ohsumi, Y.4
-
171
-
-
0035910423
-
The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3
-
I. Tanida, E. Tanida-Miyake, T. Ueno, and E. Kominami The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3 J. Biol. Chem. 276 2001 1701 1706
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 1701-1706
-
-
Tanida, I.1
Tanida-Miyake, E.2
Ueno, T.3
Kominami, E.4
-
172
-
-
0038325675
-
Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate
-
N. Mizushima, A. Kuma, Y. Kobayashi, A. Yamamoto, M. Matsubae, T. Takao, T. Natsume, Y. Ohsumi, and T. Yoshimori Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate J. Cell Sci. 116 2003 1679 1688
-
(2003)
J. Cell Sci.
, vol.116
, pp. 1679-1688
-
-
Mizushima, N.1
Kuma, A.2
Kobayashi, Y.3
Yamamoto, A.4
Matsubae, M.5
Takao, T.6
Natsume, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
173
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Y. Ichimura, T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, N. Mizushima, I. Tanida, E. Kominami, M. Ohsumi, T. Noda, and Y. Ohsumi A ubiquitin-like system mediates protein lipidation Nature 408 2000 488 492
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
Mizushima, N.7
Tanida, I.8
Kominami, E.9
Ohsumi, M.10
Noda, T.11
Ohsumi, Y.12
-
174
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
S. Pankiv, T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy J. Biol. Chem. 282 2007 24131 24145
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
175
-
-
79960798816
-
SNARE proteins are required for macroautophagy
-
U. Nair, A. Jotwani, J. Geng, N. Gammoh, D. Richerson, W.L. Yen, J. Griffith, S. Nag, K. Wang, T. Moss, M. Baba, J.A. McNew, X. Jiang, F. Reggiori, T.J. Melia, and D.J. Klionsky SNARE proteins are required for macroautophagy Cell 146 2011 290 302
-
(2011)
Cell
, vol.146
, pp. 290-302
-
-
Nair, U.1
Jotwani, A.2
Geng, J.3
Gammoh, N.4
Richerson, D.5
Yen, W.L.6
Griffith, J.7
Nag, S.8
Wang, K.9
Moss, T.10
Baba, M.11
McNew, J.A.12
Jiang, X.13
Reggiori, F.14
Melia, T.J.15
Klionsky, D.J.16
-
176
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
E. Itakura, C. Kishi-Itakura, and N. Mizushima The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes Cell 151 2012 1256 1269
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
177
-
-
84859768059
-
Lipophagy: Connecting autophagy and lipid metabolism
-
R. Singh, and A.M. Cuervo Lipophagy: connecting autophagy and lipid metabolism Int. J. Cell Biol. 2012 2012 282041
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 282041
-
-
Singh, R.1
Cuervo, A.M.2
-
178
-
-
84923285482
-
Lysosome: Regulator of lipid degradation pathways
-
C. Settembre, and A. Ballabio Lysosome: regulator of lipid degradation pathways Trends Cell Biol. 24 2014 743 750
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 743-750
-
-
Settembre, C.1
Ballabio, A.2
-
179
-
-
0018319978
-
Uptake of lipid bodies by the yeast vacuole involving areas of the tonoplast depleted of intramembranous particles
-
C.H. Moeller, and W.W. Thomson Uptake of lipid bodies by the yeast vacuole involving areas of the tonoplast depleted of intramembranous particles J. Ultrastruct. Res. 68 1979 38 45
-
(1979)
J. Ultrastruct. Res.
, vol.68
, pp. 38-45
-
-
Moeller, C.H.1
Thomson, W.W.2
-
180
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
R. Singh, S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A.M. Cuervo, and M.J. Czaja Autophagy regulates lipid metabolism Nature 458 2009 1131 1135
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
181
-
-
84884621184
-
What's in a name? - "lipolysosome": Ultrastructural features of a lipid-containing organelle
-
T.C. Iancu, I. Manov, R. Shaoul, M. Haimi, and A. Lerner What's in a name? - "lipolysosome": ultrastructural features of a lipid-containing organelle Ultrastruct. Pathol. 37 2013 293 303
-
(2013)
Ultrastruct. Pathol.
, vol.37
, pp. 293-303
-
-
Iancu, T.C.1
Manov, I.2
Shaoul, R.3
Haimi, M.4
Lerner, A.5
-
182
-
-
84887527969
-
Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes
-
R.J. Schulze, S.G. Weller, B. Schroeder, E.W. Krueger, S. Chi, C.A. Casey, and M.A. McNiven Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes J. Cell Biol. 203 2013 315 326
-
(2013)
J. Cell Biol.
, vol.203
, pp. 315-326
-
-
Schulze, R.J.1
Weller, S.G.2
Schroeder, B.3
Krueger, E.W.4
Chi, S.5
Casey, C.A.6
McNiven, M.A.7
-
183
-
-
79960951346
-
Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
-
S. Kaushik, J.A. Rodriguez-Navarro, E. Arias, R. Kiffin, S. Sahu, G.J. Schwartz, A.M. Cuervo, and R. Singh Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance Cell Metab. 14 2011 173 183
-
(2011)
Cell Metab.
, vol.14
, pp. 173-183
-
-
Kaushik, S.1
Rodriguez-Navarro, J.A.2
Arias, E.3
Kiffin, R.4
Sahu, S.5
Schwartz, G.J.6
Cuervo, A.M.7
Singh, R.8
-
184
-
-
79958030075
-
Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
-
M. Ouimet, V. Franklin, E. Mak, X. Liao, I. Tabas, and Y.L. Marcel Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase Cell Metab. 13 2011 655 667
-
(2011)
Cell Metab.
, vol.13
, pp. 655-667
-
-
Ouimet, M.1
Franklin, V.2
Mak, E.3
Liao, X.4
Tabas, I.5
Marcel, Y.L.6
-
185
-
-
84857653989
-
Regulation of lipid droplet cholesterol efflux from macrophage foam cells
-
M. Ouimet, and Y.L. Marcel Regulation of lipid droplet cholesterol efflux from macrophage foam cells Arterioscler. Thromb. Vasc. Biol. 32 2012 575 581
-
(2012)
Arterioscler. Thromb. Vasc. Biol.
, vol.32
, pp. 575-581
-
-
Ouimet, M.1
Marcel, Y.L.2
-
186
-
-
84891791144
-
Autophagosomes contribute to intracellular lipid distribution in enterocytes
-
S.A. Khaldoun, M.A. Emond-Boisjoly, D. Chateau, V. Carriere, M. Lacasa, M. Rousset, S. Demignot, and E. Morel Autophagosomes contribute to intracellular lipid distribution in enterocytes Mol. Biol. Cell 25 2014 118 132
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 118-132
-
-
Khaldoun, S.A.1
Emond-Boisjoly, M.A.2
Chateau, D.3
Carriere, V.4
Lacasa, M.5
Rousset, M.6
Demignot, S.7
Morel, E.8
-
187
-
-
84864884124
-
Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells
-
R.R. Kaini, L.O. Sillerud, S. Zhaorigetu, and C.A. Hu Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells Prostate 72 2012 1412 1422
-
(2012)
Prostate
, vol.72
, pp. 1412-1422
-
-
Kaini, R.R.1
Sillerud, L.O.2
Zhaorigetu, S.3
Hu, C.A.4
-
188
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
R. Singh, Y. Xiang, Y. Wang, K. Baikati, A.M. Cuervo, Y.K. Luu, Y. Tang, J.E. Pessin, G.J. Schwartz, and M.J. Czaja Autophagy regulates adipose mass and differentiation in mice J. Clin. Invest. 119 2009 3329 3339
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
Baikati, K.4
Cuervo, A.M.5
Luu, Y.K.6
Tang, Y.7
Pessin, J.E.8
Schwartz, G.J.9
Czaja, M.J.10
-
189
-
-
78751624556
-
Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection
-
L.N. Nguyen, J. Bormann, G.T. Le, C. Starkel, S. Olsson, J.D. Nosanchuk, H. Giese, and W. Schafer Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection Fungal Genet. Biol. 48 2011 217 224
-
(2011)
Fungal Genet. Biol.
, vol.48
, pp. 217-224
-
-
Nguyen, L.N.1
Bormann, J.2
Le, G.T.3
Starkel, C.4
Olsson, S.5
Nosanchuk, J.D.6
Giese, H.7
Schafer, W.8
-
190
-
-
84899751909
-
OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development
-
T. Kurusu, T. Koyano, S. Hanamata, T. Kubo, Y. Noguchi, C. Yagi, N. Nagata, T. Yamamoto, T. Ohnishi, Y. Okazaki, N. Kitahata, D. Ando, M. Ishikawa, S. Wada, A. Miyao, H. Hirochika, H. Shimada, A. Makino, K. Saito, H. Ishida, T. Kinoshita, N. Kurata, and K. Kuchitsu OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development Autophagy 10 2014 878 888
-
(2014)
Autophagy
, vol.10
, pp. 878-888
-
-
Kurusu, T.1
Koyano, T.2
Hanamata, S.3
Kubo, T.4
Noguchi, Y.5
Yagi, C.6
Nagata, N.7
Yamamoto, T.8
Ohnishi, T.9
Okazaki, Y.10
Kitahata, N.11
Ando, D.12
Ishikawa, M.13
Wada, S.14
Miyao, A.15
Hirochika, H.16
Shimada, H.17
Makino, A.18
Saito, K.19
Ishida, H.20
Kinoshita, T.21
Kurata, N.22
Kuchitsu, K.23
more..
-
191
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C. Elegans
-
L.R. Lapierre, S. Gelino, A. Melendez, and M. Hansen Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans Curr. Biol.: CB 21 2011 1507 1514
-
(2011)
Curr. Biol.: CB
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
Gelino, S.2
Melendez, A.3
Hansen, M.4
-
192
-
-
84878533962
-
MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
-
E.J. O'Rourke, and G. Ruvkun MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability Nat. Cell Biol. 15 2013 668 676
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 668-676
-
-
O'Rourke, E.J.1
Ruvkun, G.2
-
193
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
T. van Zutphen, V. Todde, R. de Boer, M. Kreim, H.F. Hofbauer, H. Wolinski, M. Veenhuis, I.J. van der Klei, and S.D. Kohlwein Lipid droplet autophagy in the yeast Saccharomyces cerevisiae Mol. Biol. Cell 25 2014 290 301
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 290-301
-
-
Van Zutphen, T.1
Todde, V.2
De Boer, R.3
Kreim, M.4
Hofbauer, H.F.5
Wolinski, H.6
Veenhuis, M.7
Van Der Klei, I.J.8
Kohlwein, S.D.9
-
194
-
-
84905981861
-
A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast
-
C.W. Wang, Y.H. Miao, and Y.S. Chang A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast J. Cell Biol. 206 2014 357 366
-
(2014)
J. Cell Biol.
, vol.206
, pp. 357-366
-
-
Wang, C.W.1
Miao, Y.H.2
Chang, Y.S.3
-
195
-
-
2942584864
-
"sleeping beauty": Quiescence in Saccharomyces cerevisiae
-
J.V. Gray, G.A. Petsko, G.C. Johnston, D. Ringe, R.A. Singer, and M. Werner-Washburne "Sleeping beauty": quiescence in Saccharomyces cerevisiae Microbiol. Mol. Biol. Rev.: MMBR 68 2004 187 206
-
(2004)
Microbiol. Mol. Biol. Rev.: MMBR
, vol.68
, pp. 187-206
-
-
Gray, J.V.1
Petsko, G.A.2
Johnston, G.C.3
Ringe, D.4
Singer, R.A.5
Werner-Washburne, M.6
-
196
-
-
73249152807
-
Life in the midst of scarcity: Adaptations to nutrient availability in Saccharomyces cerevisiae
-
B. Smets, R. Ghillebert, P. De Snijder, M. Binda, E. Swinnen, C. De Virgilio, and J. Winderickx Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae Curr. Genet. 56 2010 1 32
-
(2010)
Curr. Genet.
, vol.56
, pp. 1-32
-
-
Smets, B.1
Ghillebert, R.2
De Snijder, P.3
Binda, M.4
Swinnen, E.5
De Virgilio, C.6
Winderickx, J.7
-
197
-
-
84880596969
-
Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells
-
A. Toulmay, and W.A. Prinz Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells J. Cell Biol. 202 2013 35 44
-
(2013)
J. Cell Biol.
, vol.202
, pp. 35-44
-
-
Toulmay, A.1
Prinz, W.A.2
-
198
-
-
84929606449
-
The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
-
B. Schroeder, R.J. Schulze, S.G. Weller, A.C. Sletten, C.A. Casey, and M.A. McNiven The small GTPase Rab7 as a central regulator of hepatocellular lipophagy Hepatology 61 2015 1896 1907
-
(2015)
Hepatology
, vol.61
, pp. 1896-1907
-
-
Schroeder, B.1
Schulze, R.J.2
Weller, S.G.3
Sletten, A.C.4
Casey, C.A.5
McNiven, M.A.6
-
199
-
-
84939469873
-
Protein crowding is a determinant of lipid droplet protein composition
-
N. Kory, A.R. Thiam, R.V. Farese, and T.C. Walther Protein crowding is a determinant of lipid droplet protein composition Dev. Cell 10 2015 351 363
-
(2015)
Dev. Cell
, vol.10
, pp. 351-363
-
-
Kory, N.1
Thiam, A.R.2
Farese, R.V.3
Walther, T.C.4
-
200
-
-
84857844643
-
Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
-
A.K. Velikkakath, T. Nishimura, E. Oita, N. Ishihara, and N. Mizushima Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets Mol. Biol. Cell 23 2012 896 909
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 896-909
-
-
Velikkakath, A.K.1
Nishimura, T.2
Oita, E.3
Ishihara, N.4
Mizushima, N.5
-
201
-
-
84925324049
-
Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
A.S. Rambold, S. Cohen, and J. Lippincott-Schwartz Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics Dev. Cell 32 2015 678 692
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
202
-
-
84943746516
-
A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis
-
Y. Maeda, M. Oku, and Y. Sakai A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis Autophagy 2015 0
-
(2015)
Autophagy
, pp. 0
-
-
Maeda, Y.1
Oku, M.2
Sakai, Y.3
-
203
-
-
84930182353
-
Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
-
S. Kaushik, and A.M. Cuervo Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis Nat. Cell Biol. 17 2015 759 770
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 759-770
-
-
Kaushik, S.1
Cuervo, A.M.2
-
204
-
-
84896542255
-
Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
-
N. Dupont, S. Chauhan, J. Arko-Mensah, E.F. Castillo, A. Masedunskas, R. Weigert, H. Robenek, T. Proikas-Cezanne, and V. Deretic Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis Curr. Biol.: CB 24 2014 609 620
-
(2014)
Curr. Biol.: CB
, vol.24
, pp. 609-620
-
-
Dupont, N.1
Chauhan, S.2
Arko-Mensah, J.3
Castillo, E.F.4
Masedunskas, A.5
Weigert, R.6
Robenek, H.7
Proikas-Cezanne, T.8
Deretic, V.9
-
205
-
-
84939209368
-
Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
-
T. Shpilka, E. Welter, N. Borovsky, N. Amar, M. Mari, F. Reggiori, and Z. Elazar Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis EMBO J. 2015
-
(2015)
EMBO J.
-
-
Shpilka, T.1
Welter, E.2
Borovsky, N.3
Amar, N.4
Mari, M.5
Reggiori, F.6
Elazar, Z.7
|