메뉴 건너뛰기




Volumn 24, Issue 12, 2014, Pages 743-750

Lysosome: Regulator of lipid degradation pathways

Author keywords

Autophagy; FOXOs; Lipophagy; Lysosome; MTORC1; Nuclear receptors; TFEB; TP53; Transcription factors

Indexed keywords

CELL NUCLEUS RECEPTOR; LIPID; PROTEIN P53; TRANSCRIPTION FACTOR; CELL RECEPTOR; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; TARGET OF RAPAMYCIN KINASE; TP53 PROTEIN, HUMAN;

EID: 84923285482     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.06.006     Document Type: Review
Times cited : (165)

References (84)
  • 1
    • 33645988855 scopus 로고    scopus 로고
    • The comparative physiology of food deprivation: from feast to famine
    • Wang T., et al. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 2006, 68:223-251.
    • (2006) Annu. Rev. Physiol. , vol.68 , pp. 223-251
    • Wang, T.1
  • 2
    • 66949160825 scopus 로고    scopus 로고
    • Lipid droplets at a glance
    • Guo Y., et al. Lipid droplets at a glance. J. Cell Sci. 2009, 122:749-752.
    • (2009) J. Cell Sci. , vol.122 , pp. 749-752
    • Guo, Y.1
  • 3
    • 80054120815 scopus 로고    scopus 로고
    • A thematic review series: lipid droplet storage and metabolism: from yeast to man
    • Reue K. A thematic review series: lipid droplet storage and metabolism: from yeast to man. J. Lipid Res. 2011, 52:1865-1868.
    • (2011) J. Lipid Res. , vol.52 , pp. 1865-1868
    • Reue, K.1
  • 4
    • 79957889560 scopus 로고    scopus 로고
    • The role of lipid droplets in metabolic disease in rodents and humans
    • Greenberg A.S., et al. The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Invest. 2011, 121:2102-2110.
    • (2011) J. Clin. Invest. , vol.121 , pp. 2102-2110
    • Greenberg, A.S.1
  • 5
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
    • Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006, 116:615-622.
    • (2006) J. Clin. Invest. , vol.116 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 6
    • 79955631150 scopus 로고    scopus 로고
    • Autophagy in the cellular energetic balance
    • Singh R., Cuervo A.M. Autophagy in the cellular energetic balance. Cell Metab. 2011, 13:495-504.
    • (2011) Cell Metab. , vol.13 , pp. 495-504
    • Singh, R.1    Cuervo, A.M.2
  • 7
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 8
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 9
    • 84884621184 scopus 로고    scopus 로고
    • What's in a name? -"Lipolysosome": ultrastructural features of a lipid-containing organelle
    • Iancu T.C., et al. What's in a name? -"Lipolysosome": ultrastructural features of a lipid-containing organelle. Ultrastruct. Pathol. 2013, 37:293-303.
    • (2013) Ultrastruct. Pathol. , vol.37 , pp. 293-303
    • Iancu, T.C.1
  • 10
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1
  • 11
    • 84863116629 scopus 로고    scopus 로고
    • Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
    • Jaber N., et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2003-2008.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2003-2008
    • Jaber, N.1
  • 12
    • 84869005229 scopus 로고    scopus 로고
    • The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism
    • Xiong X., et al. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 2012, 287:39107-39114.
    • (2012) J. Biol. Chem. , vol.287 , pp. 39107-39114
    • Xiong, X.1
  • 13
    • 84870995648 scopus 로고    scopus 로고
    • Regulation of lipid stores and metabolism by lipophagy
    • Liu K., Czaja M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013, 20:3-11.
    • (2013) Cell Death Differ. , vol.20 , pp. 3-11
    • Liu, K.1    Czaja, M.J.2
  • 14
    • 79960951346 scopus 로고    scopus 로고
    • Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
    • Kaushik S., et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 2011, 14:173-183.
    • (2011) Cell Metab. , vol.14 , pp. 173-183
    • Kaushik, S.1
  • 15
    • 84896542255 scopus 로고    scopus 로고
    • Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
    • Dupont N., et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 2014, 24:609-620.
    • (2014) Curr. Biol. , vol.24 , pp. 609-620
    • Dupont, N.1
  • 16
    • 62949111058 scopus 로고    scopus 로고
    • Proteomics of the lysosome
    • Lübke T., et al. Proteomics of the lysosome. Biochim. Biophys. Acta 2009, 1793:625-635.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 625-635
    • Lübke, T.1
  • 17
    • 23444460383 scopus 로고
    • Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease
    • Anderson R.A., et al. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:2718-2722.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 2718-2722
    • Anderson, R.A.1
  • 18
    • 0028908370 scopus 로고
    • Wolman disease and its treatment
    • Wolman M. Wolman disease and its treatment. Clin. Pediatr. (Phila.) 1995, 34:207-212.
    • (1995) Clin. Pediatr. (Phila.) , vol.34 , pp. 207-212
    • Wolman, M.1
  • 19
    • 84859448447 scopus 로고    scopus 로고
    • Autophagy links inflammasomes to atherosclerotic progression
    • Razani B., et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012, 15:534-544.
    • (2012) Cell Metab. , vol.15 , pp. 534-544
    • Razani, B.1
  • 20
    • 79958030075 scopus 로고    scopus 로고
    • Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
    • Ouimet M., et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011, 13:655-667.
    • (2011) Cell Metab. , vol.13 , pp. 655-667
    • Ouimet, M.1
  • 21
    • 84878533962 scopus 로고    scopus 로고
    • MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
    • O'Rourke E.J., Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 2013, 15:668-676.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 668-676
    • O'Rourke, E.J.1    Ruvkun, G.2
  • 22
    • 79951889242 scopus 로고    scopus 로고
    • Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome
    • Morselli E., et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 2011, 192:615-629.
    • (2011) J. Cell Biol. , vol.192 , pp. 615-629
    • Morselli, E.1
  • 23
    • 84884820652 scopus 로고    scopus 로고
    • Regulation of autophagy by stress-responsive transcription factors
    • Pietrocola F., et al. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 2013, 23:310-322.
    • (2013) Semin. Cancer Biol. , vol.23 , pp. 310-322
    • Pietrocola, F.1
  • 24
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: transcriptional and epigenetic control of autophagy
    • Füllgrabe J., et al. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 2014, 15:65-74.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 65-74
    • Füllgrabe, J.1
  • 25
    • 33645863768 scopus 로고    scopus 로고
    • Transcriptional regulation of metabolism
    • Desvergne B., et al. Transcriptional regulation of metabolism. Physiol. Rev. 2006, 86:465-514.
    • (2006) Physiol. Rev. , vol.86 , pp. 465-514
    • Desvergne, B.1
  • 26
    • 80053312481 scopus 로고    scopus 로고
    • Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans
    • Lapierre L.R., et al. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr. Biol. 2011, 21:1507-1514.
    • (2011) Curr. Biol. , vol.21 , pp. 1507-1514
    • Lapierre, L.R.1
  • 27
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 28
    • 80052716148 scopus 로고    scopus 로고
    • Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
    • Palmieri M., et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20:3852-3866.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 3852-3866
    • Palmieri, M.1
  • 29
    • 0038457556 scopus 로고    scopus 로고
    • Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival
    • Widlund H.R., Fisher D.E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 2003, 22:3035-3041.
    • (2003) Oncogene , vol.22 , pp. 3035-3041
    • Widlund, H.R.1    Fisher, D.E.2
  • 30
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 31
    • 80052729465 scopus 로고    scopus 로고
    • Transcriptional activation of lysosomal exocytosis promotes cellular clearance
    • Medina D.L., et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 2011, 21:421-430.
    • (2011) Dev. Cell , vol.21 , pp. 421-430
    • Medina, D.L.1
  • 32
    • 84877601173 scopus 로고    scopus 로고
    • Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
    • Spampanato C., et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 2013, 5:691-706.
    • (2013) EMBO Mol. Med. , vol.5 , pp. 691-706
    • Spampanato, C.1
  • 33
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina J.A., et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8:903-914.
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1
  • 34
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson A., et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5:ra42.
    • (2012) Sci. Signal. , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1
  • 35
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 36
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 37
    • 78650785696 scopus 로고    scopus 로고
    • Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle
    • Takikita S., et al. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle. PLoS ONE 2010, 5:e15239.
    • (2010) PLoS ONE , vol.5 , pp. e15239
    • Takikita, S.1
  • 38
    • 84857185764 scopus 로고    scopus 로고
    • Endocrine fibroblast growth factors 15/19 and 21: from feast to famine
    • Potthoff M.J., et al. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012, 26:312-324.
    • (2012) Genes Dev. , vol.26 , pp. 312-324
    • Potthoff, M.J.1
  • 39
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim K.H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 2013, 19:83-92.
    • (2013) Nat. Med. , vol.19 , pp. 83-92
    • Kim, K.H.1
  • 40
    • 84883063789 scopus 로고    scopus 로고
    • The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans
    • Lapierre L.R., et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 2013, 4:2267.
    • (2013) Nat. Commun. , vol.4 , pp. 2267
    • Lapierre, L.R.1
  • 41
    • 84869488061 scopus 로고    scopus 로고
    • Lessons from C. elegans: signaling pathways for longevity
    • Lapierre L.R., Hansen M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol. Metab. 2012, 23:637-644.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 637-644
    • Lapierre, L.R.1    Hansen, M.2
  • 43
    • 84867142011 scopus 로고    scopus 로고
    • Regulation of lipid metabolism by p53 - fighting two villains with one sword
    • Goldstein I., Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol. Metab. 2012, 23:567-575.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 567-575
    • Goldstein, I.1    Rotter, V.2
  • 44
    • 80555135898 scopus 로고    scopus 로고
    • ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress
    • Assaily W., et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 2011, 44:491-501.
    • (2011) Mol. Cell , vol.44 , pp. 491-501
    • Assaily, W.1
  • 45
    • 33747853190 scopus 로고    scopus 로고
    • Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
    • Finck B.N., et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4:199-210.
    • (2006) Cell Metab. , vol.4 , pp. 199-210
    • Finck, B.N.1
  • 46
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson T.R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 47
    • 81355153987 scopus 로고    scopus 로고
    • PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress
    • Sen N., et al. PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell 2011, 44:621-634.
    • (2011) Mol. Cell , vol.44 , pp. 621-634
    • Sen, N.1
  • 48
    • 33745885329 scopus 로고    scopus 로고
    • DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
    • Crighton D., et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006, 126:121-134.
    • (2006) Cell , vol.126 , pp. 121-134
    • Crighton, D.1
  • 49
    • 84877311822 scopus 로고    scopus 로고
    • Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
    • Kenzelmann Broz D., et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013, 27:1016-1031.
    • (2013) Genes Dev. , vol.27 , pp. 1016-1031
    • Kenzelmann Broz, D.1
  • 50
    • 0034854091 scopus 로고    scopus 로고
    • Regulation of PTEN transcription by p53
    • Stambolic V., et al. Regulation of PTEN transcription by p53. Mol. Cell 2001, 8:317-325.
    • (2001) Mol. Cell , vol.8 , pp. 317-325
    • Stambolic, V.1
  • 51
    • 84887511490 scopus 로고    scopus 로고
    • Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells
    • Park E-J., et al. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells. Toxicol. Lett. 2014, 224:114-120.
    • (2014) Toxicol. Lett. , vol.224 , pp. 114-120
    • Park, E.-J.1
  • 52
  • 53
    • 11144356337 scopus 로고    scopus 로고
    • Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
    • Sandri M., et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117:399-412.
    • (2004) Cell , vol.117 , pp. 399-412
    • Sandri, M.1
  • 54
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
    • (2007) Cell Metab. , vol.6 , pp. 458-471
    • Mammucari, C.1
  • 55
    • 84874192375 scopus 로고    scopus 로고
    • FOXO3A directs a protective autophagy program in haematopoietic stem cells
    • Warr M.R., et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 2013, 494:323-327.
    • (2013) Nature , vol.494 , pp. 323-327
    • Warr, M.R.1
  • 56
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao J., et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6:472-483.
    • (2007) Cell Metab. , vol.6 , pp. 472-483
    • Zhao, J.1
  • 57
    • 67549101188 scopus 로고    scopus 로고
    • Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
    • Zhang J., Ney P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009, 16:939-946.
    • (2009) Cell Death Differ. , vol.16 , pp. 939-946
    • Zhang, J.1    Ney, P.A.2
  • 58
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang H., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 2008, 283:10892-10903.
    • (2008) J. Biol. Chem. , vol.283 , pp. 10892-10903
    • Zhang, H.1
  • 59
    • 84864878724 scopus 로고    scopus 로고
    • Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy
    • Van der Vos K.E., et al. Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat. Cell Biol. 2012, 14:829-837.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 829-837
    • Van der Vos, K.E.1
  • 60
    • 77954225200 scopus 로고    scopus 로고
    • Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
    • Zhao Y., et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 2010, 12:665-675.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 665-675
    • Zhao, Y.1
  • 61
    • 18044381312 scopus 로고    scopus 로고
    • FoxO proteins in insulin action and metabolism
    • Barthel A., et al. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 2005, 16:183-189.
    • (2005) Trends Endocrinol. Metab. , vol.16 , pp. 183-189
    • Barthel, A.1
  • 62
    • 0037342151 scopus 로고    scopus 로고
    • Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
    • Daitoku H., et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003, 52:642-649.
    • (2003) Diabetes , vol.52 , pp. 642-649
    • Daitoku, H.1
  • 63
    • 84887447290 scopus 로고    scopus 로고
    • FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment
    • Lettieri Barbato D., et al. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 2013, 4:e861.
    • (2013) Cell Death Dis. , vol.4 , pp. e861
    • Lettieri Barbato, D.1
  • 64
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu R., et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678-683.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 65
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 66
    • 84870938954 scopus 로고    scopus 로고
    • SnapShot: mTORC1 signaling at the lysosomal surface
    • Bar-Peled L., Sabatini D.M. SnapShot: mTORC1 signaling at the lysosomal surface. Cell 2012, 151:1390-1390.e1.
    • (2012) Cell , vol.151 , pp. 1390-1390.e1
    • Bar-Peled, L.1    Sabatini, D.M.2
  • 67
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S., et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468:1100-1104.
    • (2010) Nature , vol.468 , pp. 1100-1104
    • Sengupta, S.1
  • 68
    • 84859090262 scopus 로고    scopus 로고
    • Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
    • Menon S., et al. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci. Signal. 2012, 5:ra24.
    • (2012) Sci. Signal. , vol.5 , pp. ra24
    • Menon, S.1
  • 69
    • 73349125811 scopus 로고    scopus 로고
    • Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion
    • Pettinelli P., et al. Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim. Biophys. Acta 2009, 1792:1080-1086.
    • (2009) Biochim. Biophys. Acta , vol.1792 , pp. 1080-1086
    • Pettinelli, P.1
  • 70
    • 84858659826 scopus 로고    scopus 로고
    • Inhibitory effect of dietary lipids on chaperone-mediated autophagy
    • Rodriguez-Navarro J.A., et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E705-E714.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E705-E714
    • Rodriguez-Navarro, J.A.1
  • 71
    • 78149282263 scopus 로고    scopus 로고
    • Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
    • Fraldi A., et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 2010, 29:3607-3620.
    • (2010) EMBO J. , vol.29 , pp. 3607-3620
    • Fraldi, A.1
  • 72
    • 77955789211 scopus 로고    scopus 로고
    • Altered lipid content inhibits autophagic vesicular fusion
    • Koga H., et al. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010, 24:3052-3065.
    • (2010) FASEB J. , vol.24 , pp. 3052-3065
    • Koga, H.1
  • 73
    • 84888153445 scopus 로고    scopus 로고
    • Autophagy proteins regulate ERK phosphorylation
    • Martinez-Lopez N., et al. Autophagy proteins regulate ERK phosphorylation. Nat. Commun. 2013, 4:2799.
    • (2013) Nat. Commun. , vol.4 , pp. 2799
    • Martinez-Lopez, N.1
  • 74
    • 84877351078 scopus 로고    scopus 로고
    • TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity
    • Decressac M., et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1817-E1826.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E1817-E1826
    • Decressac, M.1
  • 75
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • Lamb C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013, 14:759-774.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1
  • 76
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER-mitochondria contact sites
    • Hamasaki M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 77
    • 84876812269 scopus 로고    scopus 로고
    • Signals from the lysosome: a control centre for cellular clearance and energy metabolism
    • Settembre C., et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013, 14:283-296.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 283-296
    • Settembre, C.1
  • 78
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 79
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F., et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 2013, 15:406-416.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 406-416
    • Nazio, F.1
  • 80
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1
  • 81
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 82
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Russell R.C., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15:741-750.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 741-750
    • Russell, R.C.1
  • 83
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y., et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 2008, 30:678-688.
    • (2008) Mol. Cell , vol.30 , pp. 678-688
    • Wei, Y.1
  • 84
    • 33644652183 scopus 로고    scopus 로고
    • Sorting out the roles of PPAR in energy metabolism and vascular homeostasis
    • Lefebvre P. Sorting out the roles of PPAR in energy metabolism and vascular homeostasis. J. Clin. Invest. 2006, 116:571-580.
    • (2006) J. Clin. Invest. , vol.116 , pp. 571-580
    • Lefebvre, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.