-
1
-
-
33645988855
-
The comparative physiology of food deprivation: from feast to famine
-
Wang T., et al. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 2006, 68:223-251.
-
(2006)
Annu. Rev. Physiol.
, vol.68
, pp. 223-251
-
-
Wang, T.1
-
2
-
-
66949160825
-
Lipid droplets at a glance
-
Guo Y., et al. Lipid droplets at a glance. J. Cell Sci. 2009, 122:749-752.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 749-752
-
-
Guo, Y.1
-
3
-
-
80054120815
-
A thematic review series: lipid droplet storage and metabolism: from yeast to man
-
Reue K. A thematic review series: lipid droplet storage and metabolism: from yeast to man. J. Lipid Res. 2011, 52:1865-1868.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 1865-1868
-
-
Reue, K.1
-
4
-
-
79957889560
-
The role of lipid droplets in metabolic disease in rodents and humans
-
Greenberg A.S., et al. The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Invest. 2011, 121:2102-2110.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2102-2110
-
-
Greenberg, A.S.1
-
5
-
-
33644660537
-
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
-
Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006, 116:615-622.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
6
-
-
79955631150
-
Autophagy in the cellular energetic balance
-
Singh R., Cuervo A.M. Autophagy in the cellular energetic balance. Cell Metab. 2011, 13:495-504.
-
(2011)
Cell Metab.
, vol.13
, pp. 495-504
-
-
Singh, R.1
Cuervo, A.M.2
-
7
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
8
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
9
-
-
84884621184
-
What's in a name? -"Lipolysosome": ultrastructural features of a lipid-containing organelle
-
Iancu T.C., et al. What's in a name? -"Lipolysosome": ultrastructural features of a lipid-containing organelle. Ultrastruct. Pathol. 2013, 37:293-303.
-
(2013)
Ultrastruct. Pathol.
, vol.37
, pp. 293-303
-
-
Iancu, T.C.1
-
10
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
-
11
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber N., et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2003-2008.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 2003-2008
-
-
Jaber, N.1
-
12
-
-
84869005229
-
The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism
-
Xiong X., et al. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 2012, 287:39107-39114.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39107-39114
-
-
Xiong, X.1
-
13
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu K., Czaja M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013, 20:3-11.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
14
-
-
79960951346
-
Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
-
Kaushik S., et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 2011, 14:173-183.
-
(2011)
Cell Metab.
, vol.14
, pp. 173-183
-
-
Kaushik, S.1
-
15
-
-
84896542255
-
Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
-
Dupont N., et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 2014, 24:609-620.
-
(2014)
Curr. Biol.
, vol.24
, pp. 609-620
-
-
Dupont, N.1
-
16
-
-
62949111058
-
Proteomics of the lysosome
-
Lübke T., et al. Proteomics of the lysosome. Biochim. Biophys. Acta 2009, 1793:625-635.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 625-635
-
-
Lübke, T.1
-
17
-
-
23444460383
-
Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease
-
Anderson R.A., et al. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:2718-2722.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 2718-2722
-
-
Anderson, R.A.1
-
18
-
-
0028908370
-
Wolman disease and its treatment
-
Wolman M. Wolman disease and its treatment. Clin. Pediatr. (Phila.) 1995, 34:207-212.
-
(1995)
Clin. Pediatr. (Phila.)
, vol.34
, pp. 207-212
-
-
Wolman, M.1
-
19
-
-
84859448447
-
Autophagy links inflammasomes to atherosclerotic progression
-
Razani B., et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012, 15:534-544.
-
(2012)
Cell Metab.
, vol.15
, pp. 534-544
-
-
Razani, B.1
-
20
-
-
79958030075
-
Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
-
Ouimet M., et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011, 13:655-667.
-
(2011)
Cell Metab.
, vol.13
, pp. 655-667
-
-
Ouimet, M.1
-
21
-
-
84878533962
-
MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
-
O'Rourke E.J., Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 2013, 15:668-676.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 668-676
-
-
O'Rourke, E.J.1
Ruvkun, G.2
-
22
-
-
79951889242
-
Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome
-
Morselli E., et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 2011, 192:615-629.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 615-629
-
-
Morselli, E.1
-
23
-
-
84884820652
-
Regulation of autophagy by stress-responsive transcription factors
-
Pietrocola F., et al. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 2013, 23:310-322.
-
(2013)
Semin. Cancer Biol.
, vol.23
, pp. 310-322
-
-
Pietrocola, F.1
-
24
-
-
84891014899
-
The return of the nucleus: transcriptional and epigenetic control of autophagy
-
Füllgrabe J., et al. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 2014, 15:65-74.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 65-74
-
-
Füllgrabe, J.1
-
25
-
-
33645863768
-
Transcriptional regulation of metabolism
-
Desvergne B., et al. Transcriptional regulation of metabolism. Physiol. Rev. 2006, 86:465-514.
-
(2006)
Physiol. Rev.
, vol.86
, pp. 465-514
-
-
Desvergne, B.1
-
26
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans
-
Lapierre L.R., et al. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr. Biol. 2011, 21:1507-1514.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
-
27
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
28
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
Palmieri M., et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20:3852-3866.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
-
29
-
-
0038457556
-
Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival
-
Widlund H.R., Fisher D.E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 2003, 22:3035-3041.
-
(2003)
Oncogene
, vol.22
, pp. 3035-3041
-
-
Widlund, H.R.1
Fisher, D.E.2
-
30
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
31
-
-
80052729465
-
Transcriptional activation of lysosomal exocytosis promotes cellular clearance
-
Medina D.L., et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 2011, 21:421-430.
-
(2011)
Dev. Cell
, vol.21
, pp. 421-430
-
-
Medina, D.L.1
-
32
-
-
84877601173
-
Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
-
Spampanato C., et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 2013, 5:691-706.
-
(2013)
EMBO Mol. Med.
, vol.5
, pp. 691-706
-
-
Spampanato, C.1
-
33
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina J.A., et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8:903-914.
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
-
34
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson A., et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5:ra42.
-
(2012)
Sci. Signal.
, vol.5
, pp. ra42
-
-
Roczniak-Ferguson, A.1
-
35
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
36
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
37
-
-
78650785696
-
Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle
-
Takikita S., et al. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle. PLoS ONE 2010, 5:e15239.
-
(2010)
PLoS ONE
, vol.5
, pp. e15239
-
-
Takikita, S.1
-
38
-
-
84857185764
-
Endocrine fibroblast growth factors 15/19 and 21: from feast to famine
-
Potthoff M.J., et al. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012, 26:312-324.
-
(2012)
Genes Dev.
, vol.26
, pp. 312-324
-
-
Potthoff, M.J.1
-
39
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
Kim K.H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 2013, 19:83-92.
-
(2013)
Nat. Med.
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
-
40
-
-
84883063789
-
The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans
-
Lapierre L.R., et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 2013, 4:2267.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2267
-
-
Lapierre, L.R.1
-
41
-
-
84869488061
-
Lessons from C. elegans: signaling pathways for longevity
-
Lapierre L.R., Hansen M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol. Metab. 2012, 23:637-644.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 637-644
-
-
Lapierre, L.R.1
Hansen, M.2
-
43
-
-
84867142011
-
Regulation of lipid metabolism by p53 - fighting two villains with one sword
-
Goldstein I., Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol. Metab. 2012, 23:567-575.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 567-575
-
-
Goldstein, I.1
Rotter, V.2
-
44
-
-
80555135898
-
ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress
-
Assaily W., et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 2011, 44:491-501.
-
(2011)
Mol. Cell
, vol.44
, pp. 491-501
-
-
Assaily, W.1
-
45
-
-
33747853190
-
Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
-
Finck B.N., et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4:199-210.
-
(2006)
Cell Metab.
, vol.4
, pp. 199-210
-
-
Finck, B.N.1
-
46
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson T.R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
-
47
-
-
81355153987
-
PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress
-
Sen N., et al. PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell 2011, 44:621-634.
-
(2011)
Mol. Cell
, vol.44
, pp. 621-634
-
-
Sen, N.1
-
48
-
-
33745885329
-
DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
-
Crighton D., et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006, 126:121-134.
-
(2006)
Cell
, vol.126
, pp. 121-134
-
-
Crighton, D.1
-
49
-
-
84877311822
-
Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
-
Kenzelmann Broz D., et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013, 27:1016-1031.
-
(2013)
Genes Dev.
, vol.27
, pp. 1016-1031
-
-
Kenzelmann Broz, D.1
-
50
-
-
0034854091
-
Regulation of PTEN transcription by p53
-
Stambolic V., et al. Regulation of PTEN transcription by p53. Mol. Cell 2001, 8:317-325.
-
(2001)
Mol. Cell
, vol.8
, pp. 317-325
-
-
Stambolic, V.1
-
51
-
-
84887511490
-
Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells
-
Park E-J., et al. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells. Toxicol. Lett. 2014, 224:114-120.
-
(2014)
Toxicol. Lett.
, vol.224
, pp. 114-120
-
-
Park, E.-J.1
-
53
-
-
11144356337
-
Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
-
Sandri M., et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117:399-412.
-
(2004)
Cell
, vol.117
, pp. 399-412
-
-
Sandri, M.1
-
54
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
-
55
-
-
84874192375
-
FOXO3A directs a protective autophagy program in haematopoietic stem cells
-
Warr M.R., et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 2013, 494:323-327.
-
(2013)
Nature
, vol.494
, pp. 323-327
-
-
Warr, M.R.1
-
56
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao J., et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6:472-483.
-
(2007)
Cell Metab.
, vol.6
, pp. 472-483
-
-
Zhao, J.1
-
57
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang J., Ney P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009, 16:939-946.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
58
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 2008, 283:10892-10903.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
-
59
-
-
84864878724
-
Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy
-
Van der Vos K.E., et al. Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat. Cell Biol. 2012, 14:829-837.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 829-837
-
-
Van der Vos, K.E.1
-
60
-
-
77954225200
-
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
-
Zhao Y., et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 2010, 12:665-675.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 665-675
-
-
Zhao, Y.1
-
61
-
-
18044381312
-
FoxO proteins in insulin action and metabolism
-
Barthel A., et al. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 2005, 16:183-189.
-
(2005)
Trends Endocrinol. Metab.
, vol.16
, pp. 183-189
-
-
Barthel, A.1
-
62
-
-
0037342151
-
Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
-
Daitoku H., et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003, 52:642-649.
-
(2003)
Diabetes
, vol.52
, pp. 642-649
-
-
Daitoku, H.1
-
63
-
-
84887447290
-
FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment
-
Lettieri Barbato D., et al. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 2013, 4:e861.
-
(2013)
Cell Death Dis.
, vol.4
, pp. e861
-
-
Lettieri Barbato, D.1
-
64
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R., et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
65
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
66
-
-
84870938954
-
SnapShot: mTORC1 signaling at the lysosomal surface
-
Bar-Peled L., Sabatini D.M. SnapShot: mTORC1 signaling at the lysosomal surface. Cell 2012, 151:1390-1390.e1.
-
(2012)
Cell
, vol.151
, pp. 1390-1390.e1
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
67
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S., et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468:1100-1104.
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
-
68
-
-
84859090262
-
Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
-
Menon S., et al. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci. Signal. 2012, 5:ra24.
-
(2012)
Sci. Signal.
, vol.5
, pp. ra24
-
-
Menon, S.1
-
69
-
-
73349125811
-
Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion
-
Pettinelli P., et al. Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim. Biophys. Acta 2009, 1792:1080-1086.
-
(2009)
Biochim. Biophys. Acta
, vol.1792
, pp. 1080-1086
-
-
Pettinelli, P.1
-
70
-
-
84858659826
-
Inhibitory effect of dietary lipids on chaperone-mediated autophagy
-
Rodriguez-Navarro J.A., et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E705-E714.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E705-E714
-
-
Rodriguez-Navarro, J.A.1
-
71
-
-
78149282263
-
Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
-
Fraldi A., et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 2010, 29:3607-3620.
-
(2010)
EMBO J.
, vol.29
, pp. 3607-3620
-
-
Fraldi, A.1
-
72
-
-
77955789211
-
Altered lipid content inhibits autophagic vesicular fusion
-
Koga H., et al. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010, 24:3052-3065.
-
(2010)
FASEB J.
, vol.24
, pp. 3052-3065
-
-
Koga, H.1
-
73
-
-
84888153445
-
Autophagy proteins regulate ERK phosphorylation
-
Martinez-Lopez N., et al. Autophagy proteins regulate ERK phosphorylation. Nat. Commun. 2013, 4:2799.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2799
-
-
Martinez-Lopez, N.1
-
74
-
-
84877351078
-
TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity
-
Decressac M., et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1817-E1826.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E1817-E1826
-
-
Decressac, M.1
-
75
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
Lamb C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013, 14:759-774.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
-
76
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
-
77
-
-
84876812269
-
Signals from the lysosome: a control centre for cellular clearance and energy metabolism
-
Settembre C., et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013, 14:283-296.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 283-296
-
-
Settembre, C.1
-
78
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
79
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F., et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 2013, 15:406-416.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 406-416
-
-
Nazio, F.1
-
80
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
81
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
82
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell R.C., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15:741-750.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
-
83
-
-
44949237240
-
JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
-
Wei Y., et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 2008, 30:678-688.
-
(2008)
Mol. Cell
, vol.30
, pp. 678-688
-
-
Wei, Y.1
-
84
-
-
33644652183
-
Sorting out the roles of PPAR in energy metabolism and vascular homeostasis
-
Lefebvre P. Sorting out the roles of PPAR in energy metabolism and vascular homeostasis. J. Clin. Invest. 2006, 116:571-580.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 571-580
-
-
Lefebvre, P.1
|