메뉴 건너뛰기




Volumn 40, Issue 9, 2015, Pages 504-515

Replicating through telomeres: A means to an end

Author keywords

G quadruplexes; G strand overhang; Replication; Shelterins; T loop; Telomerase; Telomeres

Indexed keywords

CYCLINE; DNA TOPOISOMERASE (ATP HYDROLYSING); FLAP ENDONUCLEASE; FLAP ENDONUCLEASE 1; MEMBRANE PROTEIN; POT1 INTERACTING PROTEIN 1; PROTECTION OF TELOMERES PROTEIN 1; PROTEIN RTEL1; REPRESSOR ACTIVATOR PROTEIN 1; TELOMERIC REPEAT BINDING FACTOR 1; TELOMERIC REPEAT BINDING FACTOR 1 INTERACTING PROTEIN 1; TELOMERIC REPEAT BINDING FACTOR 2; UNCLASSIFIED DRUG; DNA; GUANINE QUADRUPLEX; TELOMERASE;

EID: 84939805683     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.06.003     Document Type: Review
Times cited : (101)

References (134)
  • 1
    • 0032489012 scopus 로고    scopus 로고
    • TRF2 protects human telomeres from end-to-end fusions
    • van Steensel B., et al. TRF2 protects human telomeres from end-to-end fusions. Cell 1998, 92:401-413.
    • (1998) Cell , vol.92 , pp. 401-413
    • van Steensel, B.1
  • 2
    • 22144490491 scopus 로고    scopus 로고
    • DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion
    • Celli G.B., de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 2005, 7:712-718.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 712-718
    • Celli, G.B.1    de Lange, T.2
  • 3
    • 0033553516 scopus 로고    scopus 로고
    • P53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis
    • Chin L., et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999, 97:527-538.
    • (1999) Cell , vol.97 , pp. 527-538
    • Chin, L.1
  • 4
    • 0033605145 scopus 로고    scopus 로고
    • P53- and ATM-dependent apoptosis induced by telomeres lacking TRF2
    • Karlseder J., et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999, 283:1321-1325.
    • (1999) Science , vol.283 , pp. 1321-1325
    • Karlseder, J.1
  • 5
    • 0042420304 scopus 로고    scopus 로고
    • DNA damage foci at dysfunctional telomeres
    • Takai H., et al. DNA damage foci at dysfunctional telomeres. Curr. Biol. 2003, 13:1549-1556.
    • (2003) Curr. Biol. , vol.13 , pp. 1549-1556
    • Takai, H.1
  • 6
    • 33947317206 scopus 로고    scopus 로고
    • The epigenetic regulation of mammalian telomeres
    • Blasco M.A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 2007, 8:299-309.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 299-309
    • Blasco, M.A.1
  • 7
    • 24944460598 scopus 로고    scopus 로고
    • Shelterin: the protein complex that shapes and safeguards human telomeres
    • de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19:2100-2110.
    • (2005) Genes Dev. , vol.19 , pp. 2100-2110
    • de Lange, T.1
  • 8
    • 46249125488 scopus 로고    scopus 로고
    • How shelterin protects mammalian telomeres
    • Palm W., de Lange T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 2008, 42:301-334.
    • (2008) Annu. Rev. Genet. , vol.42 , pp. 301-334
    • Palm, W.1    de Lange, T.2
  • 9
    • 22944488871 scopus 로고    scopus 로고
    • Telomeres and human disease: ageing, cancer and beyond
    • Blasco M.A. Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 2005, 6:611-622.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 611-622
    • Blasco, M.A.1
  • 10
    • 31544466516 scopus 로고    scopus 로고
    • Human telomeres have different overhang sizes at leading versus lagging strands
    • Chai W., et al. Human telomeres have different overhang sizes at leading versus lagging strands. Mol. Cell 2006, 21:427-435.
    • (2006) Mol. Cell , vol.21 , pp. 427-435
    • Chai, W.1
  • 11
    • 0031000884 scopus 로고    scopus 로고
    • Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening
    • Makarov V.L., et al. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997, 88:657-666.
    • (1997) Cell , vol.88 , pp. 657-666
    • Makarov, V.L.1
  • 12
    • 84885580087 scopus 로고    scopus 로고
    • Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation
    • Doksani Y., et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 2013, 155:345-356.
    • (2013) Cell , vol.155 , pp. 345-356
    • Doksani, Y.1
  • 13
    • 0033553536 scopus 로고    scopus 로고
    • Mammalian telomeres end in a large duplex loop
    • Griffith J.D., et al. Mammalian telomeres end in a large duplex loop. Cell 1999, 97:503-514.
    • (1999) Cell , vol.97 , pp. 503-514
    • Griffith, J.D.1
  • 14
    • 78349270933 scopus 로고    scopus 로고
    • Role of shelterin in cancer and aging
    • Martinez P., Blasco M.A. Role of shelterin in cancer and aging. Aging Cell 2010, 9:653-666.
    • (2010) Aging Cell , vol.9 , pp. 653-666
    • Martinez, P.1    Blasco, M.A.2
  • 15
    • 79952017845 scopus 로고    scopus 로고
    • Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins
    • Martinez P., Blasco M.A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer 2011, 11:161-176.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 161-176
    • Martinez, P.1    Blasco, M.A.2
  • 16
    • 39749134753 scopus 로고    scopus 로고
    • A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins
    • Chen Y., et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 2008, 319:1092-1096.
    • (2008) Science , vol.319 , pp. 1092-1096
    • Chen, Y.1
  • 17
    • 12844265975 scopus 로고    scopus 로고
    • Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection
    • Lei M., et al. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 2004, 11:1223-1229.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 1223-1229
    • Lei, M.1
  • 18
    • 0035844082 scopus 로고    scopus 로고
    • Pot1, the putative telomere end-binding protein in fission yeast and humans
    • Baumann P., Cech T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001, 292:1171-1175.
    • (2001) Science , vol.292 , pp. 1171-1175
    • Baumann, P.1    Cech, T.R.2
  • 19
    • 0038451396 scopus 로고    scopus 로고
    • POT1 as a terminal transducer of TRF1 telomere length control
    • Loayza D., de Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003, 423:1013-1018.
    • (2003) Nature , vol.423 , pp. 1013-1018
    • Loayza, D.1    de Lange, T.2
  • 20
    • 33745713451 scopus 로고    scopus 로고
    • Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres
    • Wu L., et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 2006, 126:49-62.
    • (2006) Cell , vol.126 , pp. 49-62
    • Wu, L.1
  • 21
    • 33745685066 scopus 로고    scopus 로고
    • Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres
    • Hockemeyer D., et al. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 2006, 126:63-77.
    • (2006) Cell , vol.126 , pp. 63-77
    • Hockemeyer, D.1
  • 22
    • 33750446640 scopus 로고    scopus 로고
    • POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination
    • He H., et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J. 2006, 25:5180-5190.
    • (2006) EMBO J. , vol.25 , pp. 5180-5190
    • He, H.1
  • 23
    • 84863622662 scopus 로고    scopus 로고
    • Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST
    • Wu P., et al. Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 2012, 150:39-52.
    • (2012) Cell , vol.150 , pp. 39-52
    • Wu, P.1
  • 24
    • 34548317418 scopus 로고    scopus 로고
    • Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1
    • Denchi E.L., de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007, 448:1068-1071.
    • (2007) Nature , vol.448 , pp. 1068-1071
    • Denchi, E.L.1    de Lange, T.2
  • 25
    • 58149467017 scopus 로고    scopus 로고
    • Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR-dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita
    • He H., et al. Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR-dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita. Mol. Cell. Biol. 2009, 29:229-240.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 229-240
    • He, H.1
  • 26
    • 46249089163 scopus 로고    scopus 로고
    • Engineered telomere degradation models dyskeratosis congenita
    • Hockemeyer D., et al. Engineered telomere degradation models dyskeratosis congenita. Genes Dev. 2008, 22:1773-1785.
    • (2008) Genes Dev. , vol.22 , pp. 1773-1785
    • Hockemeyer, D.1
  • 27
    • 6344289975 scopus 로고    scopus 로고
    • TIN2 mediates functions of TRF2 at human telomeres
    • Kim S.H., et al. TIN2 mediates functions of TRF2 at human telomeres. J. Biol. Chem. 2004, 279:43799-43804.
    • (2004) J. Biol. Chem. , vol.279 , pp. 43799-43804
    • Kim, S.H.1
  • 28
    • 3142679378 scopus 로고    scopus 로고
    • POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex
    • Ye J.Z., et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 2004, 18:1649-1654.
    • (2004) Genes Dev. , vol.18 , pp. 1649-1654
    • Ye, J.Z.1
  • 29
    • 81355150876 scopus 로고    scopus 로고
    • Telomere protection by TPP1/POT1 requires tethering to TIN2
    • Takai K.K., et al. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell 2011, 44:647-659.
    • (2011) Mol. Cell , vol.44 , pp. 647-659
    • Takai, K.K.1
  • 30
    • 84895795314 scopus 로고    scopus 로고
    • TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1
    • Frescas D., de Lange T. TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1. Mol. Cell. Biol. 2014, 34:1349-1362.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 1349-1362
    • Frescas, D.1    de Lange, T.2
  • 31
    • 84872912456 scopus 로고    scopus 로고
    • Finding the end: recruitment of telomerase to telomeres
    • Nandakumar J., Cech T.R. Finding the end: recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 2013, 14:69-82.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 69-82
    • Nandakumar, J.1    Cech, T.R.2
  • 32
    • 3242680818 scopus 로고    scopus 로고
    • PTOP interacts with POT1 and regulates its localization to telomeres
    • Liu D., et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 2004, 6:673-680.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 673-680
    • Liu, D.1
  • 33
    • 75749092997 scopus 로고    scopus 로고
    • Telomere protection by TPP1 is mediated by POT1a and POT1b
    • Kibe T., et al. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol. Cell. Biol. 2010, 30:1059-1066.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1059-1066
    • Kibe, T.1
  • 34
    • 34547900244 scopus 로고    scopus 로고
    • Telomere maintenance through spatial control of telomeric proteins
    • Chen L.Y., et al. Telomere maintenance through spatial control of telomeric proteins. Mol. Cell. Biol. 2007, 27:5898-5909.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 5898-5909
    • Chen, L.Y.1
  • 35
    • 77953427257 scopus 로고    scopus 로고
    • TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo
    • Abreu E., et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol. Cell. Biol. 2010, 30:2971-2982.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2971-2982
    • Abreu, E.1
  • 36
    • 77952898835 scopus 로고    scopus 로고
    • TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice
    • Tejera A., et al. TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev. Cell 2010, 18:691-702.
    • (2010) Dev. Cell , vol.18 , pp. 691-702
    • Tejera, A.1
  • 37
    • 33846692105 scopus 로고    scopus 로고
    • TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase
    • Xin H., et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 2007, 445:559-562.
    • (2007) Nature , vol.445 , pp. 559-562
    • Xin, H.1
  • 38
    • 0344875481 scopus 로고    scopus 로고
    • Rap1 affects the length and heterogeneity of human telomeres
    • Li B., de Lange T. Rap1 affects the length and heterogeneity of human telomeres. Mol. Biol. Cell 2003, 14:5060-5068.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 5060-5068
    • Li, B.1    de Lange, T.2
  • 39
    • 0034716904 scopus 로고    scopus 로고
    • Identification of human Rap1: implications for telomere evolution
    • Li B., et al. Identification of human Rap1: implications for telomere evolution. Cell 2000, 101:471-483.
    • (2000) Cell , vol.101 , pp. 471-483
    • Li, B.1
  • 40
    • 77950196212 scopus 로고    scopus 로고
    • Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal
    • Sfeir A., et al. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 2010, 327:1657-1661.
    • (2010) Science , vol.327 , pp. 1657-1661
    • Sfeir, A.1
  • 41
    • 77955173402 scopus 로고    scopus 로고
    • Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites
    • Martinez P., et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat. Cell Biol. 2010, 12:768-780.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 768-780
    • Martinez, P.1
  • 42
    • 70350786918 scopus 로고    scopus 로고
    • Human RAP1 inhibits non-homologous end joining at telomeres
    • Sarthy J., et al. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J. 2009, 28:3390-3399.
    • (2009) EMBO J. , vol.28 , pp. 3390-3399
    • Sarthy, J.1
  • 43
    • 84879750757 scopus 로고    scopus 로고
    • RAP1 protects from obesity through its extratelomeric role regulating gene expression
    • Martinez P., et al. RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell Rep. 2013, 3:2059-2074.
    • (2013) Cell Rep. , vol.3 , pp. 2059-2074
    • Martinez, P.1
  • 44
    • 84879771334 scopus 로고    scopus 로고
    • Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity
    • Yeung F., et al. Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity. Cell Rep. 2013, 3:1847-1856.
    • (2013) Cell Rep. , vol.3 , pp. 1847-1856
    • Yeung, F.1
  • 45
    • 79960112520 scopus 로고    scopus 로고
    • Human telomeric proteins occupy selective interstitial sites
    • Yang D., et al. Human telomeric proteins occupy selective interstitial sites. Cell Res. 2011, 21:1013-1027.
    • (2011) Cell Res. , vol.21 , pp. 1013-1027
    • Yang, D.1
  • 46
    • 77649180958 scopus 로고    scopus 로고
    • Telomeres: protecting chromosomes against genome instability
    • O'Sullivan R.J., Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 2010, 11:171-181.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 171-181
    • O'Sullivan, R.J.1    Karlseder, J.2
  • 47
    • 84855490226 scopus 로고    scopus 로고
    • Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation
    • Stewart J.A., et al. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat. Res. 2012, 730:12-19.
    • (2012) Mutat. Res. , vol.730 , pp. 12-19
    • Stewart, J.A.1
  • 48
    • 0015844590 scopus 로고
    • A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon
    • Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 1973, 41:181-190.
    • (1973) J. Theor. Biol. , vol.41 , pp. 181-190
    • Olovnikov, A.M.1
  • 49
    • 0015515155 scopus 로고
    • Origin of concatemeric T7 DNA
    • Watson J.D. Origin of concatemeric T7 DNA. Nat. New Biol. 1972, 239:197-201.
    • (1972) Nat. New Biol. , vol.239 , pp. 197-201
    • Watson, J.D.1
  • 50
    • 84876319685 scopus 로고    scopus 로고
    • The Pol alpha-primase complex
    • Pellegrini L. The Pol alpha-primase complex. Subcell. Biochem. 2012, 62:157-169.
    • (2012) Subcell. Biochem. , vol.62 , pp. 157-169
    • Pellegrini, L.1
  • 51
    • 84861768586 scopus 로고    scopus 로고
    • Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening
    • Chow T.T., et al. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev. 2012, 26:1167-1178.
    • (2012) Genes Dev. , vol.26 , pp. 1167-1178
    • Chow, T.T.1
  • 52
    • 0029128798 scopus 로고
    • Telomerase and DNA end replication: no longer a lagging strand problem?
    • Lingner J., et al. Telomerase and DNA end replication: no longer a lagging strand problem?. Science 1995, 269:1533-1534.
    • (1995) Science , vol.269 , pp. 1533-1534
    • Lingner, J.1
  • 53
    • 0034733606 scopus 로고    scopus 로고
    • Telomere shortening is proportional to the size of the G-rich telomeric 3'-overhang
    • Huffman K.E., et al. Telomere shortening is proportional to the size of the G-rich telomeric 3'-overhang. J. Biol. Chem. 2000, 275:19719-19722.
    • (2000) J. Biol. Chem. , vol.275 , pp. 19719-19722
    • Huffman, K.E.1
  • 54
    • 40349085766 scopus 로고    scopus 로고
    • The longest telomeres: a general signature of adult stem cell compartments
    • Flores I., et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008, 22:654-667.
    • (2008) Genes Dev. , vol.22 , pp. 654-667
    • Flores, I.1
  • 55
    • 36749034760 scopus 로고    scopus 로고
    • Telomere lengthening early in development
    • Liu L., et al. Telomere lengthening early in development. Nat. Cell Biol. 2007, 9:1436-1441.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1436-1441
    • Liu, L.1
  • 56
    • 58949094552 scopus 로고    scopus 로고
    • Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells
    • Marion R.M., et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 2009, 4:141-154.
    • (2009) Cell Stem Cell , vol.4 , pp. 141-154
    • Marion, R.M.1
  • 57
    • 0022402513 scopus 로고
    • Identification of a specific telomere terminal transferase activity in Tetrahymena extracts
    • Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985, 43:405-413.
    • (1985) Cell , vol.43 , pp. 405-413
    • Greider, C.W.1    Blackburn, E.H.2
  • 58
    • 0025279931 scopus 로고
    • Telomeres shorten during ageing of human fibroblasts
    • Harley C.B., et al. Telomeres shorten during ageing of human fibroblasts. Nature 1990, 345:458-460.
    • (1990) Nature , vol.345 , pp. 458-460
    • Harley, C.B.1
  • 59
    • 84878864199 scopus 로고    scopus 로고
    • The hallmarks of aging
    • Lopez-Otin C., et al. The hallmarks of aging. Cell 2013, 153:1194-1217.
    • (2013) Cell , vol.153 , pp. 1194-1217
    • Lopez-Otin, C.1
  • 60
    • 0030999605 scopus 로고    scopus 로고
    • Synthesis of the mammalian telomere lagging strand in vitro
    • Reveal P.M., et al. Synthesis of the mammalian telomere lagging strand in vitro. J. Biol. Chem. 1997, 272:11678-11681.
    • (1997) J. Biol. Chem. , vol.272 , pp. 11678-11681
    • Reveal, P.M.1
  • 61
    • 84870474851 scopus 로고    scopus 로고
    • Human CST has independent functions during telomere duplex replication and C-strand fill-in
    • Wang F., et al. Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep. 2012, 2:1096-1103.
    • (2012) Cell Rep. , vol.2 , pp. 1096-1103
    • Wang, F.1
  • 62
    • 68049088928 scopus 로고    scopus 로고
    • Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells
    • Zhao Y., et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 2009, 138:463-475.
    • (2009) Cell , vol.138 , pp. 463-475
    • Zhao, Y.1
  • 63
    • 0035812845 scopus 로고    scopus 로고
    • The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability
    • Hemann M.T., et al. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001, 107:67-77.
    • (2001) Cell , vol.107 , pp. 67-77
    • Hemann, M.T.1
  • 64
    • 0034769105 scopus 로고    scopus 로고
    • -/- mice with short telomeres
    • -/- mice with short telomeres. EMBO Rep. 2001, 2:800-807.
    • (2001) EMBO Rep. , vol.2 , pp. 800-807
    • Samper, E.1
  • 65
    • 47549086947 scopus 로고    scopus 로고
    • How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex
    • Bianchi A., Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol. Cell 2008, 31:153-165.
    • (2008) Mol. Cell , vol.31 , pp. 153-165
    • Bianchi, A.1    Shore, D.2
  • 66
    • 33846590977 scopus 로고    scopus 로고
    • Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres
    • Benetti R., et al. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 2007, 39:243-250.
    • (2007) Nat. Genet. , vol.39 , pp. 243-250
    • Benetti, R.1
  • 67
    • 34548827379 scopus 로고    scopus 로고
    • Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination
    • Benetti R., et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J. Cell Biol. 2007, 178:925-936.
    • (2007) J. Cell Biol. , vol.178 , pp. 925-936
    • Benetti, R.1
  • 68
    • 56649115881 scopus 로고    scopus 로고
    • Epigenetic regulation of telomeres in human cancer
    • Vera E., et al. Epigenetic regulation of telomeres in human cancer. Oncogene 2008, 27:6817-6833.
    • (2008) Oncogene , vol.27 , pp. 6817-6833
    • Vera, E.1
  • 69
    • 0347988045 scopus 로고    scopus 로고
    • Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases
    • Garcia-Cao M., et al. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 2004, 36:94-99.
    • (2004) Nat. Genet. , vol.36 , pp. 94-99
    • Garcia-Cao, M.1
  • 70
    • 33645702660 scopus 로고    scopus 로고
    • DNA methyltransferases control telomere length and telomere recombination in mammalian cells
    • Gonzalo S., et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol. 2006, 8:416-424.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 416-424
    • Gonzalo, S.1
  • 71
    • 70350031814 scopus 로고    scopus 로고
    • RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway
    • Miyake Y., et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 2009, 36:193-206.
    • (2009) Mol. Cell , vol.36 , pp. 193-206
    • Miyake, Y.1
  • 72
    • 70350036241 scopus 로고    scopus 로고
    • Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes
    • Surovtseva Y.V., et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 2009, 36:207-218.
    • (2009) Mol. Cell , vol.36 , pp. 207-218
    • Surovtseva, Y.V.1
  • 73
    • 0025357511 scopus 로고
    • Purification and properties of an accessory protein for DNA polymerase alpha/primase
    • Goulian M., et al. Purification and properties of an accessory protein for DNA polymerase alpha/primase. J. Biol. Chem. 1990, 265:13221-13230.
    • (1990) J. Biol. Chem. , vol.265 , pp. 13221-13230
    • Goulian, M.1
  • 74
    • 65549148649 scopus 로고    scopus 로고
    • A DNA polymerase-α·primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells
    • Casteel D.E., et al. A DNA polymerase-α·primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J. Biol. Chem. 2009, 284:5807-5818.
    • (2009) J. Biol. Chem. , vol.284 , pp. 5807-5818
    • Casteel, D.E.1
  • 75
    • 72849112077 scopus 로고    scopus 로고
    • Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres
    • Sun J., et al. Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres. Genes Dev. 2009, 23:2900-2914.
    • (2009) Genes Dev. , vol.23 , pp. 2900-2914
    • Sun, J.1
  • 76
    • 73349109843 scopus 로고    scopus 로고
    • Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain
    • Gelinas A.D., et al. Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19298-19303.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19298-19303
    • Gelinas, A.D.1
  • 77
    • 84866078802 scopus 로고    scopus 로고
    • Human CST promotes telomere duplex replication and general replication restart after fork stalling
    • Stewart J.A., et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J. 2012, 31:3537-3549.
    • (2012) EMBO J. , vol.31 , pp. 3537-3549
    • Stewart, J.A.1
  • 78
    • 84861198042 scopus 로고    scopus 로고
    • CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion
    • Gu P., et al. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J. 2012, 31:2309-2321.
    • (2012) EMBO J. , vol.31 , pp. 2309-2321
    • Gu, P.1
  • 79
    • 84908016494 scopus 로고    scopus 로고
    • CST for the grand finale of telomere replication
    • Chen L.Y., Lingner J. CST for the grand finale of telomere replication. Nucleus 2013, 4:277-282.
    • (2013) Nucleus , vol.4 , pp. 277-282
    • Chen, L.Y.1    Lingner, J.2
  • 80
    • 84870599782 scopus 로고    scopus 로고
    • Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in
    • Huang C., et al. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res. 2012, 22:1681-1695.
    • (2012) Cell Res. , vol.22 , pp. 1681-1695
    • Huang, C.1
  • 81
    • 84886912523 scopus 로고    scopus 로고
    • Human TEN1 maintains telomere integrity and functions in genome-wide replication restart
    • Kasbek C., et al. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J. Biol. Chem. 2013, 288:30139-30150.
    • (2013) J. Biol. Chem. , vol.288 , pp. 30139-30150
    • Kasbek, C.1
  • 82
    • 84865263603 scopus 로고    scopus 로고
    • The human CST complex is a terminator of telomerase activity
    • Chen L.Y., et al. The human CST complex is a terminator of telomerase activity. Nature 2012, 488:540-544.
    • (2012) Nature , vol.488 , pp. 540-544
    • Chen, L.Y.1
  • 83
    • 33846691378 scopus 로고    scopus 로고
    • The POT1-TPP1 telomere complex is a telomerase processivity factor
    • Wang F., et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 2007, 445:506-510.
    • (2007) Nature , vol.445 , pp. 506-510
    • Wang, F.1
  • 85
    • 33847372902 scopus 로고    scopus 로고
    • Physiological relevance of telomeric G-quadruplex formation: a potential drug target
    • Oganesian L., Bryan T.M. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 2007, 29:155-165.
    • (2007) Bioessays , vol.29 , pp. 155-165
    • Oganesian, L.1    Bryan, T.M.2
  • 86
    • 84877102552 scopus 로고    scopus 로고
    • Replication of telomeres and the regulation of telomerase
    • Pfeiffer V., Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb. Perspect. Biol. 2013, 5:a010405.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a010405
    • Pfeiffer, V.1    Lingner, J.2
  • 87
    • 33645747064 scopus 로고    scopus 로고
    • Semi-conservative DNA replication through telomeres requires Taz1
    • Miller K.M., et al. Semi-conservative DNA replication through telomeres requires Taz1. Nature 2006, 440:824-828.
    • (2006) Nature , vol.440 , pp. 824-828
    • Miller, K.M.1
  • 88
    • 33750801681 scopus 로고    scopus 로고
    • The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres
    • Verdun R.E., Karlseder J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 2006, 127:709-720.
    • (2006) Cell , vol.127 , pp. 709-720
    • Verdun, R.E.1    Karlseder, J.2
  • 89
    • 69749092744 scopus 로고    scopus 로고
    • Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice
    • Martinez P., et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev. 2009, 23:2060-2075.
    • (2009) Genes Dev. , vol.23 , pp. 2060-2075
    • Martinez, P.1
  • 90
    • 67649635974 scopus 로고    scopus 로고
    • Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication
    • Sfeir A., et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 2009, 138:90-103.
    • (2009) Cell , vol.138 , pp. 90-103
    • Sfeir, A.1
  • 91
    • 84899748516 scopus 로고    scopus 로고
    • TopoIIα prevents telomere fragility and formation of ultra thin DNA bridges during mitosis through TRF1-dependent binding to telomeres
    • d'Alcontres M.S., et al. TopoIIα prevents telomere fragility and formation of ultra thin DNA bridges during mitosis through TRF1-dependent binding to telomeres. Cell Cycle 2014, 13:1463-1481.
    • (2014) Cell Cycle , vol.13 , pp. 1463-1481
    • d'Alcontres, M.S.1
  • 92
    • 84939867981 scopus 로고    scopus 로고
    • Chronic replicative stress induced by CCL4 in TRF1 knockout mice recapitulates the origin of large liver cell changes
    • Published online March 27, 2015
    • Beier F., et al. Chronic replicative stress induced by CCL4 in TRF1 knockout mice recapitulates the origin of large liver cell changes. J. Hepatol. 2015, Published online March 27, 2015. 10.1016/j.jhep.2015.03.022.
    • (2015) J. Hepatol.
    • Beier, F.1
  • 93
    • 84860854071 scopus 로고    scopus 로고
    • RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity
    • Vannier J.B., et al. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 2012, 149:795-806.
    • (2012) Cell , vol.149 , pp. 795-806
    • Vannier, J.B.1
  • 94
    • 4544367827 scopus 로고    scopus 로고
    • Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2
    • Lillard-Wetherell K., et al. Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum. Mol. Genet. 2004, 13:1919-1932.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 1919-1932
    • Lillard-Wetherell, K.1
  • 95
    • 84910628583 scopus 로고    scopus 로고
    • TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling
    • Zimmermann M., et al. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev. 2014, 28:2477-2491.
    • (2014) Genes Dev. , vol.28 , pp. 2477-2491
    • Zimmermann, M.1
  • 96
    • 84862872436 scopus 로고    scopus 로고
    • Timeless preserves telomere length by promoting efficient DNA replication through human telomeres
    • Leman A.R., et al. Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle 2012, 11:2337-2347.
    • (2012) Cell Cycle , vol.11 , pp. 2337-2347
    • Leman, A.R.1
  • 97
    • 77149171759 scopus 로고    scopus 로고
    • Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion
    • Leman A.R., et al. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J. Cell Sci. 2010, 123:660-670.
    • (2010) J. Cell Sci. , vol.123 , pp. 660-670
    • Leman, A.R.1
  • 98
    • 77954958609 scopus 로고    scopus 로고
    • TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage
    • Ye J., et al. TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. Cell 2010, 142:230-242.
    • (2010) Cell , vol.142 , pp. 230-242
    • Ye, J.1
  • 99
    • 84891604932 scopus 로고    scopus 로고
    • TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells
    • Schneider R.P., et al. TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells. Nat. Commun. 2012, 4:1946.
    • (2012) Nat. Commun. , vol.4 , pp. 1946
    • Schneider, R.P.1
  • 100
    • 77958610668 scopus 로고    scopus 로고
    • Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?
    • Boue S., et al. Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?. PLoS ONE 2010, 5:e12664.
    • (2010) PLoS ONE , vol.5 , pp. e12664
    • Boue, S.1
  • 101
    • 80053082069 scopus 로고    scopus 로고
    • Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells
    • Varela E., et al. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15207-15212.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 15207-15212
    • Varela, E.1
  • 102
    • 10344256183 scopus 로고    scopus 로고
    • Defective telomere lagging strand synthesis in cells lacking WRN helicase activity
    • Crabbe L., et al. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 2004, 306:1951-1953.
    • (2004) Science , vol.306 , pp. 1951-1953
    • Crabbe, L.1
  • 103
    • 84903975857 scopus 로고    scopus 로고
    • Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2
    • Edwards D.N., et al. Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2. Nucleic Acids Res. 2014, 42:7748-7761.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 7748-7761
    • Edwards, D.N.1
  • 104
    • 0037175018 scopus 로고    scopus 로고
    • Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases
    • Opresko P.L., et al. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem. 2002, 277:41110-41119.
    • (2002) J. Biol. Chem. , vol.277 , pp. 41110-41119
    • Opresko, P.L.1
  • 105
    • 84898002516 scopus 로고    scopus 로고
    • Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change
    • Edwards D.N., et al. Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change. PLoS ONE 2014, 9:e80664.
    • (2014) PLoS ONE , vol.9 , pp. e80664
    • Edwards, D.N.1
  • 106
    • 84867304481 scopus 로고    scopus 로고
    • The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures
    • Barefield C., Karlseder J. The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res. 2012, 40:7358-7367.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 7358-7367
    • Barefield, C.1    Karlseder, J.2
  • 107
    • 3943086339 scopus 로고    scopus 로고
    • Flap endonuclease 1: a central component of DNA metabolism
    • Liu Y., et al. Flap endonuclease 1: a central component of DNA metabolism. Annu. Rev. Biochem. 2004, 73:589-615.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 589-615
    • Liu, Y.1
  • 108
    • 21444436726 scopus 로고    scopus 로고
    • Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks
    • Zheng L., et al. Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep. 2005, 6:83-89.
    • (2005) EMBO Rep. , vol.6 , pp. 83-89
    • Zheng, L.1
  • 109
    • 0742288051 scopus 로고    scopus 로고
    • WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork
    • Sharma S., et al. WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol. Biol. Cell 2004, 15:734-750.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 734-750
    • Sharma, S.1
  • 110
    • 41449108060 scopus 로고    scopus 로고
    • Flap endonuclease 1 contributes to telomere stability
    • Saharia A., et al. Flap endonuclease 1 contributes to telomere stability. Curr. Biol. 2008, 18:496-500.
    • (2008) Curr. Biol. , vol.18 , pp. 496-500
    • Saharia, A.1
  • 111
    • 77956255536 scopus 로고    scopus 로고
    • FEN1 ensures telomere stability by facilitating replication fork re-initiation
    • Saharia A., et al. FEN1 ensures telomere stability by facilitating replication fork re-initiation. J. Biol. Chem. 2010, 285:27057-27066.
    • (2010) J. Biol. Chem. , vol.285 , pp. 27057-27066
    • Saharia, A.1
  • 112
    • 29244451512 scopus 로고    scopus 로고
    • The interaction site of flap endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA
    • Sharma S., et al. The interaction site of flap endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res. 2005, 33:6769-6781.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 6769-6781
    • Sharma, S.1
  • 113
    • 2942718760 scopus 로고    scopus 로고
    • Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein
    • Ding H., et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 2004, 117:873-886.
    • (2004) Cell , vol.117 , pp. 873-886
    • Ding, H.1
  • 114
    • 84863895896 scopus 로고    scopus 로고
    • RTEL1 contributes to DNA replication and repair and telomere maintenance
    • Uringa E.J., et al. RTEL1 contributes to DNA replication and repair and telomere maintenance. Mol. Biol. Cell 2012, 23:2782-2792.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 2782-2792
    • Uringa, E.J.1
  • 115
    • 84923938869 scopus 로고    scopus 로고
    • TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding
    • Sarek G., et al. TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol. Cell 2015, 57:622-635.
    • (2015) Mol. Cell , vol.57 , pp. 622-635
    • Sarek, G.1
  • 116
    • 84885628048 scopus 로고    scopus 로고
    • RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication
    • Vannier J.B., et al. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 2013, 342:239-242.
    • (2013) Science , vol.342 , pp. 239-242
    • Vannier, J.B.1
  • 117
    • 27144491909 scopus 로고    scopus 로고
    • Nuclear dynamics of PCNA in DNA replication and repair
    • Essers J., et al. Nuclear dynamics of PCNA in DNA replication and repair. Mol. Cell. Biol. 2005, 25:9350-9359.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 9350-9359
    • Essers, J.1
  • 118
    • 67649662604 scopus 로고    scopus 로고
    • Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair
    • Svendsen J.M., et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 2009, 138:63-77.
    • (2009) Cell , vol.138 , pp. 63-77
    • Svendsen, J.M.1
  • 119
    • 15944368044 scopus 로고    scopus 로고
    • Telomere-end processing the terminal nucleotides of human chromosomes
    • Sfeir A.J., et al. Telomere-end processing the terminal nucleotides of human chromosomes. Mol. Cell 2005, 18:131-138.
    • (2005) Mol. Cell , vol.18 , pp. 131-138
    • Sfeir, A.J.1
  • 120
    • 77955995270 scopus 로고    scopus 로고
    • Apollo contributes to G overhang maintenance and protects leading-end telomeres
    • Wu P., et al. Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol. Cell 2010, 39:606-617.
    • (2010) Mol. Cell , vol.39 , pp. 606-617
    • Wu, P.1
  • 121
    • 34548259806 scopus 로고    scopus 로고
    • Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice
    • Schaetzlein S., et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 2007, 130:863-877.
    • (2007) Cell , vol.130 , pp. 863-877
    • Schaetzlein, S.1
  • 122
    • 77954958459 scopus 로고    scopus 로고
    • SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair
    • Lam Y.C., et al. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J. 2010, 29:2230-2241.
    • (2010) EMBO J. , vol.29 , pp. 2230-2241
    • Lam, Y.C.1
  • 123
    • 68949149732 scopus 로고    scopus 로고
    • Multiple roles for MRE11 at uncapped telomeres
    • Deng Y., et al. Multiple roles for MRE11 at uncapped telomeres. Nature 2009, 460:914-918.
    • (2009) Nature , vol.460 , pp. 914-918
    • Deng, Y.1
  • 124
    • 84902075532 scopus 로고    scopus 로고
    • Metabolism of DNA secondary structures at the eukaryotic replication fork
    • Leon-Ortiz A.M., et al. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst.) 2014, 19:152-162.
    • (2014) DNA Repair (Amst.) , vol.19 , pp. 152-162
    • Leon-Ortiz, A.M.1
  • 125
    • 70349832774 scopus 로고    scopus 로고
    • Telomeric circles: universal players in telomere maintenance?
    • Tomaska L., et al. Telomeric circles: universal players in telomere maintenance?. Nat. Struct. Mol. Biol. 2009, 16:1010-1015.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1010-1015
    • Tomaska, L.1
  • 126
    • 7044232011 scopus 로고    scopus 로고
    • Homologous recombination generates T-loop-sized deletions at human telomeres
    • Wang R.C., et al. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004, 119:355-368.
    • (2004) Cell , vol.119 , pp. 355-368
    • Wang, R.C.1
  • 127
    • 0033518188 scopus 로고    scopus 로고
    • A telomerase component is defective in the human disease dyskeratosis congenita
    • Mitchell J.R., et al. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999, 402:551-555.
    • (1999) Nature , vol.402 , pp. 551-555
    • Mitchell, J.R.1
  • 129
    • 84900443034 scopus 로고    scopus 로고
    • Cell biology of disease: telomeropathies: an emerging spectrum disorder
    • Holohan B., et al. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J. Cell Biol. 2014, 205:289-299.
    • (2014) J. Cell Biol. , vol.205 , pp. 289-299
    • Holohan, B.1
  • 130
    • 84923927474 scopus 로고    scopus 로고
    • Telomere-regulating genes and the telomere interactome in familial cancers
    • Robles-Espinoza C.D., et al. Telomere-regulating genes and the telomere interactome in familial cancers. Mol. Cancer Res. 2014, 13:211-222.
    • (2014) Mol. Cancer Res. , vol.13 , pp. 211-222
    • Robles-Espinoza, C.D.1
  • 131
    • 84878551940 scopus 로고    scopus 로고
    • POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia
    • Ramsay A.J., et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 2013, 45:526-530.
    • (2013) Nat. Genet. , vol.45 , pp. 526-530
    • Ramsay, A.J.1
  • 132
    • 84899624984 scopus 로고    scopus 로고
    • POT1 loss-of-function variants predispose to familial melanoma
    • Robles-Espinoza C.D., et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 2014, 46:478-481.
    • (2014) Nat. Genet. , vol.46 , pp. 478-481
    • Robles-Espinoza, C.D.1
  • 133
    • 84899648964 scopus 로고    scopus 로고
    • Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma
    • Shi J., et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 2014, 46:482-486.
    • (2014) Nat. Genet. , vol.46 , pp. 482-486
    • Shi, J.1
  • 134
    • 84930462553 scopus 로고    scopus 로고
    • Germline mutations in shelterin complex genes are associated with familial glioma
    • Bainbridge M.N., et al. Germline mutations in shelterin complex genes are associated with familial glioma. J. Natl. Cancer Inst. 2014, 107:384.
    • (2014) J. Natl. Cancer Inst. , vol.107 , pp. 384
    • Bainbridge, M.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.