메뉴 건너뛰기




Volumn , Issue , 2013, Pages 479-495

A survey of current integrative network algorithms for systems biology

Author keywords

Integrative networks; Network inference; Systems biology

Indexed keywords


EID: 84948077518     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-94-007-6803-1_17     Document Type: Chapter
Times cited : (2)

References (68)
  • 4
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Micro 8:717-729
    • (2010) Nat Rev Micro , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 6
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models: A review
    • Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models: a review. Biosystems 96:86-103
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    Van Someren, E.4    Guthke, R.5
  • 7
    • 67650663220 scopus 로고    scopus 로고
    • Backup in gene regulatory networks explains differences between binding and knockout results
    • Gitter A, Siegfried Z, Klutstein M, Fornes O, Oliva B et al (2009) Backup in gene regulatory networks explains differences between binding and knockout results. Mol Syst Biol 5
    • (2009) Mol Syst Biol , pp. 5
    • Gitter, A.1    Siegfried, Z.2    Klutstein, M.3    Fornes, O.4    Oliva, B.5
  • 8
    • 84903066521 scopus 로고    scopus 로고
    • Integrative network-based association studies: Leveraging cell regulatory models in the post-GWAS era
    • Califano A, Butte A, Friend S, Ideker T, Schadt EE (2011) Integrative network-based association studies: leveraging cell regulatory models in the post-GWAS era. Nat Precedings 10
    • (2011) Nat Precedings , pp. 10
    • Califano, A.1    Butte, A.2    Friend, S.3    Ideker, T.4    Schadt, E.E.5
  • 10
    • 33748503420 scopus 로고    scopus 로고
    • Evaluation of dna microarray results with quantitative gene expression platforms
    • Canales R, Luo Y, Willey J, Austermiller B, Barbacioru C et al (2006) Evaluation of dna microarray results with quantitative gene expression platforms. Nat Biotechnol 24:1115-1122
    • (2006) Nat Biotechnol , vol.24 , pp. 1115-1122
    • Canales, R.1    Luo, Y.2    Willey, J.3    Austermiller, B.4    Barbacioru, C.5
  • 11
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32:496
    • (2002) Nat Genet , vol.32 , pp. 496
    • Quackenbush, J.1
  • 12
    • 67650070937 scopus 로고    scopus 로고
    • Functional annotations for the Saccharomyces cerevisiae genome: The knowns and the known unknowns
    • Christie KR, Hong EL, Cherry JM (2009) Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns. Trends Microbiol 17:286-294
    • (2009) Trends Microbiol , vol.17 , pp. 286-294
    • Christie, K.R.1    Hong, E.L.2    Cherry, J.M.3
  • 13
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18:S145-S154
    • (2002) Bioinformatics , vol.18
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3    Lengauer, T.4
  • 14
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • Datta S, Datta S (2003) Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19:459-466
    • (2003) Bioinformatics , vol.19 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 16
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7:S7
    • (2006) BMC Bioinform , vol.7
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 17
    • 59949086432 scopus 로고    scopus 로고
    • Minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer P, Lafitte F, Bontempi G (2008) Minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform 9:461
    • (2008) BMC Bioinform , vol.9 , pp. 461
    • Meyer, P.1    Lafitte, F.2    Bontempi, G.3
  • 18
    • 33748202182 scopus 로고    scopus 로고
    • Functional clustering of yeast proteins from the protein-protein interaction network
    • Sen T, Kloczkowski A, Jernigan R (2006) Functional clustering of yeast proteins from the protein-protein interaction network. BMC Bioinform 7:355
    • (2006) BMC Bioinform , vol.7 , pp. 355
    • Sen, T.1    Kloczkowski, A.2    Jernigan, R.3
  • 20
    • 0035400051 scopus 로고    scopus 로고
    • Genetical genomics: The added value from segregation
    • Jansen R (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388-391
    • (2001) Trends Genet , vol.17 , pp. 388-391
    • Jansen, R.1
  • 22
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acid Res 40:D109-D114
    • (2012) Nucleic Acid Res , vol.40
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5
  • 25
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18:S231-S240
    • (2002) Bioinformatics , vol.18
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 26
    • 84855265038 scopus 로고    scopus 로고
    • Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks
    • de Matos Simoes R, Emmert-Streib F (2011) Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. PLoS ONE 6:e29279
    • (2011) Plos ONE
    • De Matos Simoes, R.1    Emmert-Streib, F.2
  • 27
    • 68949098307 scopus 로고    scopus 로고
    • Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells
    • Mason M, Fan G, Plath K, Zhou Q, Horvath S (2009) Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10:327
    • (2009) BMC Genomics , vol.10 , pp. 327
    • Mason, M.1    Fan, G.2    Plath, K.3    Zhou, Q.4    Horvath, S.5
  • 28
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • Zhou X, Kao MCC, Hung W (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99:12783-12788
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 12783-12788
    • Zhou, X.1    Kao, M.2    Hung, W.3
  • 29
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B (Methodol):267-288
    • (1996) J R Stat Soc Series B (Methodol) , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li C, Li H (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24:1175-1182
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 31
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432-441
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 32
    • 46749151407 scopus 로고    scopus 로고
    • Weighted lasso in graphical gaussian modeling for large gene network estimation based on microarray data
    • Shimamura T, Imoto S, Yamaguchi R, Miyano S (2007) Weighted lasso in graphical gaussian modeling for large gene network estimation based on microarray data. Genome Inform 19:142-153
    • (2007) Genome Inform , vol.19 , pp. 142-153
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Miyano, S.4
  • 33
    • 27644508196 scopus 로고    scopus 로고
    • Constructing and analyzing a large-scale gene-to-gene regulatory network lasso-constrained inference and biological validation
    • Gustafsson M, Hornquist M, Lombardi A (2005) Constructing and analyzing a large-scale gene-to-gene regulatory network lasso-constrained inference and biological validation. IEEE/ACM Trans Comput Biol Bioinform 2:254-261
    • (2005) IEEE/ACM Trans Comput Biol Bioinform , vol.2 , pp. 254-261
    • Gustafsson, M.1    Hornquist, M.2    Lombardi, A.3
  • 34
    • 84867283138 scopus 로고    scopus 로고
    • Identifying multi-layer gene regulatory modules from multi-dimensional genomic data
    • Li W, Zhang S, Liu C, Zhou X (2012) Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics on line
    • (2012) Bioinformatics on Line
    • Li, W.1    Zhang, S.2    Liu, C.3    Zhou, X.4
  • 37
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • Maxwell Chickering D, Heckerman D (1997) Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Mach Learn 29:181-212
    • (1997) Mach Learn , vol.29 , pp. 181-212
    • Maxwell Chickering, D.1    Heckerman, D.2
  • 38
    • 51849110999 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • Heckerman D (2008) A tutorial on learning with Bayesian networks. Innovations in Bayesian networks, pp 33-82
    • (2008) Innovations in Bayesian networks , pp. 33-82
    • Heckerman, D.1
  • 39
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J, Zhang B, Smith EN, Drees B, Brem RB et al (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40:854-861
    • (2008) Nat Genet , vol.40 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3    Drees, B.4    Brem, R.B.5
  • 40
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Pacific Symp Biocomput:437-449
    • (2002) Pacific Symp Biocomput , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 41
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada Y, Kim S, Bannai H, Imoto S, Tashiro K et al (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19:2
    • (2003) Bioinformatics , vol.19 , pp. 2
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5
  • 42
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • Imoto S, Higuchi T, Goto T, Tashiro K, Kuhara S et al (2003) Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Proc IEEE Comput Soc Bioinform Conf 2:104-113
    • (2003) Proc IEEE Comput Soc Bioinform Conf , vol.2 , pp. 104-113
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5
  • 43
    • 19844366096 scopus 로고    scopus 로고
    • Cis-acting expression quantitative trait loci in mice
    • Doss S, Schadt EE, Drake TA, Lusis AJ (2005) Cis-acting expression quantitative trait loci in mice. Genome Res 15:681-691
    • (2005) Genome Res , vol.15 , pp. 681-691
    • Doss, S.1    Schadt, E.E.2    Drake, T.A.3    Lusis, A.J.4
  • 46
    • 84948065686 scopus 로고    scopus 로고
    • Proceedings of the 17th conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc
    • Srebro N (2001) Maximum likelihood bounded tree-width markov networks. In: Proceedings of the 17th conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc, pp 504-511
    • (2001) Maximum Likelihood Bounded Tree-Width Markov Networks , pp. 504-511
    • Srebro, N.1
  • 47
    • 0003308636 scopus 로고    scopus 로고
    • Gaussian process networks. In: Proceedings of the 16th conference on uncertainty in artificial intelligence
    • Friedman N, Nachman I (2000) Gaussian process networks. In: Proceedings of the 16th conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc, pp 211-219
    • (2000) Morgan Kaufmann Publishers Inc , pp. 211-219
    • Friedman, N.1    Nachman, I.2
  • 48
    • 33747880011 scopus 로고    scopus 로고
    • An integrative approach for causal gene identification and gene regulatory pathway inference
    • Tu Z, Wang L, Arbeitman MN, Chen T, Sun F (2006) An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics 22:e489-e496
    • (2006) Bioinformatics , vol.22
    • Tu, Z.1    Wang, L.2    Arbeitman, M.N.3    Chen, T.4    Sun, F.5
  • 49
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306:1555-1558
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 51
    • 3142622851 scopus 로고    scopus 로고
    • An integrated probabilistic model for functional prediction of proteins
    • Deng M, Chen T, Sun F (2004) An integrated probabilistic model for functional prediction of proteins. J Comput Biol 11:463-475
    • (2004) J Comput Biol , vol.11 , pp. 463-475
    • Deng, M.1    Chen, T.2    Sun, F.3
  • 52
    • 66349101154 scopus 로고    scopus 로고
    • Predicting functionality of protein-DNA interactions by integrating diverse evidence
    • Ucar D, Beyer A, Parthasarathy S, Workman CT (2009) Predicting functionality of protein-DNA interactions by integrating diverse evidence. Bioinformatics 25:i137-144
    • (2009) Bioinformatics , vol.25
    • Ucar, D.1    Beyer, A.2    Parthasarathy, S.3    Workman, C.T.4
  • 53
    • 41849115550 scopus 로고    scopus 로고
    • A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
    • Ernst J, Beg QK, Kay KA, Balazsi G, Oltvai ZN et al (2008) A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput Biol 4:e1000044
    • (2008) Plos Comput Biol , vol.e1000044 , pp. 4
    • Ernst, J.1    Beg, Q.K.2    Kay, K.A.3    Balazsi, G.4    Oltvai, Z.N.5
  • 55
    • 78650331647 scopus 로고    scopus 로고
    • Identification of functional elements and regulatory circuits by Drosophila modENCODE
    • Roy S, Ernst J, Kharchenko PV, Kheradpour P et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science (New York) 330:1787-1797
    • (2010) Science (New York) , vol.330 , pp. 1787-1797
    • Roy, S.1    Ernst, J.2    Kharchenko, P.V.3    Kheradpour, P.4
  • 56
    • 78651324347 scopus 로고    scopus 로고
    • The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored
    • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A et al (2010) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acid Res 39:D561-D568
    • (2010) Nucleic Acid Res , vol.39
    • Szklarczyk, D.1    Franceschini, A.2    Kuhn, M.3    Simonovic, M.4    Roth, A.5
  • 57
    • 79960914062 scopus 로고    scopus 로고
    • Exploring and exploiting disease interactions from multirelational gene and phenotype networks
    • Davis DA, Chawla NV (2011) Exploring and exploiting disease interactions from multirelational gene and phenotype networks. PLoS ONE 6:e22670
    • (2011) Plos ONE
    • Davis, D.A.1    Chawla, N.V.2
  • 58
    • 0742321914 scopus 로고    scopus 로고
    • Regression approaches for microarray data analysis
    • Segal MR, Dahlquist KD, Conklin BR (2003) Regression approaches for microarray data analysis. J Comput Biol 10:961-980
    • (2003) J Comput Biol , vol.10 , pp. 961-980
    • Segal, M.R.1    Dahlquist, K.D.2    Conklin, B.R.3
  • 59
    • 33745797057 scopus 로고    scopus 로고
    • Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae
    • Kim H, Hu W, Kluger Y (2006) Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae. BMC Bioinform 7:165
    • (2006) BMC Bioinform , vol.7 , pp. 165
    • Kim, H.1    Hu, W.2    Kluger, Y.3
  • 60
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • Gao F, Foat B, Bussemaker H (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinform 5:31
    • (2004) BMC Bioinform , vol.5 , pp. 31
    • Gao, F.1    Foat, B.2    Bussemaker, H.3
  • 61
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Madan Babu M et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308-312
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1    Madan Babu, M.2
  • 62
    • 1542357674 scopus 로고    scopus 로고
    • Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data
    • Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101:2981-2986
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 2981-2986
    • Tanay, A.1    Sharan, R.2    Kupiec, M.3    Shamir, R.4
  • 63
    • 63449134229 scopus 로고    scopus 로고
    • DISTILLER: A data integration framework to reveal condition dependency of complex regulons in Escherichia coli
    • Lemmens K, De Bie T, Dhollander T, De Keersmaecker S, Thijs I et al (2009) DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol 10:R27
    • (2009) Genome Biol , vol.10
    • Lemmens, K.1    De Bie, T.2    Dhollander, T.3    De Keersmaecker, S.4    Thijs, I.5
  • 65
    • 4644292576 scopus 로고    scopus 로고
    • The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model
    • van Noort V, Snel B, Huynen MA (2004) The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 5:280-284
    • (2004) EMBO Rep , vol.5 , pp. 280-284
    • Van Noort, V.1    Snel, B.2    Huynen, M.A.3
  • 66
    • 33847129641 scopus 로고    scopus 로고
    • Gene network interconnectedness and the generalized topological overlap measure
    • Yip A, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform 8:22
    • (2007) BMC Bioinform , vol.8 , pp. 22
    • Yip, A.1    Horvath, S.2
  • 67
    • 65549085067 scopus 로고    scopus 로고
    • Power-law distributions in empirical data
    • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661
    • (2009) SIAM Rev , vol.51 , pp. 661
    • Clauset, A.1    Shalizi, C.R.2    Newman, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.