메뉴 건너뛰기




Volumn 30, Issue 17, 2014, Pages

Integration of molecular network data reconstructs Gene Ontology

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGY; CLUSTER ANALYSIS; GENE EXPRESSION; GENE ONTOLOGY; GENE REGULATORY NETWORK; GENETICS; METABOLISM; MOLECULAR GENETICS; PROCEDURES; PROTEIN ANALYSIS; SACCHAROMYCES CEREVISIAE;

EID: 84907027309     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu470     Document Type: Conference Paper
Times cited : (34)

References (32)
  • 1
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner, M. et al. (2000) Gene ontology: tool for the unification of biology. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 2
    • 0034887203 scopus 로고    scopus 로고
    • Creating the gene ontology resource: Design and implementation
    • Ashburner, M. et al. (2001) Creating the gene ontology resource: design and implementation. Genome Res., 11, 1425-1433.
    • (2001) Genome Res , vol.11 , pp. 1425-1433
    • Ashburner, M.1
  • 3
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet, J.P. et al. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA, 101, 4164-4169.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 4164-4169
    • Brunet, J.P.1
  • 4
    • 84874947727 scopus 로고    scopus 로고
    • The BioGRID interaction database
    • Chatr-Aryamontri, A. et al. (2013) The BioGRID interaction database. Nucleic Acids Res., 41, D816-D823.
    • (2013) Nucleic Acids Res , vol.41
    • Chatr-Aryamontri, A.1
  • 5
    • 13444283846 scopus 로고    scopus 로고
    • Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
    • Chen, Y. and Xu, D. (2004) Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids Res., 32, 6414-6424.
    • (2004) Nucleic Acids Res , vol.32 , pp. 6414-6424
    • Chen, Y.1    Xu, D.2
  • 6
    • 6944251719 scopus 로고    scopus 로고
    • Predicting gene function in Saccharomyces cerevisiae
    • Clare, A. and King, R.D. (2003) Predicting gene function in Saccharomyces cerevisiae. Bioinformatics, 19, ii42-ii49.
    • (2003) Bioinformatics , vol.19
    • Clare, A.1    King, R.D.2
  • 7
    • 75649111192 scopus 로고    scopus 로고
    • The genetic landscape of a cell
    • Costanzo, M. et al. (2010) The genetic landscape of a cell. Science, 327, 425-431.
    • (2010) Science , vol.327 , pp. 425-431
    • Costanzo, M.1
  • 9
    • 84872198906 scopus 로고    scopus 로고
    • A gene ontology inferred from molecular networks
    • Dutkowski, J. et al. (2013) A gene ontology inferred from molecular networks. Nat. Biotech., 31, 38-45.
    • (2013) Nat. Biotech , vol.31 , pp. 38-45
    • Dutkowski, J.1
  • 10
    • 58149199563 scopus 로고    scopus 로고
    • Implementation of genepattern within the stanford microarray database
    • Hubble, J. et al. (2009) Implementation of genepattern within the stanford microarray database. Nucleic Acids Res., 37, D898-D901.
    • (2009) Nucleic Acids Res , vol.37
    • Hubble, J.1
  • 11
    • 56649100783 scopus 로고    scopus 로고
    • Position-dependent motif characterization using nonnegative matrix factorization
    • Hutchins, L.N. et al. (2008) Position-dependent motif characterization using nonnegative matrix factorization. Bioinformatics, 24, 2684-2690.
    • (2008) Bioinformatics , vol.24 , pp. 2684-2690
    • Hutchins, L.N.1
  • 12
    • 84867652286 scopus 로고    scopus 로고
    • Co-clustering phenomegenome for phenotype classification and disease gene discovery
    • Hwang, T. et al. (2012) Co-clustering phenomegenome for phenotype classification and disease gene discovery. Nucleic Acids Res., 40, e146.
    • (2012) Nucleic Acids Res , vol.40
    • Hwang, T.1
  • 13
    • 13844271482 scopus 로고    scopus 로고
    • Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae
    • Joshi, T. et al. (2004) Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae.OMICS, 8, 322-333.
    • (2004) OMICS , vol.8 , pp. 322-333
    • Joshi, T.1
  • 14
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • Lanckriet, G.R.G. et al. (2004) A statistical framework for genomic data fusion. Bioinformatics, 20, 2626-2635.
    • (2004) Bioinformatics , vol.20 , pp. 2626-2635
    • Lanckriet, G.R.G.1
  • 15
    • 41549138299 scopus 로고    scopus 로고
    • An improved, bias-reduced probabilistic functional gene network of baker s yeast, Saccharomyces cerevisiae
    • Lee, I. et al. (2007) An improved, bias-reduced probabilistic functional gene network of bakers yeast, Saccharomyces cerevisiae. PLoS One, 2, e988.
    • (2007) PLoS One , vol.2
    • Lee, I.1
  • 16
    • 84893167354 scopus 로고    scopus 로고
    • A network-Assisted co-clustering algorithm to discover cancer subtypes based on gene expression
    • Liu, Y. et al. (2014) A network-Assisted co-clustering algorithm to discover cancer subtypes based on gene expression. BMC Bioinformatics, 15, 37.
    • (2014) BMC Bioinformatics , vol.15 , pp. 37
    • Liu, Y.1
  • 17
    • 60749125063 scopus 로고    scopus 로고
    • Protein function annotation by homology-based inference
    • Loewenstein, Y. et al. (2009) Protein function annotation by homology-based inference. Genome Biol., 10, 207.
    • (2009) Genome Biol , vol.10 , pp. 207
    • Loewenstein, Y.1
  • 18
    • 49649109285 scopus 로고    scopus 로고
    • Uncovering biological network function via graphlet degree signatures
    • Milenković, T. and Przulj, N. (2008) Uncovering biological network function via graphlet degree signatures. Cancer Inform., 6, 257-273.
    • (2008) Cancer Inform , vol.6 , pp. 257-273
    • Milenković, T.1    Przulj, N.2
  • 19
    • 76049094356 scopus 로고    scopus 로고
    • Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data
    • Milenković, T. et al. (2010) Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J. R. Soc. Interface, 7, 423-437.
    • (2010) J. R. Soc. Interface , vol.7 , pp. 423-437
    • Milenković, T.1
  • 20
    • 77954309042 scopus 로고    scopus 로고
    • Fast integration of heterogeneous data sources for predicting gene function with limited annotation
    • Mostafavi, S. and Morris, Q. (2010) Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics, 26, 1759-1765.
    • (2010) Bioinformatics , vol.26 , pp. 1759-1765
    • Mostafavi, S.1    Morris, Q.2
  • 21
    • 47549107689 scopus 로고    scopus 로고
    • Genemania: A real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi, S. et al. (2008) Genemania: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol., 9, S4.
    • (2008) Genome Biol , vol.9
    • Mostafavi, S.1
  • 22
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Przulj, N. (2007) Biological network comparison using graphlet degree distribution. Bioinformatics, 23, e177-e183.
    • (2007) Bioinformatics , vol.23
    • Przulj, N.1
  • 23
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: Scale-free or geometric?
    • Przulj, N. et al. (2004) Modeling interactome: scale-free or geometric? Bioinformatics, 20, 3508-3515.
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Przulj, N.1
  • 24
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • Radivojac, P. et al. (2013) A large-scale evaluation of computational protein function prediction. Nat. Meth., 10, 221-227.
    • (2013) Nat. Meth , vol.10 , pp. 221-227
    • Radivojac, P.1
  • 25
    • 84881564126 scopus 로고    scopus 로고
    • Network topology reveals key cardiovascular disease genes
    • Sarajlić, A. et al. (2013) Network topology reveals key cardiovascular disease genes. PLoS One, 8, e71537.
    • (2013) PLoS One , vol.8
    • Sarajlić, A.1
  • 26
    • 53849111925 scopus 로고    scopus 로고
    • Semi-supervised clustering via matrix factorization
    • Wang, F. et al. (2008) Semi-supervised clustering via matrix factorization. In: SDM. SIAM, pp. 1-12.
    • (2008) SDM SIAM , pp. 1-12
    • Wang, F.1
  • 27
    • 83055181835 scopus 로고    scopus 로고
    • Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization
    • CIKM 11, New York, NY, ACM
    • Wang, H. et al. (2011) Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM 11, New York, NY, ACM, pp. 279-284.
    • (2011) Proceedings of the 20th ACM International Conference on Information and Knowledge Management , pp. 279-284
    • Wang, H.1
  • 28
    • 84876235880 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization
    • Wang, H. et al. (2013) Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization. J. Comput. Biol., 20, 344-358.
    • (2013) J. Comput. Biol , vol.20 , pp. 344-358
    • Wang, H.1
  • 29
    • 79959448071 scopus 로고    scopus 로고
    • A novel computational framework for simultaneous integration of multiple types of genomic data to identify microrna-gene regulatory modules
    • Zhang, S. et al. (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microrna-gene regulatory modules. Bioinformatics, 27, i401-i409.
    • (2011) Bioinformatics , vol.27
    • Zhang, S.1
  • 30
    • 27744448992 scopus 로고    scopus 로고
    • Network constrained clustering for gene microarray data
    • Zhu, D. et al. (2005) Network constrained clustering for gene microarray data. Bioinformatics, 21, 4014-4020.
    • (2005) Bioinformatics , vol.21 , pp. 4014-4020
    • Zhu, D.1
  • 31
    • 84905884178 scopus 로고    scopus 로고
    • Matrix factorization-based data fusion for gene function prediction in bakers yeast and slime mold
    • Zitnik, M. and Blaz, Z. (2014) Matrix factorization-based data fusion for gene function prediction in bakers yeast and slime mold. Pac. Symp. Biocomput., 400-411.
    • (2014) Pac. Symp. Biocomput , pp. 400-411
    • Zitnik, M.1    Blaz, Z.2
  • 32
    • 84889679014 scopus 로고    scopus 로고
    • Discovering disease-disease associations by fusing systemslevel molecular data
    • Zitnik, M. et al. (2013) Discovering disease-disease associations by fusing systemslevel molecular data. Sci. Rep., 3, 3202.
    • (2013) Sci. Rep , vol.3 , pp. 3202
    • Zitnik, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.