메뉴 건너뛰기




Volumn 589, Issue 14, 2015, Pages 1516-1529

How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role

Author keywords

3D crystal structure; Circadian clock mechanism; Circadian rhythm; Drosophila and mammalian clock protein

Indexed keywords

CRYPTOCHROME 1; PER1 PROTEIN; PER2 PROTEIN; PER3 PROTEIN; PROTEIN TIMELESS; TRANSCRIPTION FACTOR ARNTL; TRANSCRIPTION FACTOR CLOCK; UNCLASSIFIED DRUG;

EID: 84930483735     PISSN: 00145793     EISSN: 18733468     Source Type: Journal    
DOI: 10.1016/j.febslet.2015.05.024     Document Type: Review
Times cited : (37)

References (150)
  • 1
    • 0033593306 scopus 로고    scopus 로고
    • Molecular bases for circadian clocks
    • J.C. Dunlap Molecular bases for circadian clocks Cell 96 1999 271 290
    • (1999) Cell , vol.96 , pp. 271-290
    • Dunlap, J.C.1
  • 3
    • 50849102663 scopus 로고    scopus 로고
    • A cyanobacterial circadian clockwork
    • C.H. Johnson, T. Mori, and Y. Xu A cyanobacterial circadian clockwork Curr. Biol. 18 2008 R816
    • (2008) Curr. Biol. , vol.18 , pp. R816
    • Johnson, C.H.1    Mori, T.2    Xu, Y.3
  • 5
    • 84897418780 scopus 로고    scopus 로고
    • Harmer Wheels within wheels: the plant circadian system
    • P.Y. Hsu, and S.L. Harmer Wheels within wheels: the plant circadian system Trends Plant Sci. 19 2014 240 249
    • (2014) Trends Plant Sci. , vol.19 , pp. 240-249
    • Hsu, P.Y.1    Harmer, S.L.2
  • 6
    • 33845910903 scopus 로고    scopus 로고
    • Circadian oscillators of Drosophila and mammals
    • W. Yu, and P.E. Hardin Circadian oscillators of Drosophila and mammals J. Cell Sci. 119 2006 4793 4795
    • (2006) J. Cell Sci. , vol.119 , pp. 4793-4795
    • Yu, W.1    Hardin, P.E.2
  • 7
    • 84862675384 scopus 로고    scopus 로고
    • Central and peripheral circadian clocks in mammals
    • J.A. Mohawk, C.B. Green, and J.S. Takahashi Central and peripheral circadian clocks in mammals Annu. Rev. Neurosci. 35 35 2012 445 462
    • (2012) Annu. Rev. Neurosci. , vol.35 , Issue.35 , pp. 445-462
    • Mohawk, J.A.1    Green, C.B.2    Takahashi, J.S.3
  • 9
    • 84902320509 scopus 로고    scopus 로고
    • Circadian control of glucose metabolism
    • A. Kalsbeek, S. La Fleur, and E. Fliers Circadian control of glucose metabolism Mol. Metab. 3 2014 372 383
    • (2014) Mol. Metab. , vol.3 , pp. 372-383
    • Kalsbeek, A.1    La Fleur, S.2    Fliers, E.3
  • 10
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • J. Bass, and J.S. Takahashi Circadian integration of metabolism and energetics Science 330 2010 1349 1354
    • (2010) Science , vol.330 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 11
    • 33846622041 scopus 로고    scopus 로고
    • Circadian control of the sleep-wake cycle
    • Domien G. Beersma, and Marijke C. Gordijn Circadian control of the sleep-wake cycle Physiol. Behav. 90 2007 190 195
    • (2007) Physiol. Behav. , vol.90 , pp. 190-195
    • Beersma, D.G.1    Gordijn, M.C.2
  • 12
    • 84887627313 scopus 로고    scopus 로고
    • The circadian clock and cell cycle: interconnected biological circuits
    • S. Masri, M. Cervantes, and P. Sassone-Corsi The circadian clock and cell cycle: interconnected biological circuits Curr. Opin. Cell Biol. 25 2013 730 734
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 730-734
    • Masri, S.1    Cervantes, M.2    Sassone-Corsi, P.3
  • 14
    • 70450239457 scopus 로고    scopus 로고
    • Metabolism and cancer: the circadian clock connection
    • S. Sahar, and P. Sassone-Corsi Metabolism and cancer: the circadian clock connection Nat. Rev. Cancer 9 2009 886 896
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 886-896
    • Sahar, S.1    Sassone-Corsi, P.2
  • 15
    • 84927009462 scopus 로고    scopus 로고
    • Circadian timing of metabolism in animal models and humans
    • C. Dibner, and U. Schibler Circadian timing of metabolism in animal models and humans J. Intern. Med. 277 2015 513 527
    • (2015) J. Intern. Med. , vol.277 , pp. 513-527
    • Dibner, C.1    Schibler, U.2
  • 16
    • 0035353082 scopus 로고    scopus 로고
    • Circadian chronotherapy for human cancers
    • F. Levi Circadian chronotherapy for human cancers Lancet Oncol. 2 2001 307 315
    • (2001) Lancet Oncol. , vol.2 , pp. 307-315
    • Levi, F.1
  • 17
    • 33847075354 scopus 로고    scopus 로고
    • Circadian rhythms: mechanisms and therapeutic implications
    • F. Levi, and U. Schibler Circadian rhythms: mechanisms and therapeutic implications Annu. Rev. Pharmacol. Toxicol. 47 2007 593 628
    • (2007) Annu. Rev. Pharmacol. Toxicol. , vol.47 , pp. 593-628
    • Levi, F.1    Schibler, U.2
  • 18
    • 77955980762 scopus 로고    scopus 로고
    • Chronotherapy and the molecular clock: clinical implications in oncology
    • P.F. Innominato, F.A. Levi, and G.A. Bjarnason Chronotherapy and the molecular clock: clinical implications in oncology Adv. Drug Deliv. Rev. 62 2010 979 1001
    • (2010) Adv. Drug Deliv. Rev. , vol.62 , pp. 979-1001
    • Innominato, P.F.1    Levi, F.A.2    Bjarnason, G.A.3
  • 19
  • 20
    • 84865558040 scopus 로고    scopus 로고
    • Identification of small molecule activators of cryptochrome
    • T. Hirota Identification of small molecule activators of cryptochrome Science 337 2012 1094 1097
    • (2012) Science , vol.337 , pp. 1094-1097
    • Hirota, T.1
  • 21
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: organization and coordination of central and peripheral clocks
    • C. Dibner, U. Schibler, and U. Albrecht The mammalian circadian timing system: organization and coordination of central and peripheral clocks Annu. Rev. Physiol. 72 2010 517 549
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 517-549
    • Dibner, C.1    Schibler, U.2    Albrecht, U.3
  • 24
    • 18344383860 scopus 로고    scopus 로고
    • Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock
    • D. Gau Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock Neuron 34 2002 245 252
    • (2002) Neuron , vol.34 , pp. 245-252
    • Gau, D.1
  • 25
    • 77949987573 scopus 로고    scopus 로고
    • Shift work: coping with the biological clock
    • J. Arendt Shift work: coping with the biological clock Occup. Med. (Lond.) 60 2010 10 20
    • (2010) Occup. Med. (Lond.) , vol.60 , pp. 10-20
    • Arendt, J.1
  • 26
    • 24044444531 scopus 로고    scopus 로고
    • The circadian timekeeping system of Drosophila
    • P.E. Hardin The circadian timekeeping system of Drosophila Curr. Biol. 15 2005 R714
    • (2005) Curr. Biol. , vol.15 , pp. R714
    • Hardin, P.E.1
  • 27
    • 46249098507 scopus 로고    scopus 로고
    • The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock
    • J.C. Chiu, J.T. Vanselow, A. Kramer, and I. Edery The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock Genes Dev. 22 2008 1758 1772
    • (2008) Genes Dev. , vol.22 , pp. 1758-1772
    • Chiu, J.C.1    Vanselow, J.T.2    Kramer, A.3    Edery, I.4
  • 28
    • 79955845071 scopus 로고    scopus 로고
    • NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed (vol. 145, 2011, p. 357)
    • J.C. Chiu, H.W. Ko, and I. Edery NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed (vol. 145, 2011, p. 357) Cell 145 2011 635
    • (2011) Cell , vol.145 , pp. 635
    • Chiu, J.C.1    Ko, H.W.2    Edery, I.3
  • 29
    • 84884697635 scopus 로고    scopus 로고
    • Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila
    • D.S. Garbe, Y. Fang, X. Zheng, M. Sowcik, R. Anjum, S.P. Gygi, and A. Sehgal Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila PLoS Genet. 9 2013
    • (2013) PLoS Genet. , vol.9
    • Garbe, D.S.1    Fang, Y.2    Zheng, X.3    Sowcik, M.4    Anjum, R.5    Gygi, S.P.6    Sehgal, A.7
  • 30
    • 33745503975 scopus 로고    scopus 로고
    • JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS
    • K. Koh, X.Z. Zheng, and A. Sehgal JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS Science 312 2006 1809 1812
    • (2006) Science , vol.312 , pp. 1809-1812
    • Koh, K.1    Zheng, X.Z.2    Sehgal, A.3
  • 31
    • 59349113774 scopus 로고    scopus 로고
    • Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless
    • N. Peschel, K.F. Chen, G. Szabo, and R. Stanewsky Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless Curr. Biol. 19 2009 241 247
    • (2009) Curr. Biol. , vol.19 , pp. 241-247
    • Peschel, N.1    Chen, K.F.2    Szabo, G.3    Stanewsky, R.4
  • 32
    • 0032553599 scopus 로고    scopus 로고
    • Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses
    • R.J. Thresher Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses Science 282 1998 1490 1494
    • (1998) Science , vol.282 , pp. 1490-1494
    • Thresher, R.J.1
  • 33
    • 0033560863 scopus 로고    scopus 로고
    • Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
    • G.T.J. van der Horst Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms Nature 398 1999 627 630
    • (1999) Nature , vol.398 , pp. 627-630
    • Van Der Horst, G.T.J.1
  • 34
    • 2242456966 scopus 로고    scopus 로고
    • Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2
    • M.H. Vitaterna Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2 Proc. Natl. Acad. Sci. USA 96 1999 12114 12119
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 12114-12119
    • Vitaterna, M.H.1
  • 35
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • K.A. Lamia AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Science 326 2009 437 440
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1
  • 36
    • 0034989269 scopus 로고    scopus 로고
    • Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
    • K. Bae, X.W. Jin, E.S. Maywood, M.H. Hastings, S.M. Reppert, and Weaver Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock Neuron 30 2001 525 536
    • (2001) Neuron , vol.30 , pp. 525-536
    • Bae, K.1    Jin, X.W.2    Maywood, E.S.3    Hastings, M.H.4    Reppert, S.M.5    Weaver6
  • 37
    • 84855664207 scopus 로고    scopus 로고
    • Tissue-specific function of Period3 in circadian rhythmicity
    • J.S. Pendergast, K.D. Niswender, and S. Yamazaki Tissue-specific function of Period3 in circadian rhythmicity PLoS One 7 2012
    • (2012) PLoS One , vol.7
    • Pendergast, J.S.1    Niswender, K.D.2    Yamazaki, S.3
  • 38
    • 84901345617 scopus 로고    scopus 로고
    • Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models
    • C. Ramanathan Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models PLoS Genet. 10 2014
    • (2014) PLoS Genet. , vol.10
    • Ramanathan, C.1
  • 40
    • 23844460834 scopus 로고    scopus 로고
    • A role for glycogen synthase kinase-3 beta in the mammalian circadian clock
    • C. Iitaka, K. Miyazaki, T. Akaike, and N. Ishida A role for glycogen synthase kinase-3 beta in the mammalian circadian clock J. Biol. Chem. 280 2005 29397 29402
    • (2005) J. Biol. Chem. , vol.280 , pp. 29397-29402
    • Iitaka, C.1    Miyazaki, K.2    Akaike, T.3    Ishida, N.4
  • 41
    • 22844432019 scopus 로고    scopus 로고
    • SCF beta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
    • T. Shirogane, J.P. Jin, X.L. Ang, and J.W. Harper SCF beta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein J. Biol. Chem. 280 2005 26863 26872
    • (2005) J. Biol. Chem. , vol.280 , pp. 26863-26872
    • Shirogane, T.1    Jin, J.P.2    Ang, X.L.3    Harper, J.W.4
  • 42
    • 15044343742 scopus 로고    scopus 로고
    • Control of mammalian circadian rhythm by CKI epsilon-regulated proteasome-mediated PER2 degradation
    • E.J. Eide Control of mammalian circadian rhythm by CKI epsilon-regulated proteasome-mediated PER2 degradation Mol. Cell. Biol. 25 2005 2795 2807
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2795-2807
    • Eide, E.J.1
  • 43
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • G. Asher SIRT1 regulates circadian clock gene expression through PER2 deacetylation Cell 134 2008 317 328
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 44
    • 47549088250 scopus 로고    scopus 로고
    • The NAD(+)-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Y. Nakahata The NAD(+)-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control Cell 134 2008 329 340
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 45
    • 84902198718 scopus 로고    scopus 로고
    • Interactive features of proteins composing eukaryotic circadian clocks
    • B.R. Crane, and M.W. Young Interactive features of proteins composing eukaryotic circadian clocks Annu. Rev. Biochem. 83 83 2014 191 219
    • (2014) Annu. Rev. Biochem. , vol.83 , Issue.83 , pp. 191-219
    • Crane, B.R.1    Young, M.W.2
  • 46
    • 84922418603 scopus 로고    scopus 로고
    • Emerging models for the molecular basis of mammalian circadian timing
    • C.L. Gustafson, and C.L. Partch Emerging models for the molecular basis of mammalian circadian timing Biochemistry 54 2015 134 149
    • (2015) Biochemistry , vol.54 , pp. 134-149
    • Gustafson, C.L.1    Partch, C.L.2
  • 47
    • 84861402657 scopus 로고    scopus 로고
    • LOV domain-containing F-box proteins: light-dependent protein degradation modules in arabidopsis
    • S. Ito, Y.H. Song, and T. Imaizumi LOV domain-containing F-box proteins: light-dependent protein degradation modules in arabidopsis Mol. Plant 5 2012 573 582
    • (2012) Mol. Plant , vol.5 , pp. 573-582
    • Ito, S.1    Song, Y.H.2    Imaizumi, T.3
  • 48
    • 0032990441 scopus 로고    scopus 로고
    • PAS domains: internal sensors of oxygen, redox potential, and light
    • B.L. Taylor, and I.B. Zhulin PAS domains: internal sensors of oxygen, redox potential, and light Microbiol. Mol. Biol. Rev. 63 1999 479
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 479
    • Taylor, B.L.1    Zhulin, I.B.2
  • 49
    • 80053291460 scopus 로고    scopus 로고
    • Ligand-binding PAS domains in a genomic, cellular, and structural context
    • J.T. Henry, and S. Crosson Ligand-binding PAS domains in a genomic, cellular, and structural context Annu. Rev. Microbiol. 65 65 2011 261 286
    • (2011) Annu. Rev. Microbiol. , vol.65 , Issue.65 , pp. 261-286
    • Henry, J.T.1    Crosson, S.2
  • 50
    • 70349777587 scopus 로고    scopus 로고
    • Structure and signaling mechanism of Per-ARNT-Sim domains
    • A. Moeglich, R.A. Ayers, and K. Moffat Structure and signaling mechanism of Per-ARNT-Sim domains Structure 17 2009 1282 1294
    • (2009) Structure , vol.17 , pp. 1282-1294
    • Moeglich, A.1    Ayers, R.A.2    Moffat, K.3
  • 51
    • 0345708353 scopus 로고    scopus 로고
    • The mammalian basic helix-loop-helix/PAS family of transcriptional regulators
    • R.J. Kewley, M.L. Whitelaw, and A. Chapman-Smith The mammalian basic helix-loop-helix/PAS family of transcriptional regulators Int. J. Biochem. Cell Biol. 36 2004 189 204
    • (2004) Int. J. Biochem. Cell Biol. , vol.36 , pp. 189-204
    • Kewley, R.J.1    Whitelaw, M.L.2    Chapman-Smith, A.3
  • 53
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • M. Doi, J. Hirayama, and P. Sassone-Corsi Circadian regulator CLOCK is a histone acetyltransferase Cell 125 2006 497 508
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 54
    • 84863751285 scopus 로고    scopus 로고
    • Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
    • N. Huang Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex Science 337 2012 189 194
    • (2012) Science , vol.337 , pp. 189-194
    • Huang, N.1
  • 55
    • 33745590694 scopus 로고    scopus 로고
    • The BMAL1 C terminus regulates the circadian transcription feedback loop
    • Y.B. Kiyohara The BMAL1 C terminus regulates the circadian transcription feedback loop Proc. Natl. Acad. Sci. USA 103 2006 10074 10079
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10074-10079
    • Kiyohara, Y.B.1
  • 56
    • 19944426818 scopus 로고    scopus 로고
    • Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD
    • O. Yildiz Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD Mol. Cell 17 2005 69 82
    • (2005) Mol. Cell , vol.17 , pp. 69-82
    • Yildiz, O.1
  • 57
    • 80054705389 scopus 로고    scopus 로고
    • Structure of an enclosed dimer formed by the Drosophila period protein
    • H.A. King, A. Hoelz, B.R. Crane, and M.W. Young Structure of an enclosed dimer formed by the Drosophila period protein J. Mol. Biol. 413 2011 561 572
    • (2011) J. Mol. Biol. , vol.413 , pp. 561-572
    • King, H.A.1    Hoelz, A.2    Crane, B.R.3    Young, M.W.4
  • 58
    • 84857704420 scopus 로고    scopus 로고
    • Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
    • N. Kucera Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function Proc. Natl. Acad. Sci. USA 109 2012 3311 3316
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 3311-3316
    • Kucera, N.1
  • 59
    • 65949083763 scopus 로고    scopus 로고
    • Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
    • S. Hennig Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2 PLoS Biol. 7 2009 836 853
    • (2009) PLoS Biol. , vol.7 , pp. 836-853
    • Hennig, S.1
  • 61
    • 84873738229 scopus 로고    scopus 로고
    • Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
    • Z. Wang, Y. Wu, L. Li, and X.-D. Su Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA Cell Res. 23 2013 213 224
    • (2013) Cell Res. , vol.23 , pp. 213-224
    • Wang, Z.1    Wu, Y.2    Li, L.3    Su, X.-D.4
  • 62
    • 0038032878 scopus 로고    scopus 로고
    • A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK
    • D.C. Chang, and S.M. Reppert A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK Curr. Biol. 13 2003 758 762
    • (2003) Curr. Biol. , vol.13 , pp. 758-762
    • Chang, D.C.1    Reppert, S.M.2
  • 64
    • 0026804699 scopus 로고
    • New short-period mutations of the Drosophila clock gene per
    • M.K. Baylies, L.B. Vosshall, A. Sehgal, and M.W. Young New short-period mutations of the Drosophila clock gene per Neuron 9 1992 575 581
    • (1992) Neuron , vol.9 , pp. 575-581
    • Baylies, M.K.1    Vosshall, L.B.2    Sehgal, A.3    Young, M.W.4
  • 65
    • 0028882226 scopus 로고
    • isolation of timeless by PER protein-interaction - defective interaction between timeless protein and long-period mutant PER(L)
    • N. Gekakis, L. Saez, A.M. Delahaye Brown, M.P. Myers, A. Sehgal, M.W. Young, and C.J. Weitz isolation of timeless by PER protein-interaction - defective interaction between timeless protein and long-period mutant PER(L) Science 270 1995 811 815
    • (1995) Science , vol.270 , pp. 811-815
    • Gekakis, N.1    Saez, L.2    Delahaye Brown, A.M.3    Myers, M.P.4    Sehgal, A.5    Young, M.W.6    Weitz, C.J.7
  • 66
    • 65949100602 scopus 로고    scopus 로고
    • A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock
    • J. Landskron, K.F. Chen, E. Wolf, and R. Stanewsky A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock PLoS Biol. 7 2009 820 835
    • (2009) PLoS Biol. , vol.7 , pp. 820-835
    • Landskron, J.1    Chen, K.F.2    Wolf, E.3    Stanewsky, R.4
  • 69
    • 30644471172 scopus 로고    scopus 로고
    • In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD
    • J.M. Lin, A. Schroeder, and R. Allada In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD J. Neurosci. 25 2005 11175 11183
    • (2005) J. Neurosci. , vol.25 , pp. 11175-11183
    • Lin, J.M.1    Schroeder, A.2    Allada, R.3
  • 70
    • 38949155276 scopus 로고    scopus 로고
    • Dominant-negative CK2 alpha induces potent effects on circadian rhythmicity
    • E.M. Smith, J.-M. Lin, R.-A. Meissner, and R. Allada Dominant-negative CK2 alpha induces potent effects on circadian rhythmicity PLoS Genet. 4 2008
    • (2008) PLoS Genet. , vol.4
    • Smith, E.M.1    Lin, J.-M.2    Meissner, R.-A.3    Allada, R.4
  • 71
    • 48349122032 scopus 로고    scopus 로고
    • Activating PER repressor through a DBT-directed phosphorylation switch
    • S. Kivimaee, L. Saez, and M.W. Young Activating PER repressor through a DBT-directed phosphorylation switch PLoS Biol. 6 2008 1570 1583
    • (2008) PLoS Biol. , vol.6 , pp. 1570-1583
    • Kivimaee, S.1    Saez, L.2    Young, M.W.3
  • 72
    • 79955540602 scopus 로고    scopus 로고
    • NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed
    • J.C. Chiu, H.W. Ko, and I. Edery NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed Cell 145 2011 357 370
    • (2011) Cell , vol.145 , pp. 357-370
    • Chiu, J.C.1    Ko, H.W.2    Edery, I.3
  • 73
    • 0035136677 scopus 로고    scopus 로고
    • An hPer2 phosphorylation site mutation in familiar advanced sleep phase syndrome
    • K.L. Toh An hPer2 phosphorylation site mutation in familiar advanced sleep phase syndrome Science 291 2001 1040 1043
    • (2001) Science , vol.291 , pp. 1040-1043
    • Toh, K.L.1
  • 74
    • 33846005528 scopus 로고    scopus 로고
    • Modeling of a human circadian mutation yields insights into clock regulation by PER2
    • Y. Xu, K.L. Toh, C.R. Jones, J.-Y. Shin, Y.-H. Fu, and L.J. Ptacek Modeling of a human circadian mutation yields insights into clock regulation by PER2 Cell 128 2007 59 70
    • (2007) Cell , vol.128 , pp. 59-70
    • Xu, Y.1    Toh, K.L.2    Jones, C.R.3    Shin, J.-Y.4    Fu, Y.-H.5    Ptacek, L.J.6
  • 75
    • 33749319064 scopus 로고    scopus 로고
    • Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS)
    • K. Vanselow Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS) Genes Dev. 20 2006 2660 2672
    • (2006) Genes Dev. , vol.20 , pp. 2660-2672
    • Vanselow, K.1
  • 76
    • 33644625748 scopus 로고    scopus 로고
    • Feedback repression is required for mammalian circadian clock function
    • T.K. Sato Feedback repression is required for mammalian circadian clock function Nat. Genet. 38 2006 312 319
    • (2006) Nat. Genet. , vol.38 , pp. 312-319
    • Sato, T.K.1
  • 78
    • 70449093653 scopus 로고    scopus 로고
    • Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
    • R. Chen Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism Mol. Cell 36 2009 417 430
    • (2009) Mol. Cell , vol.36 , pp. 417-430
    • Chen, R.1
  • 79
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • I. Schmutz, J.A. Ripperger, S. Baeriswyl-Aebischer, and U. Albrecht The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors Genes Dev. 24 2010 345 357
    • (2010) Genes Dev. , vol.24 , pp. 345-357
    • Schmutz, I.1    Ripperger, J.A.2    Baeriswyl-Aebischer, S.3    Albrecht, U.4
  • 80
    • 79251600033 scopus 로고    scopus 로고
    • Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
    • K. Hayasaka, K. Kitanishi, J. Igarashi, and T. Shimizu Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms Biochim. Biophys. Acta 1814 2011 326 333
    • (2011) Biochim. Biophys. Acta , vol.1814 , pp. 326-333
    • Hayasaka, K.1    Kitanishi, K.2    Igarashi, J.3    Shimizu, T.4
  • 81
    • 44949200347 scopus 로고    scopus 로고
    • Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
    • K. Kitanishi Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms Biochemistry 47 2008 6157 6168
    • (2008) Biochemistry , vol.47 , pp. 6157-6168
    • Kitanishi, K.1
  • 82
    • 47949112304 scopus 로고    scopus 로고
    • A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
    • J. Yang A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2 Mol. Cell. Biol. 28 2008 4697 4711
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4697-4711
    • Yang, J.1
  • 83
    • 77952593382 scopus 로고    scopus 로고
    • Heme binding to the mammalian circadian clock protein period 2 is nonspecific
    • M.V. Airola, J. Du, J.H. Dawson, and B.R. Crane Heme binding to the mammalian circadian clock protein period 2 is nonspecific Biochemistry 49 2010 4327 4338
    • (2010) Biochemistry , vol.49 , pp. 4327-4338
    • Airola, M.V.1    Du, J.2    Dawson, J.H.3    Crane, B.R.4
  • 85
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • H.A. Duong, M.S. Robles, D. Knutti, and C.J. Weitz A molecular mechanism for circadian clock negative feedback Science 332 2011 1436 1439
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.A.1    Robles, M.S.2    Knutti, D.3    Weitz, C.J.4
  • 86
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • K. Padmanabhan, M.S. Robles, T. Westerling, and C.J. Weitz Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex Science 337 2012 599 602
    • (2012) Science , vol.337 , pp. 599-602
    • Padmanabhan, K.1    Robles, M.S.2    Westerling, T.3    Weitz, C.J.4
  • 87
    • 84893787747 scopus 로고    scopus 로고
    • Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
    • H.A. Duong, and C.J. Weitz Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes Nat. Struct. Mol. Biol. 21 2014 126
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 126
    • Duong, H.A.1    Weitz, C.J.2
  • 89
    • 0034045931 scopus 로고    scopus 로고
    • Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon
    • E. Vielhaber, E. Eide, A. Rivers, Z.H. Gao, and D.M. Virshup Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon Mol. Cell. Biol. 20 2000 4888 4899
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 4888-4899
    • Vielhaber, E.1    Eide, E.2    Rivers, A.3    Gao, Z.H.4    Virshup, D.M.5
  • 90
    • 84865080952 scopus 로고    scopus 로고
    • Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
    • T.A. Wang Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons Science 337 2012 839 842
    • (2012) Science , vol.337 , pp. 839-842
    • Wang, T.A.1
  • 91
    • 79960423858 scopus 로고    scopus 로고
    • Biochemical analysis of the canonical model for the mammalian circadian clock
    • R. Ye, C.P. Selby, N. Ozturk, Y. Annayev, and A. Sancar Biochemical analysis of the canonical model for the mammalian circadian clock J. Biol. Chem. 286 2011 25891 25902
    • (2011) J. Biol. Chem. , vol.286 , pp. 25891-25902
    • Ye, R.1    Selby, C.P.2    Ozturk, N.3    Annayev, Y.4    Sancar, A.5
  • 92
    • 84901254757 scopus 로고    scopus 로고
    • A positive role for PERIOD in mammalian circadian gene expression
    • M. Akashi, A. Okamoto, Y. Tsuchiya, T. Todo, E. Nishida, and K. Node A positive role for PERIOD in mammalian circadian gene expression Cell Rep. 7 2014 1056 1064
    • (2014) Cell Rep. , vol.7 , pp. 1056-1064
    • Akashi, M.1    Okamoto, A.2    Tsuchiya, Y.3    Todo, T.4    Nishida, E.5    Node, K.6
  • 93
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • N. Koike, S.-H. Yoo, H.-C. Huang, V. Kumar, C. Lee, T.-K. Kim, and J.S. Takahashi Transcriptional architecture and chromatin landscape of the core circadian clock in mammals Science 338 2012 349 354
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1    Yoo, S.-H.2    Huang, H.-C.3    Kumar, V.4    Lee, C.5    Kim, T.-K.6    Takahashi, J.S.7
  • 94
    • 84911435850 scopus 로고    scopus 로고
    • The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK)
    • R. Matsumura The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK) J. Biol. Chem. 289 2014 32064 32072
    • (2014) J. Biol. Chem. , vol.289 , pp. 32064-32072
    • Matsumura, R.1
  • 95
    • 84878889999 scopus 로고    scopus 로고
    • Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
    • A. Czarna Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function Cell 153 2013 1394 1405
    • (2013) Cell , vol.153 , pp. 1394-1405
    • Czarna, A.1
  • 96
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • I. Schmalen Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation Cell 157 2014 1203 1215
    • (2014) Cell , vol.157 , pp. 1203-1215
    • Schmalen, I.1
  • 98
    • 84875899177 scopus 로고    scopus 로고
    • SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
    • W. Xing SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket Nature 496 2013 64
    • (2013) Nature , vol.496 , pp. 64
    • Xing, W.1
  • 99
    • 0037086535 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein
    • K. Yagita, F. Tamanini, M. Yasuda, J.H. Hoeijmakers, G.T.J. van der Horst, and H. Okamura Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein EMBO J. 21 2002 1301 1314
    • (2002) EMBO J. , vol.21 , pp. 1301-1314
    • Yagita, K.1    Tamanini, F.2    Yasuda, M.3    Hoeijmakers, J.H.4    Van Der Horst, G.T.J.5    Okamura, H.6
  • 101
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • J.P. Etchegaray, C. Lee, P.A. Wade, and S.M. Reppert Rhythmic histone acetylation underlies transcription in the mammalian circadian clock Nature 421 2003 177 182
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.P.1    Lee, C.2    Wade, P.A.3    Reppert, S.M.4
  • 102
    • 79955584998 scopus 로고    scopus 로고
    • The cryptochromes: blue light photoreceptors in plants and animals
    • I. Chaves The cryptochromes: blue light photoreceptors in plants and animals Annu. Rev. Plant Biol. 62 62 2011 335 364
    • (2011) Annu. Rev. Plant Biol. , vol.62 , Issue.62 , pp. 335-364
    • Chaves, I.1
  • 103
    • 66549109071 scopus 로고    scopus 로고
    • Structural biology of DNA photolyases and cryptochromes
    • M. Mueller, and T. Carell Structural biology of DNA photolyases and cryptochromes Curr. Opin. Struct. Biol. 19 2009 277 285
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 277-285
    • Mueller, M.1    Carell, T.2
  • 104
    • 33644559348 scopus 로고    scopus 로고
    • Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance
    • I. Chaves, K. Yagita, S. Barnhoorn, H. Okamura, G.T.J. van der Horst, and F. Tamanini Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance Mol. Cell. Biol. 26 2006 1743 1753
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1743-1753
    • Chaves, I.1    Yagita, K.2    Barnhoorn, S.3    Okamura, H.4    Van Der Horst, G.T.J.5    Tamanini, F.6
  • 105
    • 79959337934 scopus 로고    scopus 로고
    • Quantitative analyses of cryptochrome-mBMAL1 interactions mechanistic insights into the transcriptional regulation of the mammalian circadian clock
    • A. Czarna, H. Breitkreuz, C.C. Mahrenholz, J. Arens, H.M. Strauss, and E. Wolf Quantitative analyses of cryptochrome-mBMAL1 interactions mechanistic insights into the transcriptional regulation of the mammalian circadian clock J. Biol. Chem. 286 2011 22414 22425
    • (2011) J. Biol. Chem. , vol.286 , pp. 22414-22425
    • Czarna, A.1    Breitkreuz, H.2    Mahrenholz, C.C.3    Arens, J.4    Strauss, H.M.5    Wolf, E.6
  • 106
    • 77949363859 scopus 로고    scopus 로고
    • DYRK1A and glycogen synthase kinase 3 beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping
    • N. Kurabayashi, T. Hirota, M. Sakai, K. Sanada, and Y. Fukada DYRK1A and glycogen synthase kinase 3 beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping Mol. Cell. Biol. 30 2010 1757 1768
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1757-1768
    • Kurabayashi, N.1    Hirota, T.2    Sakai, M.3    Sanada, K.4    Fukada, Y.5
  • 107
    • 0028812143 scopus 로고
    • Crystal-structure of dna photolyase from Escherichia coli
    • H.W. Park, S.T. Kim, A. Sancar, and J. Deisenhofer Crystal-structure of dna photolyase from Escherichia coli Science 268 1995 1866 1872
    • (1995) Science , vol.268 , pp. 1866-1872
    • Park, H.W.1    Kim, S.T.2    Sancar, A.3    Deisenhofer, J.4
  • 108
    • 84883183037 scopus 로고    scopus 로고
    • A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception
    • C.A. Dodson, P.J. Hore, and M.I. Wallace A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception Trends Biochem. Sci. 38 2013 435 446
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 435-446
    • Dodson, C.A.1    Hore, P.J.2    Wallace, M.I.3
  • 109
    • 77953241268 scopus 로고    scopus 로고
    • Cryptochromes-a potential magnetoreceptor: what do we know and what do we want to know?
    • M. Liedvogel, and H. Mouritsen Cryptochromes-a potential magnetoreceptor: what do we know and what do we want to know? J. R. Soc. Interface 7 2010 S147
    • (2010) J. R. Soc. Interface , vol.7 , pp. S147
    • Liedvogel, M.1    Mouritsen, H.2
  • 110
    • 84906086809 scopus 로고    scopus 로고
    • Sensing magnetic directions in birds: radical pair processes involving cryptochrome
    • R. Wiltschko, and W. Wiltschko Sensing magnetic directions in birds: radical pair processes involving cryptochrome Biosensors 4 2014 221 242
    • (2014) Biosensors , vol.4 , pp. 221-242
    • Wiltschko, R.1    Wiltschko, W.2
  • 111
  • 112
  • 113
    • 50049118298 scopus 로고    scopus 로고
    • Cryptochrome mediates light-dependent magnetosensitivity in Drosophila
    • 1014-U61
    • R.J. Gegear, A. Casselman, S. Waddell, and S.M. Reppert Cryptochrome mediates light-dependent magnetosensitivity in Drosophila Nature 454 2008 1014-U61
    • (2008) Nature , vol.454
    • Gegear, R.J.1    Casselman, A.2    Waddell, S.3    Reppert, S.M.4
  • 114
    • 34250346126 scopus 로고    scopus 로고
    • A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome
    • A. Berndt, T. Kottke, H. Breitkreuz, R. Dvorsky, S. Hennig, M. Alexander, and E. Wolf A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome J. Biol. Chem. 282 2007 13011 13021
    • (2007) J. Biol. Chem. , vol.282 , pp. 13011-13021
    • Berndt, A.1    Kottke, T.2    Breitkreuz, H.3    Dvorsky, R.4    Hennig, S.5    Alexander, M.6    Wolf, E.7
  • 115
    • 79956325554 scopus 로고    scopus 로고
    • Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light
    • B. Liu, Z. Zuo, H. Liu, X. Liu, and C. Lin Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light Genes Dev. 25 2011 1029 1034
    • (2011) Genes Dev. , vol.25 , pp. 1029-1034
    • Liu, B.1    Zuo, Z.2    Liu, H.3    Liu, X.4    Lin, C.5
  • 117
    • 57749084494 scopus 로고    scopus 로고
    • Crystal structure and mechanism of a DNA (6-4) photolyase
    • M.J. Maul Crystal structure and mechanism of a DNA (6-4) photolyase Angew. Chem. Int. Ed. 47 2008 10076 10080
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 10076-10080
    • Maul, M.J.1
  • 118
    • 66349083857 scopus 로고    scopus 로고
    • Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes
    • K. Hitomi Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes Proc. Natl. Acad. Sci. USA 106 2009 6962 6967
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 6962-6967
    • Hitomi, K.1
  • 120
    • 84875361453 scopus 로고    scopus 로고
    • Updated structure of Drosophila cryptochrome
    • C. Levy Updated structure of Drosophila cryptochrome Nature 495 2013 E3
    • (2013) Nature , vol.495 , pp. E3
    • Levy, C.1
  • 121
    • 48349113478 scopus 로고    scopus 로고
    • Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells
    • N. Hoang Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells PLoS Biol. 6 2008 1559 1569
    • (2008) PLoS Biol. , vol.6 , pp. 1559-1569
    • Hoang, N.1
  • 122
    • 84865411686 scopus 로고    scopus 로고
    • Human cryptochrome exhibits light-dependent magnetosensitivity
    • L.E. Foley, R.J. Gegear, and S.M. Reppert Human cryptochrome exhibits light-dependent magnetosensitivity Nat. Commun. 2 2011 356
    • (2011) Nat. Commun. , vol.2 , pp. 356
    • Foley, L.E.1    Gegear, R.J.2    Reppert, S.M.3
  • 123
    • 84889093349 scopus 로고    scopus 로고
    • Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
    • S. Nangle, W. Xing, and N. Zheng Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase Cell Res. 23 2013 1417 1419
    • (2013) Cell Res. , vol.23 , pp. 1417-1419
    • Nangle, S.1    Xing, W.2    Zheng, N.3
  • 124
    • 70350452140 scopus 로고    scopus 로고
    • Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression
    • E.V. McCarthy, J.E. Baggs, J.M. Geskes, J.B. Hogenesch, and C.B. Green Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression Mol. Cell. Biol. 29 2009 5465 5476
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5465-5476
    • McCarthy, E.V.1    Baggs, J.E.2    Geskes, J.M.3    Hogenesch, J.B.4    Green, C.B.5
  • 125
    • 59149086433 scopus 로고    scopus 로고
    • Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice
    • S. Okano, M. Akashi, K. Hayasaka, and O. Nakajima Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice Neurosci. Lett. 451 2009 246 251
    • (2009) Neurosci. Lett. , vol.451 , pp. 246-251
    • Okano, S.1    Akashi, M.2    Hayasaka, K.3    Nakajima, O.4
  • 127
    • 84888398162 scopus 로고    scopus 로고
    • Characterization of age-associated alterations of islet function and structure in diabetic mutant cryptochrome 1 transgenic mice (vol. 4, 2013, p. 428)
    • S. Okano, K. Hayasaka, M. Igarashi, Y. Togashi, and O. Nakajima Characterization of age-associated alterations of islet function and structure in diabetic mutant cryptochrome 1 transgenic mice (vol. 4, 2013, p. 428) J. Diabetes Invest. 4 2013 681
    • (2013) J. Diabetes Invest. , vol.4 , pp. 681
    • Okano, S.1    Hayasaka, K.2    Igarashi, M.3    Togashi, Y.4    Nakajima, O.5
  • 128
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • B. Marcheva Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes Nature 466 2010 627 631
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1
  • 129
    • 84868094430 scopus 로고    scopus 로고
    • Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator
    • Y.-I. Kim, D.J. Vinyard, G.M. Ananyev, G.C. Dismukes, and S.S. Golden Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator Proc. Natl. Acad. Sci. USA 109 2012 17765 17769
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 17765-17769
    • Kim, Y.-I.1    Vinyard, D.J.2    Ananyev, G.M.3    Dismukes, G.C.4    Golden, S.S.5
  • 130
    • 82555185702 scopus 로고    scopus 로고
    • Cross-talk between the cellular redox state and the circadian system in neurospora
    • Y. Yoshida, H. Iigusa, N. Wang, and K. Hasunuma Cross-talk between the cellular redox state and the circadian system in neurospora PLoS One 6 2011
    • (2011) PLoS One , vol.6
    • Yoshida, Y.1    Iigusa, H.2    Wang, N.3    Hasunuma, K.4
  • 131
    • 84867367696 scopus 로고    scopus 로고
    • Zinc and the modulation of redox homeostasis
    • P.I. Oteiza Zinc and the modulation of redox homeostasis Free Radic. Biol. Med. 53 2012 1748 1759
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 1748-1759
    • Oteiza, P.I.1
  • 132
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • J.S. O'Neill, and A.B. Reddy Circadian clocks in human red blood cells Nature 469 2011 498 503
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 133
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • J.S. O'Neill Circadian rhythms persist without transcription in a eukaryote Nature 469 2011 554 558
    • (2011) Nature , vol.469 , pp. 554-558
    • O'Neill, J.S.1
  • 134
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • R.S. Edgar Peroxiredoxins are conserved markers of circadian rhythms Nature 485 2012 459 464
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1
  • 135
    • 84922319279 scopus 로고    scopus 로고
    • Oxidation-reduction cycles of peroxiredoxin proteins and non-transcriptional aspects of timekeeping
    • N.P. Hoyle, and J.S. O'Neill Oxidation-reduction cycles of peroxiredoxin proteins and non-transcriptional aspects of timekeeping Biochemistry 54 2015 184 193
    • (2015) Biochemistry , vol.54 , pp. 184-193
    • Hoyle, N.P.1    O'Neill, J.S.2
  • 136
    • 84884197445 scopus 로고    scopus 로고
    • Oxidant sensing by reversible disulfide bond formation
    • C.M. Cremers, and U. Jakob Oxidant sensing by reversible disulfide bond formation J. Biol. Chem. 288 2013 26489 26496
    • (2013) J. Biol. Chem. , vol.288 , pp. 26489-26496
    • Cremers, C.M.1    Jakob, U.2
  • 137
    • 0032566970 scopus 로고    scopus 로고
    • The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila
    • R. Stanewsky The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila Cell 95 1998 681 692
    • (1998) Cell , vol.95 , pp. 681-692
    • Stanewsky, R.1
  • 138
    • 2642584009 scopus 로고    scopus 로고
    • Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception
    • A. Busza, M. Emery-Le, M. Rosbash, and P. Emery Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception Science 304 2004 1503 1506
    • (2004) Science , vol.304 , pp. 1503-1506
    • Busza, A.1    Emery-Le, M.2    Rosbash, M.3    Emery, P.4
  • 139
    • 0033543596 scopus 로고    scopus 로고
    • A role for the proteasome in the light response of the timeless clock protein
    • N. Naidoo, W. Song, M. Hunter-Ensor, and A. Sehgal A role for the proteasome in the light response of the timeless clock protein Science 285 1999 1737 1741
    • (1999) Science , vol.285 , pp. 1737-1741
    • Naidoo, N.1    Song, W.2    Hunter-Ensor, M.3    Sehgal, A.4
  • 142
    • 84890847307 scopus 로고    scopus 로고
    • Flavin reduction activates Drosophila cryptochrome
    • A.T. Vaidya Flavin reduction activates Drosophila cryptochrome Proc. Natl. Acad. Sci. USA 110 2013 20455 20460
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 20455-20460
    • Vaidya, A.T.1
  • 143
    • 33847095044 scopus 로고    scopus 로고
    • Linear motifs in the C-terminus of D-melanogaster cryptochrome
    • M.J. Hemsley Linear motifs in the C-terminus of D-melanogaster cryptochrome Biochem. Biophys. Res. Commun. 355 2007 531 537
    • (2007) Biochem. Biophys. Res. Commun. , vol.355 , pp. 531-537
    • Hemsley, M.J.1
  • 145
    • 84873911449 scopus 로고    scopus 로고
    • Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock
    • E. Engelen, R.C. Janssens, K. Yagita, Veronique A.J. Smits, Gijsbertus T.J. van der Horst, and F. Tamanini Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock PLoS One 8 2013
    • (2013) PLoS One , vol.8
    • Engelen, E.1    Janssens, R.C.2    Yagita, K.3    Smits, V.A.J.4    Van Der Horst, G.T.J.5    Tamanini, F.6
  • 147
    • 84869392858 scopus 로고    scopus 로고
    • Local and global functions of Timeless and Tipin in replication fork protection
    • A.R. Leman, and E. Noguchi Local and global functions of Timeless and Tipin in replication fork protection Cell Cycle 11 2012 3945 3955
    • (2012) Cell Cycle , vol.11 , pp. 3945-3955
    • Leman, A.R.1    Noguchi, E.2
  • 148
    • 84926098478 scopus 로고    scopus 로고
    • Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex
    • J. Witosch, E. Wolf, and N. Mizuno Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex Nucleic Acids Res. 42 2014 12912 12927
    • (2014) Nucleic Acids Res. , vol.42 , pp. 12912-12927
    • Witosch, J.1    Wolf, E.2    Mizuno, N.3
  • 149
    • 84255206549 scopus 로고    scopus 로고
    • Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
    • K.A. Lamia Cryptochromes mediate rhythmic repression of the glucocorticoid receptor Nature 480 2011 552 556
    • (2011) Nature , vol.480 , pp. 552-556
    • Lamia, K.A.1
  • 150
    • 77957821693 scopus 로고    scopus 로고
    • Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
    • E.E. Zhang Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis Nat. Med. 16 2010 1152-U133
    • (2010) Nat. Med. , vol.16
    • Zhang, E.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.