메뉴 건너뛰기




Volumn 62, Issue , 2012, Pages 157-169

The Pol α -Primase Complex

Author keywords

Pol ; Primase; primer

Indexed keywords

ARCHAEAL PROTEIN; DNA DIRECTED DNA POLYMERASE ALPHA; DNA DIRECTED DNA POLYMERASE BETA; DNA DIRECTED DNA POLYMERASE GAMMA; DNA PRIMASE; IRON SULFUR PROTEIN; MULTIENZYME COMPLEX; PRIMER DNA; RNA; RNA PRIMERS;

EID: 84876319685     PISSN: 03060225     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-94-007-4572-8_9     Document Type: Article
Times cited : (97)

References (42)
  • 1
    • 79952674723 scopus 로고    scopus 로고
    • Crystal structure of the C-terminal domain of human DNA primase large subunit: Implications for the mechanism of the primasepolymerase α switch
    • Agarkar VB, Babayeva ND, Pavlov YI, Tahirov TH (2011) Crystal structure of the C-terminal domain of human DNA primase large subunit: implications for the mechanism of the primasepolymerase α switch. Cell Cycle 10(6): 926-931.
    • (2011) Cell Cycle , vol.10 , Issue.6 , pp. 926-931
    • Agarkar, V.B.1    Babayeva, N.D.2    Pavlov, Y.I.3    Tahirov, T.H.4
  • 2
    • 0032529457 scopus 로고    scopus 로고
    • Phosphoesterase domains associated with DNA polymerases of diverse origins
    • Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26(16): 3746-3752.
    • (1998) Nucleic Acids Res , vol.26 , Issue.16 , pp. 3746-3752
    • Aravind, L.1    Koonin, E.V.2
  • 3
    • 0035169689 scopus 로고    scopus 로고
    • Crystal structure of a DNA-dependent RNA polymerase (DNA primase)
    • Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Biol 8(1): 57-61.
    • (2001) Nat Struct Biol , vol.8 , Issue.1 , pp. 57-61
    • Augustin, M.A.1    Huber, R.2    Kaiser, J.T.3
  • 6
    • 63249130106 scopus 로고    scopus 로고
    • Polymerase dynamics at the eukaryotic DNA replication fork
    • Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284(7): 4041-4045.
    • (2009) J Biol Chem , vol.284 , Issue.7 , pp. 4041-4045
    • Burgers, P.M.1
  • 7
    • 0020120855 scopus 로고
    • A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos
    • Conaway RC, Lehman IR (1982) A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc Natl Acad Sci USA 79(8): 2523-2527.
    • (1982) Proc Natl Acad Sci USA , vol.79 , Issue.8 , pp. 2523-2527
    • Conaway, R.C.1    Lehman, I.R.2
  • 8
    • 0027379095 scopus 로고
    • Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication
    • Copeland WC, Wang TS (1993) Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J Biol Chem 268(35): 26179-26189.
    • (1993) J Biol Chem , vol.268 , Issue.35 , pp. 26179-26189
    • Copeland, W.C.1    Wang, T.S.2
  • 9
    • 27644594271 scopus 로고    scopus 로고
    • Crosstalk between primase subunits can act to regulate primer synthesis in trans
    • Corn JE, Pease PJ, Hura GL, Berger JM (2005) Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell 20(3): 391.
    • (2005) Mol Cell , vol.20 , Issue.3
    • Corn, J.E.1    Pease, P.J.2    Hura, G.L.3    Berger, J.M.4
  • 10
    • 0032491540 scopus 로고    scopus 로고
    • Role of the putative zincfinger domain of Saccharomyces cerevisiae DNA polymerase ε in DNA replication and the S/M checkpoint pathway
    • Dua R, Levy DL, Campbell JL (1998) Role of the putative zincfinger domain of Saccharomyces cerevisiae DNA polymerase ε in DNA replication and the S/M checkpoint pathway. J Biol Chem 273(45): 30046-30055.
    • (1998) J Biol Chem , vol.273 , Issue.45 , pp. 30046-30055
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 11
    • 0026014230 scopus 로고
    • Mouse DNA primase plays the principal role in determination of permissiveness for polyomavirus DNA replication
    • Eki T, Enomoto T, Masutani C, Miyajima A, Takada R, Murakami Y, Ohno T, Hanaoka F, Ui M (1991) Mouse DNA primase plays the principal role in determination of permissiveness for polyomavirus DNA replication. J Virol 65(9): 4874-4881.
    • (1991) J Virol , vol.65 , Issue.9 , pp. 4874-4881
    • Eki, T.1    Enomoto, T.2    Masutani, C.3    Miyajima, A.4    Takada, R.5    Murakami, Y.6    Ohno, T.7    Hanaoka, F.8    Ui, M.9
  • 12
    • 0024362546 scopus 로고
    • A single essential gene, PRI2, encodes the large subunit of DNA primase in Saccharomyces cerevisiae
    • Foiani M, Santocanale C, Plevani P, Lucchini G (1989) A single essential gene, PRI2, encodes the large subunit of DNA primase in Saccharomyces cerevisiae. Mol Cell Biol 9(7): 3081-3087.
    • (1989) Mol Cell Biol , vol.9 , Issue.7 , pp. 3081-3087
    • Foiani, M.1    Santocanale, C.2    Plevani, P.3    Lucchini, G.4
  • 14
    • 0021092845 scopus 로고
    • The mammalian primase is part of a high molecular weight DNA polymerase α polypeptide
    • Hubscher U (1983) The mammalian primase is part of a high molecular weight DNA polymerase α polypeptide. EMBO J 2(1): 133-136.
    • (1983) EMBO J , vol.2 , Issue.1 , pp. 133-136
    • Hubscher, U.1
  • 15
    • 0346025633 scopus 로고    scopus 로고
    • Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: Implications for the mechanism of primer synthesis
    • Ito N, Nureki O, Shirouzu M, Yokoyama S, Hanaoka F (2003) Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells 8(12): 913-923.
    • (2003) Genes Cells , vol.8 , Issue.12 , pp. 913-923
    • Ito, N.1    Nureki, O.2    Shirouzu, M.3    Yokoyama, S.4    Hanaoka, F.5
  • 16
    • 22444435033 scopus 로고    scopus 로고
    • Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: Structural insights and new members
    • Iyer LM, Koonin EV, Leipe DD, Aravind L (2005) Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 33(12): 3875-3896.
    • (2005) Nucleic Acids Res , vol.33 , Issue.12 , pp. 3875-3896
    • Iyer, L.M.1    Koonin, E.V.2    Leipe, D.D.3    Aravind, L.4
  • 17
    • 77954757691 scopus 로고    scopus 로고
    • The eukaryotic replicative DNA polymerases take shape
    • Johansson E, MacNeill SA (2010) The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 35: 339-347.
    • (2010) Trends Biochem Sci , vol.35 , pp. 339-347
    • Johansson, E.1    McNeill, S.A.2
  • 18
    • 2342597828 scopus 로고    scopus 로고
    • Characterization of the 3 ʹ exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D
    • Jokela M, Eskelinen A, Pospiech H, Rouvinen J, Syväoja JE (2004) Characterization of the 3 ʹ exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D. Nucleic Acids Res 32(8): 2430-2440.
    • (2004) Nucleic Acids Res , vol.32 , Issue.8 , pp. 2430-2440
    • Jokela, M.1    Eskelinen, A.2    Pospiech, H.3    Rouvinen, J.4    Syväoja, J.E.5
  • 19
    • 0020478835 scopus 로고
    • An oligoribonucleotide polymerase from SV40-infected cells with properties of a primase
    • Kaufmann G, Falk HH (1982) An oligoribonucleotide polymerase from SV40-infected cells with properties of a primase. Nucleic Acids Res 10(7): 2309-2321.
    • (1982) Nucleic Acids Res , vol.10 , Issue.7 , pp. 2309-2321
    • Kaufmann, G.1    Falk, H.H.2
  • 20
    • 34548492954 scopus 로고    scopus 로고
    • An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis
    • Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L (2007) An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat Struct Mol Biol 14(9): 875-877.
    • (2007) Nat Struct Mol Biol , vol.14 , Issue.9 , pp. 875-877
    • Klinge, S.1    Hirst, J.2    Maman, J.D.3    Krude, T.4    Pellegrini, L.5
  • 21
    • 67650409702 scopus 로고    scopus 로고
    • 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases
    • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J 28(13): 1978-1987.
    • (2009) EMBO J , vol.28 , Issue.13 , pp. 1978-1987
    • Klinge, S.1    Nunez-Ramirez, R.2    Llorca, O.3    Pellegrini, L.4
  • 22
    • 77949570959 scopus 로고    scopus 로고
    • Mechanism and evolution of DNA primases
    • Kuchta RD, Stengel G (2010) Mechanism and evolution of DNA primases. Biochim Biophys Acta 1804(5): 1180-1189.
    • (2010) Biochim Biophys Acta , vol.1804 , Issue.5 , pp. 1180-1189
    • Kuchta, R.D.1    Stengel, G.2
  • 23
    • 0025051277 scopus 로고
    • DNA primase. Processivity and the primase to polymerase α activity switch
    • Kuchta RD, Reid B, Chang LM (1990) DNA primase. Processivity and the primase to polymerase α activity switch. J Biol Chem 265(27): 16158-16165.
    • (1990) J Biol Chem , vol.265 , Issue.27 , pp. 16158-16165
    • Kuchta, R.D.1    Reid, B.2    Chang, L.M.3
  • 25
    • 0038577149 scopus 로고    scopus 로고
    • A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity
    • Lipps G, Rother S, Hart C, Krauss G (2003) A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J 22(10): 2516-2525.
    • (2003) EMBO J , vol.22 , Issue.10 , pp. 2516-2525
    • Lipps, G.1    Rother, S.2    Hart, C.3    Krauss, G.4
  • 27
    • 12944319325 scopus 로고    scopus 로고
    • Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome
    • McGeoch AT, Bell SD (2005) Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome. Cell 120(2): 167-168.
    • (2005) Cell , vol.120 , Issue.2 , pp. 167-168
    • McGeoch, A.T.1    Bell, S.D.2
  • 28
    • 0032747634 scopus 로고    scopus 로고
    • Molecular architecture of the mouse DNA polymerase α-primase complex
    • Mizuno T, Yamagishi K, Miyazawa H, Hanaoka F (1999) Molecular architecture of the mouse DNA polymerase α-primase complex. Mol Cell Biol 19(11): 7886-7896.
    • (1999) Mol Cell Biol , vol.19 , Issue.11 , pp. 7886-7896
    • Mizuno, T.1    Yamagishi, K.2    Miyazawa, H.3    Hanaoka, F.4
  • 31
    • 0021237565 scopus 로고
    • DNA polymerase I and DNA primase complex in yeast
    • Plevani P, Badaracco G, Augl C, Chang LM (1984) DNA polymerase I and DNA primase complex in yeast. J Biol Chem 259(12): 7532-7539.
    • (1984) J Biol Chem , vol.259 , Issue.12 , pp. 7532-7539
    • Plevani, P.1    Badaracco, G.2    Augl, C.3    Chang, L.M.4
  • 32
    • 58549111388 scopus 로고    scopus 로고
    • Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome
    • Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci USA 105(52): 21023-21027.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.52 , pp. 21023-21027
    • Pokorny, R.1    Klar, T.2    Hennecke, U.3    Carell, T.4    Batschauer, A.5    Essen, L.O.6
  • 33
    • 3543069892 scopus 로고    scopus 로고
    • The C-terminal zincfinger of the catalytic subunit of DNA polymerase δ is responsible for direct interaction with the B-subunit
    • Sanchez Garcia J, Ciufo LF, Yang X, Kearsey SE, MacNeill SA (2004) The C-terminal zincfinger of the catalytic subunit of DNA polymerase δ is responsible for direct interaction with the B-subunit. Nucleic Acids Res 32(10): 3005-3016.
    • (2004) Nucleic Acids Res , vol.32 , Issue.10 , pp. 3005-3016
    • Sanchez Garcia, J.1    Ciufo, L.F.2    Yang, X.3    Kearsey, S.E.4    McNeill, S.A.5
  • 34
    • 77956325209 scopus 로고    scopus 로고
    • Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase
    • Sauguet L, Klinge S, Perera RL, Maman JD, Pellegrini L (2010) Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLoS One 5(4): e10083.
    • (2010) PLoS One , vol.5 , Issue.4
    • Sauguet, L.1    Klinge, S.2    Perera, R.L.3    Maman, J.D.4    Pellegrini, L.5
  • 35
    • 0028331879 scopus 로고
    • Calf thymus DNA polymerase α-primase: "communication" and primer-template movement between the two active sites
    • Sheaff RJ, Kuchta RD, Ilsley D (1994) Calf thymus DNA polymerase α-primase: "communication" and primer-template movement between the two active sites. Biochemistry 33(8): 2247-2254.
    • (1994) Biochemistry , vol.33 , Issue.8 , pp. 2247-2254
    • Sheaff, R.J.1    Kuchta, R.D.2    Ilsley, D.3
  • 36
    • 1242331846 scopus 로고    scopus 로고
    • A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-ike and prefers manganese ion as the cofactor
    • Shen Y, Tang XÄ, Yokoyama H, Matsui E, Matsui I (2004) A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-ike and prefers manganese ion as the cofactor. Nucleic Acids Res 32(1): 158-168.
    • (2004) Nucleic Acids Res , vol.32 , Issue.1 , pp. 158-168
    • Shen, Y.1    Tang, X.Ä.2    Yokoyama, H.3    Matsui, E.4    Matsui, I.5
  • 37
    • 42949142111 scopus 로고    scopus 로고
    • DNA polymerases at the replication fork in eukaryotes
    • Stillman B (2008) DNA polymerases at the replication fork in eukaryotes. Mol Cell 30(3): 259-260.
    • (2008) Mol Cell , vol.30 , Issue.3 , pp. 259-260
    • Stillman, B.1
  • 38
    • 77956363679 scopus 로고    scopus 로고
    • Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase
    • Vaithiyalingam S, Warren EM, Eichman BF, Chazin WJ (2010) Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. Proc Natl Acad Sci 107(31): 13684-13689.
    • (2010) Proc Natl Acad Sci , vol.107 , Issue.31 , pp. 13684-13689
    • Vaithiyalingam, S.1    Warren, E.M.2    Eichman, B.F.3    Chazin, W.J.4
  • 39
    • 36348995555 scopus 로고    scopus 로고
    • An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase
    • Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ (2007) An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J Biol Chem 282(46): 33444-33451.
    • (2007) J Biol Chem , vol.282 , Issue.46 , pp. 33444-33451
    • Weiner, B.E.1    Huang, H.2    Dattilo, B.M.3    Nilges, M.J.4    Fanning, E.5    Chazin, W.J.6
  • 40
    • 0020491191 scopus 로고
    • Mouse DNA replicase. DNA polymerase associated with a novel RNA polymerase activity to synthesize initiator RNA of strict size
    • Yagura T, Kozu T, Seno T (1982) Mouse DNA replicase. DNA polymerase associated with a novel RNA polymerase activity to synthesize initiator RNA of strict size. J Biol Chem 257(18): 11121-11127.
    • (1982) J Biol Chem , vol.257 , Issue.18 , pp. 11121-11127
    • Yagura, T.1    Kozu, T.2    Seno, T.3
  • 41
    • 33645962475 scopus 로고    scopus 로고
    • 2+ -ion catalysis and substrate specificity
    • 2+ -ion catalysis and substrate specificity. Mol Cell 22(1): 5.
    • (2006) Mol Cell , vol.22 , Issue.1
    • Yang, W.1    Lee, J.Y.2    Nowotny, M.3
  • 42
    • 0037117724 scopus 로고    scopus 로고
    • The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting
    • Zerbe LK, Kuchta RD (2002) The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41(15): 4891-4900.
    • (2002) Biochemistry , vol.41 , Issue.15 , pp. 4891-4900
    • Zerbe, L.K.1    Kuchta, R.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.