-
1
-
-
0033593306
-
Molecular bases for circadian clocks
-
J.C. Dunlap Molecular bases for circadian clocks Cell 96 1999 271 290
-
(1999)
Cell
, vol.96
, pp. 271-290
-
-
Dunlap, J.C.1
-
3
-
-
50849102663
-
A cyanobacterial circadian clockwork
-
C.H. Johnson, T. Mori, and Y. Xu A cyanobacterial circadian clockwork Curr. Biol. 18 2008 R816
-
(2008)
Curr. Biol.
, vol.18
, pp. R816
-
-
Johnson, C.H.1
Mori, T.2
Xu, Y.3
-
5
-
-
84897418780
-
Harmer Wheels within wheels: the plant circadian system
-
P.Y. Hsu, and S.L. Harmer Wheels within wheels: the plant circadian system Trends Plant Sci. 19 2014 240 249
-
(2014)
Trends Plant Sci.
, vol.19
, pp. 240-249
-
-
Hsu, P.Y.1
Harmer, S.L.2
-
6
-
-
33845910903
-
Circadian oscillators of Drosophila and mammals
-
W. Yu, and P.E. Hardin Circadian oscillators of Drosophila and mammals J. Cell Sci. 119 2006 4793 4795
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4793-4795
-
-
Yu, W.1
Hardin, P.E.2
-
10
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
J. Bass, and J.S. Takahashi Circadian integration of metabolism and energetics Science 330 2010 1349 1354
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
11
-
-
33846622041
-
Circadian control of the sleep-wake cycle
-
Domien G. Beersma, and Marijke C. Gordijn Circadian control of the sleep-wake cycle Physiol. Behav. 90 2007 190 195
-
(2007)
Physiol. Behav.
, vol.90
, pp. 190-195
-
-
Beersma, D.G.1
Gordijn, M.C.2
-
12
-
-
84887627313
-
The circadian clock and cell cycle: interconnected biological circuits
-
S. Masri, M. Cervantes, and P. Sassone-Corsi The circadian clock and cell cycle: interconnected biological circuits Curr. Opin. Cell Biol. 25 2013 730 734
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 730-734
-
-
Masri, S.1
Cervantes, M.2
Sassone-Corsi, P.3
-
14
-
-
70450239457
-
Metabolism and cancer: the circadian clock connection
-
S. Sahar, and P. Sassone-Corsi Metabolism and cancer: the circadian clock connection Nat. Rev. Cancer 9 2009 886 896
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 886-896
-
-
Sahar, S.1
Sassone-Corsi, P.2
-
15
-
-
84927009462
-
Circadian timing of metabolism in animal models and humans
-
C. Dibner, and U. Schibler Circadian timing of metabolism in animal models and humans J. Intern. Med. 277 2015 513 527
-
(2015)
J. Intern. Med.
, vol.277
, pp. 513-527
-
-
Dibner, C.1
Schibler, U.2
-
16
-
-
0035353082
-
Circadian chronotherapy for human cancers
-
F. Levi Circadian chronotherapy for human cancers Lancet Oncol. 2 2001 307 315
-
(2001)
Lancet Oncol.
, vol.2
, pp. 307-315
-
-
Levi, F.1
-
17
-
-
33847075354
-
Circadian rhythms: mechanisms and therapeutic implications
-
F. Levi, and U. Schibler Circadian rhythms: mechanisms and therapeutic implications Annu. Rev. Pharmacol. Toxicol. 47 2007 593 628
-
(2007)
Annu. Rev. Pharmacol. Toxicol.
, vol.47
, pp. 593-628
-
-
Levi, F.1
Schibler, U.2
-
18
-
-
77955980762
-
Chronotherapy and the molecular clock: clinical implications in oncology
-
P.F. Innominato, F.A. Levi, and G.A. Bjarnason Chronotherapy and the molecular clock: clinical implications in oncology Adv. Drug Deliv. Rev. 62 2010 979 1001
-
(2010)
Adv. Drug Deliv. Rev.
, vol.62
, pp. 979-1001
-
-
Innominato, P.F.1
Levi, F.A.2
Bjarnason, G.A.3
-
20
-
-
84865558040
-
Identification of small molecule activators of cryptochrome
-
T. Hirota Identification of small molecule activators of cryptochrome Science 337 2012 1094 1097
-
(2012)
Science
, vol.337
, pp. 1094-1097
-
-
Hirota, T.1
-
21
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
C. Dibner, U. Schibler, and U. Albrecht The mammalian circadian timing system: organization and coordination of central and peripheral clocks Annu. Rev. Physiol. 72 2010 517 549
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
24
-
-
18344383860
-
Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock
-
D. Gau Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock Neuron 34 2002 245 252
-
(2002)
Neuron
, vol.34
, pp. 245-252
-
-
Gau, D.1
-
25
-
-
77949987573
-
Shift work: coping with the biological clock
-
J. Arendt Shift work: coping with the biological clock Occup. Med. (Lond.) 60 2010 10 20
-
(2010)
Occup. Med. (Lond.)
, vol.60
, pp. 10-20
-
-
Arendt, J.1
-
26
-
-
24044444531
-
The circadian timekeeping system of Drosophila
-
P.E. Hardin The circadian timekeeping system of Drosophila Curr. Biol. 15 2005 R714
-
(2005)
Curr. Biol.
, vol.15
, pp. R714
-
-
Hardin, P.E.1
-
27
-
-
46249098507
-
The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock
-
J.C. Chiu, J.T. Vanselow, A. Kramer, and I. Edery The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock Genes Dev. 22 2008 1758 1772
-
(2008)
Genes Dev.
, vol.22
, pp. 1758-1772
-
-
Chiu, J.C.1
Vanselow, J.T.2
Kramer, A.3
Edery, I.4
-
28
-
-
79955845071
-
NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed (vol. 145, 2011, p. 357)
-
J.C. Chiu, H.W. Ko, and I. Edery NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed (vol. 145, 2011, p. 357) Cell 145 2011 635
-
(2011)
Cell
, vol.145
, pp. 635
-
-
Chiu, J.C.1
Ko, H.W.2
Edery, I.3
-
29
-
-
84884697635
-
Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila
-
D.S. Garbe, Y. Fang, X. Zheng, M. Sowcik, R. Anjum, S.P. Gygi, and A. Sehgal Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila PLoS Genet. 9 2013
-
(2013)
PLoS Genet.
, vol.9
-
-
Garbe, D.S.1
Fang, Y.2
Zheng, X.3
Sowcik, M.4
Anjum, R.5
Gygi, S.P.6
Sehgal, A.7
-
30
-
-
33745503975
-
JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS
-
K. Koh, X.Z. Zheng, and A. Sehgal JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS Science 312 2006 1809 1812
-
(2006)
Science
, vol.312
, pp. 1809-1812
-
-
Koh, K.1
Zheng, X.Z.2
Sehgal, A.3
-
31
-
-
59349113774
-
Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless
-
N. Peschel, K.F. Chen, G. Szabo, and R. Stanewsky Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless Curr. Biol. 19 2009 241 247
-
(2009)
Curr. Biol.
, vol.19
, pp. 241-247
-
-
Peschel, N.1
Chen, K.F.2
Szabo, G.3
Stanewsky, R.4
-
32
-
-
0032553599
-
Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses
-
R.J. Thresher Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses Science 282 1998 1490 1494
-
(1998)
Science
, vol.282
, pp. 1490-1494
-
-
Thresher, R.J.1
-
33
-
-
0033560863
-
Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
-
G.T.J. van der Horst Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms Nature 398 1999 627 630
-
(1999)
Nature
, vol.398
, pp. 627-630
-
-
Van Der Horst, G.T.J.1
-
34
-
-
2242456966
-
Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2
-
M.H. Vitaterna Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2 Proc. Natl. Acad. Sci. USA 96 1999 12114 12119
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 12114-12119
-
-
Vitaterna, M.H.1
-
35
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
K.A. Lamia AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Science 326 2009 437 440
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
36
-
-
0034989269
-
Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
-
K. Bae, X.W. Jin, E.S. Maywood, M.H. Hastings, S.M. Reppert, and Weaver Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock Neuron 30 2001 525 536
-
(2001)
Neuron
, vol.30
, pp. 525-536
-
-
Bae, K.1
Jin, X.W.2
Maywood, E.S.3
Hastings, M.H.4
Reppert, S.M.5
Weaver6
-
37
-
-
84855664207
-
Tissue-specific function of Period3 in circadian rhythmicity
-
J.S. Pendergast, K.D. Niswender, and S. Yamazaki Tissue-specific function of Period3 in circadian rhythmicity PLoS One 7 2012
-
(2012)
PLoS One
, vol.7
-
-
Pendergast, J.S.1
Niswender, K.D.2
Yamazaki, S.3
-
38
-
-
84901345617
-
Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models
-
C. Ramanathan Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models PLoS Genet. 10 2014
-
(2014)
PLoS Genet.
, vol.10
-
-
Ramanathan, C.1
-
39
-
-
68049143071
-
Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms
-
Y. Tsuchiya, M. Akashi, M. Matsuda, K. Goto, Y. Miyata, K. Node, and E. Nishida Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms Sci. Signal. 2 2009
-
(2009)
Sci. Signal.
, vol.2
-
-
Tsuchiya, Y.1
Akashi, M.2
Matsuda, M.3
Goto, K.4
Miyata, Y.5
Node, K.6
Nishida, E.7
-
40
-
-
23844460834
-
A role for glycogen synthase kinase-3 beta in the mammalian circadian clock
-
C. Iitaka, K. Miyazaki, T. Akaike, and N. Ishida A role for glycogen synthase kinase-3 beta in the mammalian circadian clock J. Biol. Chem. 280 2005 29397 29402
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29397-29402
-
-
Iitaka, C.1
Miyazaki, K.2
Akaike, T.3
Ishida, N.4
-
41
-
-
22844432019
-
SCF beta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
-
T. Shirogane, J.P. Jin, X.L. Ang, and J.W. Harper SCF beta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein J. Biol. Chem. 280 2005 26863 26872
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26863-26872
-
-
Shirogane, T.1
Jin, J.P.2
Ang, X.L.3
Harper, J.W.4
-
42
-
-
15044343742
-
Control of mammalian circadian rhythm by CKI epsilon-regulated proteasome-mediated PER2 degradation
-
E.J. Eide Control of mammalian circadian rhythm by CKI epsilon-regulated proteasome-mediated PER2 degradation Mol. Cell. Biol. 25 2005 2795 2807
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 2795-2807
-
-
Eide, E.J.1
-
43
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
G. Asher SIRT1 regulates circadian clock gene expression through PER2 deacetylation Cell 134 2008 317 328
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
44
-
-
47549088250
-
The NAD(+)-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Y. Nakahata The NAD(+)-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control Cell 134 2008 329 340
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
45
-
-
84902198718
-
Interactive features of proteins composing eukaryotic circadian clocks
-
B.R. Crane, and M.W. Young Interactive features of proteins composing eukaryotic circadian clocks Annu. Rev. Biochem. 83 83 2014 191 219
-
(2014)
Annu. Rev. Biochem.
, vol.83
, Issue.83
, pp. 191-219
-
-
Crane, B.R.1
Young, M.W.2
-
46
-
-
84922418603
-
Emerging models for the molecular basis of mammalian circadian timing
-
C.L. Gustafson, and C.L. Partch Emerging models for the molecular basis of mammalian circadian timing Biochemistry 54 2015 134 149
-
(2015)
Biochemistry
, vol.54
, pp. 134-149
-
-
Gustafson, C.L.1
Partch, C.L.2
-
47
-
-
84861402657
-
LOV domain-containing F-box proteins: light-dependent protein degradation modules in arabidopsis
-
S. Ito, Y.H. Song, and T. Imaizumi LOV domain-containing F-box proteins: light-dependent protein degradation modules in arabidopsis Mol. Plant 5 2012 573 582
-
(2012)
Mol. Plant
, vol.5
, pp. 573-582
-
-
Ito, S.1
Song, Y.H.2
Imaizumi, T.3
-
48
-
-
0032990441
-
PAS domains: internal sensors of oxygen, redox potential, and light
-
B.L. Taylor, and I.B. Zhulin PAS domains: internal sensors of oxygen, redox potential, and light Microbiol. Mol. Biol. Rev. 63 1999 479
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 479
-
-
Taylor, B.L.1
Zhulin, I.B.2
-
49
-
-
80053291460
-
Ligand-binding PAS domains in a genomic, cellular, and structural context
-
J.T. Henry, and S. Crosson Ligand-binding PAS domains in a genomic, cellular, and structural context Annu. Rev. Microbiol. 65 65 2011 261 286
-
(2011)
Annu. Rev. Microbiol.
, vol.65
, Issue.65
, pp. 261-286
-
-
Henry, J.T.1
Crosson, S.2
-
50
-
-
70349777587
-
Structure and signaling mechanism of Per-ARNT-Sim domains
-
A. Moeglich, R.A. Ayers, and K. Moffat Structure and signaling mechanism of Per-ARNT-Sim domains Structure 17 2009 1282 1294
-
(2009)
Structure
, vol.17
, pp. 1282-1294
-
-
Moeglich, A.1
Ayers, R.A.2
Moffat, K.3
-
51
-
-
0345708353
-
The mammalian basic helix-loop-helix/PAS family of transcriptional regulators
-
R.J. Kewley, M.L. Whitelaw, and A. Chapman-Smith The mammalian basic helix-loop-helix/PAS family of transcriptional regulators Int. J. Biochem. Cell Biol. 36 2004 189 204
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, pp. 189-204
-
-
Kewley, R.J.1
Whitelaw, M.L.2
Chapman-Smith, A.3
-
52
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
1086-U13
-
J. Hirayama, S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, and P. Sassone-Corsi CLOCK-mediated acetylation of BMAL1 controls circadian function Nature 450 2007 1086-U13
-
(2007)
Nature
, vol.450
-
-
Hirayama, J.1
Sahar, S.2
Grimaldi, B.3
Tamaru, T.4
Takamatsu, K.5
Nakahata, Y.6
Sassone-Corsi, P.7
-
53
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
M. Doi, J. Hirayama, and P. Sassone-Corsi Circadian regulator CLOCK is a histone acetyltransferase Cell 125 2006 497 508
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
54
-
-
84863751285
-
Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
-
N. Huang Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex Science 337 2012 189 194
-
(2012)
Science
, vol.337
, pp. 189-194
-
-
Huang, N.1
-
55
-
-
33745590694
-
The BMAL1 C terminus regulates the circadian transcription feedback loop
-
Y.B. Kiyohara The BMAL1 C terminus regulates the circadian transcription feedback loop Proc. Natl. Acad. Sci. USA 103 2006 10074 10079
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 10074-10079
-
-
Kiyohara, Y.B.1
-
56
-
-
19944426818
-
Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD
-
O. Yildiz Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD Mol. Cell 17 2005 69 82
-
(2005)
Mol. Cell
, vol.17
, pp. 69-82
-
-
Yildiz, O.1
-
57
-
-
80054705389
-
Structure of an enclosed dimer formed by the Drosophila period protein
-
H.A. King, A. Hoelz, B.R. Crane, and M.W. Young Structure of an enclosed dimer formed by the Drosophila period protein J. Mol. Biol. 413 2011 561 572
-
(2011)
J. Mol. Biol.
, vol.413
, pp. 561-572
-
-
King, H.A.1
Hoelz, A.2
Crane, B.R.3
Young, M.W.4
-
58
-
-
84857704420
-
Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
-
N. Kucera Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function Proc. Natl. Acad. Sci. USA 109 2012 3311 3316
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 3311-3316
-
-
Kucera, N.1
-
59
-
-
65949083763
-
Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
-
S. Hennig Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2 PLoS Biol. 7 2009 836 853
-
(2009)
PLoS Biol.
, vol.7
, pp. 836-853
-
-
Hennig, S.1
-
60
-
-
84859508042
-
Mapping the core of the arabidopsis circadian clock defines the network structure of the oscillator
-
W. Huang, P. Perez-Garcia, A. Pokhilko, A.J. Millar, I. Antoshechkin, J.L. Riechmann, and P. Mas Mapping the core of the arabidopsis circadian clock defines the network structure of the oscillator Science 336 2012 75 79
-
(2012)
Science
, vol.336
, pp. 75-79
-
-
Huang, W.1
Perez-Garcia, P.2
Pokhilko, A.3
Millar, A.J.4
Antoshechkin, I.5
Riechmann, J.L.6
Mas, P.7
-
61
-
-
84873738229
-
Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
-
Z. Wang, Y. Wu, L. Li, and X.-D. Su Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA Cell Res. 23 2013 213 224
-
(2013)
Cell Res.
, vol.23
, pp. 213-224
-
-
Wang, Z.1
Wu, Y.2
Li, L.3
Su, X.-D.4
-
62
-
-
0038032878
-
A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK
-
D.C. Chang, and S.M. Reppert A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK Curr. Biol. 13 2003 758 762
-
(2003)
Curr. Biol.
, vol.13
, pp. 758-762
-
-
Chang, D.C.1
Reppert, S.M.2
-
64
-
-
0026804699
-
New short-period mutations of the Drosophila clock gene per
-
M.K. Baylies, L.B. Vosshall, A. Sehgal, and M.W. Young New short-period mutations of the Drosophila clock gene per Neuron 9 1992 575 581
-
(1992)
Neuron
, vol.9
, pp. 575-581
-
-
Baylies, M.K.1
Vosshall, L.B.2
Sehgal, A.3
Young, M.W.4
-
65
-
-
0028882226
-
isolation of timeless by PER protein-interaction - defective interaction between timeless protein and long-period mutant PER(L)
-
N. Gekakis, L. Saez, A.M. Delahaye Brown, M.P. Myers, A. Sehgal, M.W. Young, and C.J. Weitz isolation of timeless by PER protein-interaction - defective interaction between timeless protein and long-period mutant PER(L) Science 270 1995 811 815
-
(1995)
Science
, vol.270
, pp. 811-815
-
-
Gekakis, N.1
Saez, L.2
Delahaye Brown, A.M.3
Myers, M.P.4
Sehgal, A.5
Young, M.W.6
Weitz, C.J.7
-
66
-
-
65949100602
-
A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock
-
J. Landskron, K.F. Chen, E. Wolf, and R. Stanewsky A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock PLoS Biol. 7 2009 820 835
-
(2009)
PLoS Biol.
, vol.7
, pp. 820-835
-
-
Landskron, J.1
Chen, K.F.2
Wolf, E.3
Stanewsky, R.4
-
67
-
-
0344091557
-
A role for CK2 in the Drosophila circadian oscillator
-
B. Akten, E. Jauch, G.K. Genova, E.Y. Kim, I. Edery, T. Raabe, and F.R. Jackson A role for CK2 in the Drosophila circadian oscillator Nat. Neurosci. 6 2003 251 257
-
(2003)
Nat. Neurosci.
, vol.6
, pp. 251-257
-
-
Akten, B.1
Jauch, E.2
Genova, G.K.3
Kim, E.Y.4
Edery, I.5
Raabe, T.6
Jackson, F.R.7
-
68
-
-
0037180767
-
A role for casein kinase 2 alpha in the Drosophila circadian clock
-
J.M. Lin, V.L. Kilman, K. Keegan, B. Paddock, M. Emery-Le, M. Rosbash, and R. Allada A role for casein kinase 2 alpha in the Drosophila circadian clock Nature 420 2002 816 820
-
(2002)
Nature
, vol.420
, pp. 816-820
-
-
Lin, J.M.1
Kilman, V.L.2
Keegan, K.3
Paddock, B.4
Emery-Le, M.5
Rosbash, M.6
Allada, R.7
-
69
-
-
30644471172
-
In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD
-
J.M. Lin, A. Schroeder, and R. Allada In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD J. Neurosci. 25 2005 11175 11183
-
(2005)
J. Neurosci.
, vol.25
, pp. 11175-11183
-
-
Lin, J.M.1
Schroeder, A.2
Allada, R.3
-
70
-
-
38949155276
-
Dominant-negative CK2 alpha induces potent effects on circadian rhythmicity
-
E.M. Smith, J.-M. Lin, R.-A. Meissner, and R. Allada Dominant-negative CK2 alpha induces potent effects on circadian rhythmicity PLoS Genet. 4 2008
-
(2008)
PLoS Genet.
, vol.4
-
-
Smith, E.M.1
Lin, J.-M.2
Meissner, R.-A.3
Allada, R.4
-
71
-
-
48349122032
-
Activating PER repressor through a DBT-directed phosphorylation switch
-
S. Kivimaee, L. Saez, and M.W. Young Activating PER repressor through a DBT-directed phosphorylation switch PLoS Biol. 6 2008 1570 1583
-
(2008)
PLoS Biol.
, vol.6
, pp. 1570-1583
-
-
Kivimaee, S.1
Saez, L.2
Young, M.W.3
-
72
-
-
79955540602
-
NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed
-
J.C. Chiu, H.W. Ko, and I. Edery NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed Cell 145 2011 357 370
-
(2011)
Cell
, vol.145
, pp. 357-370
-
-
Chiu, J.C.1
Ko, H.W.2
Edery, I.3
-
73
-
-
0035136677
-
An hPer2 phosphorylation site mutation in familiar advanced sleep phase syndrome
-
K.L. Toh An hPer2 phosphorylation site mutation in familiar advanced sleep phase syndrome Science 291 2001 1040 1043
-
(2001)
Science
, vol.291
, pp. 1040-1043
-
-
Toh, K.L.1
-
74
-
-
33846005528
-
Modeling of a human circadian mutation yields insights into clock regulation by PER2
-
Y. Xu, K.L. Toh, C.R. Jones, J.-Y. Shin, Y.-H. Fu, and L.J. Ptacek Modeling of a human circadian mutation yields insights into clock regulation by PER2 Cell 128 2007 59 70
-
(2007)
Cell
, vol.128
, pp. 59-70
-
-
Xu, Y.1
Toh, K.L.2
Jones, C.R.3
Shin, J.-Y.4
Fu, Y.-H.5
Ptacek, L.J.6
-
75
-
-
33749319064
-
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS)
-
K. Vanselow Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS) Genes Dev. 20 2006 2660 2672
-
(2006)
Genes Dev.
, vol.20
, pp. 2660-2672
-
-
Vanselow, K.1
-
76
-
-
33644625748
-
Feedback repression is required for mammalian circadian clock function
-
T.K. Sato Feedback repression is required for mammalian circadian clock function Nat. Genet. 38 2006 312 319
-
(2006)
Nat. Genet.
, vol.38
, pp. 312-319
-
-
Sato, T.K.1
-
77
-
-
43749084373
-
Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK
-
S. Langmesser, T. Tallone, A. Bordon, S. Rusconi, and U. Albrecht Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK BMC Mol. Biol. 9 2008
-
(2008)
BMC Mol. Biol.
, vol.9
-
-
Langmesser, S.1
Tallone, T.2
Bordon, A.3
Rusconi, S.4
Albrecht, U.5
-
78
-
-
70449093653
-
Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
-
R. Chen Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism Mol. Cell 36 2009 417 430
-
(2009)
Mol. Cell
, vol.36
, pp. 417-430
-
-
Chen, R.1
-
79
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
I. Schmutz, J.A. Ripperger, S. Baeriswyl-Aebischer, and U. Albrecht The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors Genes Dev. 24 2010 345 357
-
(2010)
Genes Dev.
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
Ripperger, J.A.2
Baeriswyl-Aebischer, S.3
Albrecht, U.4
-
80
-
-
79251600033
-
Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
-
K. Hayasaka, K. Kitanishi, J. Igarashi, and T. Shimizu Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms Biochim. Biophys. Acta 1814 2011 326 333
-
(2011)
Biochim. Biophys. Acta
, vol.1814
, pp. 326-333
-
-
Hayasaka, K.1
Kitanishi, K.2
Igarashi, J.3
Shimizu, T.4
-
81
-
-
44949200347
-
Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
-
K. Kitanishi Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms Biochemistry 47 2008 6157 6168
-
(2008)
Biochemistry
, vol.47
, pp. 6157-6168
-
-
Kitanishi, K.1
-
82
-
-
47949112304
-
A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
-
J. Yang A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2 Mol. Cell. Biol. 28 2008 4697 4711
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4697-4711
-
-
Yang, J.1
-
83
-
-
77952593382
-
Heme binding to the mammalian circadian clock protein period 2 is nonspecific
-
M.V. Airola, J. Du, J.H. Dawson, and B.R. Crane Heme binding to the mammalian circadian clock protein period 2 is nonspecific Biochemistry 49 2010 4327 4338
-
(2010)
Biochemistry
, vol.49
, pp. 4327-4338
-
-
Airola, M.V.1
Du, J.2
Dawson, J.H.3
Crane, B.R.4
-
84
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
S.A. Brown, J. Ripperger, S. Kadener, F. Fleury-Olela, F. Vilbois, M. Rosbash, and U. Schibler PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator Science 308 2005 693 696
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.A.1
Ripperger, J.2
Kadener, S.3
Fleury-Olela, F.4
Vilbois, F.5
Rosbash, M.6
Schibler, U.7
-
85
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
H.A. Duong, M.S. Robles, D. Knutti, and C.J. Weitz A molecular mechanism for circadian clock negative feedback Science 332 2011 1436 1439
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
Robles, M.S.2
Knutti, D.3
Weitz, C.J.4
-
86
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
K. Padmanabhan, M.S. Robles, T. Westerling, and C.J. Weitz Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex Science 337 2012 599 602
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
Robles, M.S.2
Westerling, T.3
Weitz, C.J.4
-
87
-
-
84893787747
-
Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
-
H.A. Duong, and C.J. Weitz Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes Nat. Struct. Mol. Biol. 21 2014 126
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 126
-
-
Duong, H.A.1
Weitz, C.J.2
-
88
-
-
84913616362
-
Dynamics of the circadian clock protein PERIOD2 in living cells
-
R. Oellinger, S. Korge, T. Korte, B. Koller, A. Herrmann, and A. Kramer Dynamics of the circadian clock protein PERIOD2 in living cells J. Cell Sci. 127 2014 4322 4328
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4322-4328
-
-
Oellinger, R.1
Korge, S.2
Korte, T.3
Koller, B.4
Herrmann, A.5
Kramer, A.6
-
89
-
-
0034045931
-
Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon
-
E. Vielhaber, E. Eide, A. Rivers, Z.H. Gao, and D.M. Virshup Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon Mol. Cell. Biol. 20 2000 4888 4899
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 4888-4899
-
-
Vielhaber, E.1
Eide, E.2
Rivers, A.3
Gao, Z.H.4
Virshup, D.M.5
-
90
-
-
84865080952
-
Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
-
T.A. Wang Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons Science 337 2012 839 842
-
(2012)
Science
, vol.337
, pp. 839-842
-
-
Wang, T.A.1
-
91
-
-
79960423858
-
Biochemical analysis of the canonical model for the mammalian circadian clock
-
R. Ye, C.P. Selby, N. Ozturk, Y. Annayev, and A. Sancar Biochemical analysis of the canonical model for the mammalian circadian clock J. Biol. Chem. 286 2011 25891 25902
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25891-25902
-
-
Ye, R.1
Selby, C.P.2
Ozturk, N.3
Annayev, Y.4
Sancar, A.5
-
92
-
-
84901254757
-
A positive role for PERIOD in mammalian circadian gene expression
-
M. Akashi, A. Okamoto, Y. Tsuchiya, T. Todo, E. Nishida, and K. Node A positive role for PERIOD in mammalian circadian gene expression Cell Rep. 7 2014 1056 1064
-
(2014)
Cell Rep.
, vol.7
, pp. 1056-1064
-
-
Akashi, M.1
Okamoto, A.2
Tsuchiya, Y.3
Todo, T.4
Nishida, E.5
Node, K.6
-
93
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
N. Koike, S.-H. Yoo, H.-C. Huang, V. Kumar, C. Lee, T.-K. Kim, and J.S. Takahashi Transcriptional architecture and chromatin landscape of the core circadian clock in mammals Science 338 2012 349 354
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.-H.2
Huang, H.-C.3
Kumar, V.4
Lee, C.5
Kim, T.-K.6
Takahashi, J.S.7
-
94
-
-
84911435850
-
The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK)
-
R. Matsumura The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK) J. Biol. Chem. 289 2014 32064 32072
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 32064-32072
-
-
Matsumura, R.1
-
95
-
-
84878889999
-
Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
-
A. Czarna Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function Cell 153 2013 1394 1405
-
(2013)
Cell
, vol.153
, pp. 1394-1405
-
-
Czarna, A.1
-
96
-
-
84901358563
-
Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
-
I. Schmalen Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation Cell 157 2014 1203 1215
-
(2014)
Cell
, vol.157
, pp. 1203-1215
-
-
Schmalen, I.1
-
97
-
-
84934295856
-
Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex
-
S.N. Nangle, C. Rosensweig, N. Koike, H. Tei, J.S. Takahashi, C.B. Green, and N. Zheng Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex ELIFE 3 2014
-
(2014)
ELIFE
, vol.3
-
-
Nangle, S.N.1
Rosensweig, C.2
Koike, N.3
Tei, H.4
Takahashi, J.S.5
Green, C.B.6
Zheng, N.7
-
98
-
-
84875899177
-
SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
-
W. Xing SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket Nature 496 2013 64
-
(2013)
Nature
, vol.496
, pp. 64
-
-
Xing, W.1
-
99
-
-
0037086535
-
Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein
-
K. Yagita, F. Tamanini, M. Yasuda, J.H. Hoeijmakers, G.T.J. van der Horst, and H. Okamura Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein EMBO J. 21 2002 1301 1314
-
(2002)
EMBO J.
, vol.21
, pp. 1301-1314
-
-
Yagita, K.1
Tamanini, F.2
Yasuda, M.3
Hoeijmakers, J.H.4
Van Der Horst, G.T.J.5
Okamura, H.6
-
100
-
-
0033825665
-
Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3
-
S. Takahata, T. Ozaki, J. Mimura, Y. Kikuchi, K. Sogawa, and Y. Fujii-Kuriyama Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3 Genes Cells 5 2000 739 747
-
(2000)
Genes Cells
, vol.5
, pp. 739-747
-
-
Takahata, S.1
Ozaki, T.2
Mimura, J.3
Kikuchi, Y.4
Sogawa, K.5
Fujii-Kuriyama, Y.6
-
101
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
J.P. Etchegaray, C. Lee, P.A. Wade, and S.M. Reppert Rhythmic histone acetylation underlies transcription in the mammalian circadian clock Nature 421 2003 177 182
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
102
-
-
79955584998
-
The cryptochromes: blue light photoreceptors in plants and animals
-
I. Chaves The cryptochromes: blue light photoreceptors in plants and animals Annu. Rev. Plant Biol. 62 62 2011 335 364
-
(2011)
Annu. Rev. Plant Biol.
, vol.62
, Issue.62
, pp. 335-364
-
-
Chaves, I.1
-
103
-
-
66549109071
-
Structural biology of DNA photolyases and cryptochromes
-
M. Mueller, and T. Carell Structural biology of DNA photolyases and cryptochromes Curr. Opin. Struct. Biol. 19 2009 277 285
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 277-285
-
-
Mueller, M.1
Carell, T.2
-
104
-
-
33644559348
-
Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance
-
I. Chaves, K. Yagita, S. Barnhoorn, H. Okamura, G.T.J. van der Horst, and F. Tamanini Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance Mol. Cell. Biol. 26 2006 1743 1753
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 1743-1753
-
-
Chaves, I.1
Yagita, K.2
Barnhoorn, S.3
Okamura, H.4
Van Der Horst, G.T.J.5
Tamanini, F.6
-
105
-
-
79959337934
-
Quantitative analyses of cryptochrome-mBMAL1 interactions mechanistic insights into the transcriptional regulation of the mammalian circadian clock
-
A. Czarna, H. Breitkreuz, C.C. Mahrenholz, J. Arens, H.M. Strauss, and E. Wolf Quantitative analyses of cryptochrome-mBMAL1 interactions mechanistic insights into the transcriptional regulation of the mammalian circadian clock J. Biol. Chem. 286 2011 22414 22425
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 22414-22425
-
-
Czarna, A.1
Breitkreuz, H.2
Mahrenholz, C.C.3
Arens, J.4
Strauss, H.M.5
Wolf, E.6
-
106
-
-
77949363859
-
DYRK1A and glycogen synthase kinase 3 beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping
-
N. Kurabayashi, T. Hirota, M. Sakai, K. Sanada, and Y. Fukada DYRK1A and glycogen synthase kinase 3 beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping Mol. Cell. Biol. 30 2010 1757 1768
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1757-1768
-
-
Kurabayashi, N.1
Hirota, T.2
Sakai, M.3
Sanada, K.4
Fukada, Y.5
-
107
-
-
0028812143
-
Crystal-structure of dna photolyase from Escherichia coli
-
H.W. Park, S.T. Kim, A. Sancar, and J. Deisenhofer Crystal-structure of dna photolyase from Escherichia coli Science 268 1995 1866 1872
-
(1995)
Science
, vol.268
, pp. 1866-1872
-
-
Park, H.W.1
Kim, S.T.2
Sancar, A.3
Deisenhofer, J.4
-
108
-
-
84883183037
-
A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception
-
C.A. Dodson, P.J. Hore, and M.I. Wallace A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception Trends Biochem. Sci. 38 2013 435 446
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 435-446
-
-
Dodson, C.A.1
Hore, P.J.2
Wallace, M.I.3
-
109
-
-
77953241268
-
Cryptochromes-a potential magnetoreceptor: what do we know and what do we want to know?
-
M. Liedvogel, and H. Mouritsen Cryptochromes-a potential magnetoreceptor: what do we know and what do we want to know? J. R. Soc. Interface 7 2010 S147
-
(2010)
J. R. Soc. Interface
, vol.7
, pp. S147
-
-
Liedvogel, M.1
Mouritsen, H.2
-
110
-
-
84906086809
-
Sensing magnetic directions in birds: radical pair processes involving cryptochrome
-
R. Wiltschko, and W. Wiltschko Sensing magnetic directions in birds: radical pair processes involving cryptochrome Biosensors 4 2014 221 242
-
(2014)
Biosensors
, vol.4
, pp. 221-242
-
-
Wiltschko, R.1
Wiltschko, W.2
-
113
-
-
50049118298
-
Cryptochrome mediates light-dependent magnetosensitivity in Drosophila
-
1014-U61
-
R.J. Gegear, A. Casselman, S. Waddell, and S.M. Reppert Cryptochrome mediates light-dependent magnetosensitivity in Drosophila Nature 454 2008 1014-U61
-
(2008)
Nature
, vol.454
-
-
Gegear, R.J.1
Casselman, A.2
Waddell, S.3
Reppert, S.M.4
-
114
-
-
34250346126
-
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome
-
A. Berndt, T. Kottke, H. Breitkreuz, R. Dvorsky, S. Hennig, M. Alexander, and E. Wolf A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome J. Biol. Chem. 282 2007 13011 13021
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 13011-13021
-
-
Berndt, A.1
Kottke, T.2
Breitkreuz, H.3
Dvorsky, R.4
Hennig, S.5
Alexander, M.6
Wolf, E.7
-
115
-
-
79956325554
-
Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light
-
B. Liu, Z. Zuo, H. Liu, X. Liu, and C. Lin Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light Genes Dev. 25 2011 1029 1034
-
(2011)
Genes Dev.
, vol.25
, pp. 1029-1034
-
-
Liu, B.1
Zuo, Z.2
Liu, H.3
Liu, X.4
Lin, C.5
-
116
-
-
4344702547
-
Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana
-
C.A. Brautigam, B.S. Smith, Z.Q. Ma, M. Palnitkar, Tomchick, M. Machius, and J. Deisenhofer Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana Proc. Natl. Acad. Sci. USA 101 2004 12142 12147
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 12142-12147
-
-
Brautigam, C.A.1
Smith, B.S.2
Ma, Z.Q.3
Palnitkar, M.4
Tomchick5
Machius, M.6
Deisenhofer, J.7
-
117
-
-
57749084494
-
Crystal structure and mechanism of a DNA (6-4) photolyase
-
M.J. Maul Crystal structure and mechanism of a DNA (6-4) photolyase Angew. Chem. Int. Ed. 47 2008 10076 10080
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 10076-10080
-
-
Maul, M.J.1
-
118
-
-
66349083857
-
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes
-
K. Hitomi Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes Proc. Natl. Acad. Sci. USA 106 2009 6962 6967
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 6962-6967
-
-
Hitomi, K.1
-
119
-
-
83555164721
-
Structure of full-length Drosophila cryptochrome
-
396-U156
-
B.D. Zoltowski, A.T. Vaidya, D. Top, J. Widom, M.W. Young, and B.R. Crane Structure of full-length Drosophila cryptochrome Nature 480 2011 396-U156
-
(2011)
Nature
, vol.480
-
-
Zoltowski, B.D.1
Vaidya, A.T.2
Top, D.3
Widom, J.4
Young, M.W.5
Crane, B.R.6
-
120
-
-
84875361453
-
Updated structure of Drosophila cryptochrome
-
C. Levy Updated structure of Drosophila cryptochrome Nature 495 2013 E3
-
(2013)
Nature
, vol.495
, pp. E3
-
-
Levy, C.1
-
121
-
-
48349113478
-
Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells
-
N. Hoang Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells PLoS Biol. 6 2008 1559 1569
-
(2008)
PLoS Biol.
, vol.6
, pp. 1559-1569
-
-
Hoang, N.1
-
122
-
-
84865411686
-
Human cryptochrome exhibits light-dependent magnetosensitivity
-
L.E. Foley, R.J. Gegear, and S.M. Reppert Human cryptochrome exhibits light-dependent magnetosensitivity Nat. Commun. 2 2011 356
-
(2011)
Nat. Commun.
, vol.2
, pp. 356
-
-
Foley, L.E.1
Gegear, R.J.2
Reppert, S.M.3
-
123
-
-
84889093349
-
Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
-
S. Nangle, W. Xing, and N. Zheng Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase Cell Res. 23 2013 1417 1419
-
(2013)
Cell Res.
, vol.23
, pp. 1417-1419
-
-
Nangle, S.1
Xing, W.2
Zheng, N.3
-
124
-
-
70350452140
-
Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression
-
E.V. McCarthy, J.E. Baggs, J.M. Geskes, J.B. Hogenesch, and C.B. Green Generation of a novel allelic series of cryptochrome mutants via mutagenesis reveals residues involved in protein-protein interaction and CRY2-specific repression Mol. Cell. Biol. 29 2009 5465 5476
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5465-5476
-
-
McCarthy, E.V.1
Baggs, J.E.2
Geskes, J.M.3
Hogenesch, J.B.4
Green, C.B.5
-
125
-
-
59149086433
-
Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice
-
S. Okano, M. Akashi, K. Hayasaka, and O. Nakajima Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice Neurosci. Lett. 451 2009 246 251
-
(2009)
Neurosci. Lett.
, vol.451
, pp. 246-251
-
-
Okano, S.1
Akashi, M.2
Hayasaka, K.3
Nakajima, O.4
-
126
-
-
78649417879
-
Non-obese early onset diabetes mellitus in mutant cryptochrome1 transgenic mice
-
S. Okano, K. Hayasaka, M. Igarashi, H. Iwai, Y. Togashi, and O. Nakajima Non-obese early onset diabetes mellitus in mutant cryptochrome1 transgenic mice Eur. J. Clin. Invest. 40 2010 1011 1017
-
(2010)
Eur. J. Clin. Invest.
, vol.40
, pp. 1011-1017
-
-
Okano, S.1
Hayasaka, K.2
Igarashi, M.3
Iwai, H.4
Togashi, Y.5
Nakajima, O.6
-
127
-
-
84888398162
-
Characterization of age-associated alterations of islet function and structure in diabetic mutant cryptochrome 1 transgenic mice (vol. 4, 2013, p. 428)
-
S. Okano, K. Hayasaka, M. Igarashi, Y. Togashi, and O. Nakajima Characterization of age-associated alterations of islet function and structure in diabetic mutant cryptochrome 1 transgenic mice (vol. 4, 2013, p. 428) J. Diabetes Invest. 4 2013 681
-
(2013)
J. Diabetes Invest.
, vol.4
, pp. 681
-
-
Okano, S.1
Hayasaka, K.2
Igarashi, M.3
Togashi, Y.4
Nakajima, O.5
-
128
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
B. Marcheva Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes Nature 466 2010 627 631
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
129
-
-
84868094430
-
Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator
-
Y.-I. Kim, D.J. Vinyard, G.M. Ananyev, G.C. Dismukes, and S.S. Golden Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator Proc. Natl. Acad. Sci. USA 109 2012 17765 17769
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 17765-17769
-
-
Kim, Y.-I.1
Vinyard, D.J.2
Ananyev, G.M.3
Dismukes, G.C.4
Golden, S.S.5
-
130
-
-
82555185702
-
Cross-talk between the cellular redox state and the circadian system in neurospora
-
Y. Yoshida, H. Iigusa, N. Wang, and K. Hasunuma Cross-talk between the cellular redox state and the circadian system in neurospora PLoS One 6 2011
-
(2011)
PLoS One
, vol.6
-
-
Yoshida, Y.1
Iigusa, H.2
Wang, N.3
Hasunuma, K.4
-
131
-
-
84867367696
-
Zinc and the modulation of redox homeostasis
-
P.I. Oteiza Zinc and the modulation of redox homeostasis Free Radic. Biol. Med. 53 2012 1748 1759
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 1748-1759
-
-
Oteiza, P.I.1
-
132
-
-
79251566511
-
Circadian clocks in human red blood cells
-
J.S. O'Neill, and A.B. Reddy Circadian clocks in human red blood cells Nature 469 2011 498 503
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
133
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
J.S. O'Neill Circadian rhythms persist without transcription in a eukaryote Nature 469 2011 554 558
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
-
134
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
R.S. Edgar Peroxiredoxins are conserved markers of circadian rhythms Nature 485 2012 459 464
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
-
135
-
-
84922319279
-
Oxidation-reduction cycles of peroxiredoxin proteins and non-transcriptional aspects of timekeeping
-
N.P. Hoyle, and J.S. O'Neill Oxidation-reduction cycles of peroxiredoxin proteins and non-transcriptional aspects of timekeeping Biochemistry 54 2015 184 193
-
(2015)
Biochemistry
, vol.54
, pp. 184-193
-
-
Hoyle, N.P.1
O'Neill, J.S.2
-
136
-
-
84884197445
-
Oxidant sensing by reversible disulfide bond formation
-
C.M. Cremers, and U. Jakob Oxidant sensing by reversible disulfide bond formation J. Biol. Chem. 288 2013 26489 26496
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 26489-26496
-
-
Cremers, C.M.1
Jakob, U.2
-
137
-
-
0032566970
-
The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila
-
R. Stanewsky The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila Cell 95 1998 681 692
-
(1998)
Cell
, vol.95
, pp. 681-692
-
-
Stanewsky, R.1
-
138
-
-
2642584009
-
Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception
-
A. Busza, M. Emery-Le, M. Rosbash, and P. Emery Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception Science 304 2004 1503 1506
-
(2004)
Science
, vol.304
, pp. 1503-1506
-
-
Busza, A.1
Emery-Le, M.2
Rosbash, M.3
Emery, P.4
-
139
-
-
0033543596
-
A role for the proteasome in the light response of the timeless clock protein
-
N. Naidoo, W. Song, M. Hunter-Ensor, and A. Sehgal A role for the proteasome in the light response of the timeless clock protein Science 285 1999 1737 1741
-
(1999)
Science
, vol.285
, pp. 1737-1741
-
-
Naidoo, N.1
Song, W.2
Hunter-Ensor, M.3
Sehgal, A.4
-
140
-
-
0033597921
-
Light-dependent sequestration of TIMELESS by CRYPTOCHROME
-
M.F. Ceriani, T.K. Darlington, D. Staknis, P. Mas, A.A. Petti, C.J. Weitz, and S.A. Kay Light-dependent sequestration of TIMELESS by CRYPTOCHROME Science 285 1999 553 556
-
(1999)
Science
, vol.285
, pp. 553-556
-
-
Ceriani, M.F.1
Darlington, T.K.2
Staknis, D.3
Mas, P.4
Petti, A.A.5
Weitz, C.J.6
Kay, S.A.7
-
141
-
-
79952301226
-
Reaction mechanism of Drosophila cryptochrome
-
N. Ozturk, C.P. Selby, Y. Annayev, D. Zhong, and A. Sancar Reaction mechanism of Drosophila cryptochrome Proc. Natl. Acad. Sci. USA 108 2011 516 521
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 516-521
-
-
Ozturk, N.1
Selby, C.P.2
Annayev, Y.3
Zhong, D.4
Sancar, A.5
-
142
-
-
84890847307
-
Flavin reduction activates Drosophila cryptochrome
-
A.T. Vaidya Flavin reduction activates Drosophila cryptochrome Proc. Natl. Acad. Sci. USA 110 2013 20455 20460
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 20455-20460
-
-
Vaidya, A.T.1
-
143
-
-
33847095044
-
Linear motifs in the C-terminus of D-melanogaster cryptochrome
-
M.J. Hemsley Linear motifs in the C-terminus of D-melanogaster cryptochrome Biochem. Biophys. Res. Commun. 355 2007 531 537
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.355
, pp. 531-537
-
-
Hemsley, M.J.1
-
144
-
-
0142052946
-
Requirement of mammalian Timeless for circadian rhythmicity
-
J.W. Barnes, S.A. Tischkau, J.A. Barnes, J.W. Mitchell, P.W. Burgoon, J.R. Hickok, and M.U. Gillette Requirement of mammalian Timeless for circadian rhythmicity Science 302 2003 439 442
-
(2003)
Science
, vol.302
, pp. 439-442
-
-
Barnes, J.W.1
Tischkau, S.A.2
Barnes, J.A.3
Mitchell, J.W.4
Burgoon, P.W.5
Hickok, J.R.6
Gillette, M.U.7
-
145
-
-
84873911449
-
Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock
-
E. Engelen, R.C. Janssens, K. Yagita, Veronique A.J. Smits, Gijsbertus T.J. van der Horst, and F. Tamanini Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock PLoS One 8 2013
-
(2013)
PLoS One
, vol.8
-
-
Engelen, E.1
Janssens, R.C.2
Yagita, K.3
Smits, V.A.J.4
Van Der Horst, G.T.J.5
Tamanini, F.6
-
146
-
-
39249085673
-
Phase resetting of the mammalian circadian clock by DNA damage
-
M. Oklejewicz, E. Destici, F. Tamanini, R.A. Hut, R. Janssens, and Gijsbertus T. van der Horst Phase resetting of the mammalian circadian clock by DNA damage Curr. Biol. 18 2008 286 291
-
(2008)
Curr. Biol.
, vol.18
, pp. 286-291
-
-
Oklejewicz, M.1
Destici, E.2
Tamanini, F.3
Hut, R.A.4
Janssens, R.5
Van Der Horst, G.T.6
-
147
-
-
84869392858
-
Local and global functions of Timeless and Tipin in replication fork protection
-
A.R. Leman, and E. Noguchi Local and global functions of Timeless and Tipin in replication fork protection Cell Cycle 11 2012 3945 3955
-
(2012)
Cell Cycle
, vol.11
, pp. 3945-3955
-
-
Leman, A.R.1
Noguchi, E.2
-
148
-
-
84926098478
-
Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex
-
J. Witosch, E. Wolf, and N. Mizuno Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex Nucleic Acids Res. 42 2014 12912 12927
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 12912-12927
-
-
Witosch, J.1
Wolf, E.2
Mizuno, N.3
-
149
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
K.A. Lamia Cryptochromes mediate rhythmic repression of the glucocorticoid receptor Nature 480 2011 552 556
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
-
150
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
-
E.E. Zhang Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis Nat. Med. 16 2010 1152-U133
-
(2010)
Nat. Med.
, vol.16
-
-
Zhang, E.E.1
|