메뉴 건너뛰기




Volumn 38, Issue 9, 2013, Pages 435-446

A radical sense of direction: Signalling and mechanism in cryptochrome magnetoreception

Author keywords

Cryptochrome; Magnetoreception; Photolyase; Radical pair hypothesis

Indexed keywords

ASPARTIC ACID; CRYPTOCHROME; CRYPTOCHROME 1; CRYPTOCHROME 2; DASH PROTEIN; DEOXYRIBODIPYRIMIDINE PHOTOLYASE; FLAVOPROTEIN; ISOALLOXAZINE; PHENYLALANINE; PROTEIN BMAL1; PROTEIN FBXL3; QUERCETIN; RHODOPSIN; TRANSCRIPTION FACTOR CLOCK; TRYPTOPHAN; UNCLASSIFIED DRUG; VISUAL PIGMENT;

EID: 84883183037     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.07.002     Document Type: Review
Times cited : (109)

References (102)
  • 1
    • 77950125825 scopus 로고    scopus 로고
    • Directional orientation of birds by the magnetic field under different light conditions
    • Wiltschko R., et al. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 2010, 7(Suppl. 2):S163-S177.
    • (2010) J. R. Soc. Interface , vol.7 , Issue.SUPPL. 2
    • Wiltschko, R.1
  • 2
    • 84860356757 scopus 로고    scopus 로고
    • The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds
    • Mouritsen H., Hore P.J. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr. Opin. Neurobiol. 2012, 22:343-352.
    • (2012) Curr. Opin. Neurobiol. , vol.22 , pp. 343-352
    • Mouritsen, H.1    Hore, P.J.2
  • 3
    • 82655180702 scopus 로고    scopus 로고
    • Quantum effects in biology: bird navigation
    • Ritz T. Quantum effects in biology: bird navigation. Proc. Chem. 2011, 3:262-275.
    • (2011) Proc. Chem. , vol.3 , pp. 262-275
    • Ritz, T.1
  • 4
    • 77951567055 scopus 로고    scopus 로고
    • Q and A: animal behaviour: magnetic-field perception
    • Lohmann K.J. Q and A: animal behaviour: magnetic-field perception. Nature 2010, 464:1140-1142.
    • (2010) Nature , vol.464 , pp. 1140-1142
    • Lohmann, K.J.1
  • 6
    • 77950173117 scopus 로고    scopus 로고
    • A quantitative assessment of torque-transducer models for magnetoreception
    • Winklhofer M., Kirschvink J.L. A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface 2010, 7(Suppl. 2):S273-S289.
    • (2010) J. R. Soc. Interface , vol.7 , Issue.SUPPL. 2
    • Winklhofer, M.1    Kirschvink, J.L.2
  • 7
    • 0019485584 scopus 로고
    • Biogenic magnetite as a basis for magnetic field detection in animals
    • Kirschvink J.L., Gould J.L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 1981, 13:181-201.
    • (1981) Biosystems , vol.13 , pp. 181-201
    • Kirschvink, J.L.1    Gould, J.L.2
  • 8
    • 0035425501 scopus 로고    scopus 로고
    • Magnetite-based magnetoreception
    • Kirschvink J.L., et al. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 2001, 11:462-467.
    • (2001) Curr. Opin. Neurobiol. , vol.11 , pp. 462-467
    • Kirschvink, J.L.1
  • 10
    • 3042850008 scopus 로고    scopus 로고
    • Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism
    • Henbest K.B., et al. Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 2004, 126:8102-8103.
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 8102-8103
    • Henbest, K.B.1
  • 11
    • 2442649131 scopus 로고    scopus 로고
    • Resonance effects indicate a radical-pair mechanism for avian magnetic compass
    • Ritz T., et al. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004, 429:177-180.
    • (2004) Nature , vol.429 , pp. 177-180
    • Ritz, T.1
  • 12
    • 13844262726 scopus 로고    scopus 로고
    • Magnetic compass orientation of migratory birds in the presence of a 1.315MHz oscillating field
    • Thalau P., et al. Magnetic compass orientation of migratory birds in the presence of a 1.315MHz oscillating field. Naturwissenschaften 2005, 92:86-90.
    • (2005) Naturwissenschaften , vol.92 , pp. 86-90
    • Thalau, P.1
  • 13
    • 77956858243 scopus 로고    scopus 로고
    • A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception?
    • Phillips J.B., et al. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception?. J. Exp. Biol. 2010, 213:3247-3255.
    • (2010) J. Exp. Biol. , vol.213 , pp. 3247-3255
    • Phillips, J.B.1
  • 14
    • 36649031411 scopus 로고    scopus 로고
    • Magnetoreception in birds: two receptors for two different tasks
    • Wiltschko R., Wiltschko W. Magnetoreception in birds: two receptors for two different tasks. J. Ornithol. 2007, 148:S61-S76.
    • (2007) J. Ornithol. , vol.148
    • Wiltschko, R.1    Wiltschko, W.2
  • 15
    • 0035850830 scopus 로고    scopus 로고
    • Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal
    • Nemec P., et al. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 2001, 294:366-368.
    • (2001) Science , vol.294 , pp. 366-368
    • Nemec, P.1
  • 16
    • 70350648973 scopus 로고    scopus 로고
    • Visual but not trigeminal mediation of magnetic compass information in a migratory bird
    • Zapka M., et al. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 2009, 461:1274-1277.
    • (2009) Nature , vol.461 , pp. 1274-1277
    • Zapka, M.1
  • 17
    • 79957458197 scopus 로고    scopus 로고
    • Avian ultraviolet/violet cones identified as probable magnetoreceptors
    • Niessner C., et al. Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS ONE 2011, 6:e20091.
    • (2011) PLoS ONE , vol.6
    • Niessner, C.1
  • 18
    • 43749095895 scopus 로고    scopus 로고
    • Chemical compass model of avian magnetoreception
    • Maeda K., et al. Chemical compass model of avian magnetoreception. Nature 2008, 453:387-390.
    • (2008) Nature , vol.453 , pp. 387-390
    • Maeda, K.1
  • 19
    • 58849088435 scopus 로고    scopus 로고
    • Chemical magnetoreception in birds: the radical pair mechanism
    • Rodgers C.T., Hore P.J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:353-360.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 353-360
    • Rodgers, C.T.1    Hore, P.J.2
  • 20
    • 1642315255 scopus 로고    scopus 로고
    • Anisotropic recombination of an immobilized photoinduced radical pair in a 50-mu T magnetic field: a model avian photomagnetoreceptor
    • Cintolesi F., et al. Anisotropic recombination of an immobilized photoinduced radical pair in a 50-mu T magnetic field: a model avian photomagnetoreceptor. Chem. Phys. 2003, 294:385-399.
    • (2003) Chem. Phys. , vol.294 , pp. 385-399
    • Cintolesi, F.1
  • 21
    • 77953236056 scopus 로고    scopus 로고
    • Can disordered radical pair systems provide a basis for a magnetic compass in animals?
    • Hill E., Ritz T. Can disordered radical pair systems provide a basis for a magnetic compass in animals?. J. R. Soc. Interface 2010, 7(Suppl. 2):S265-S271.
    • (2010) J. R. Soc. Interface , vol.7 , Issue.SUPPL. 2
    • Hill, E.1    Ritz, T.2
  • 22
    • 84868548781 scopus 로고    scopus 로고
    • Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes
    • Lau J.C., et al. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes. J. R. Soc. Interface 2012, 9:3329-3337.
    • (2012) J. R. Soc. Interface , vol.9 , pp. 3329-3337
    • Lau, J.C.1
  • 23
    • 77953269965 scopus 로고    scopus 로고
    • Effects of disorder and motion in a radical pair magnetoreceptor
    • Lau J.C., et al. Effects of disorder and motion in a radical pair magnetoreceptor. J. R. Soc. Interface 2010, 7(Suppl. 2):S257-S264.
    • (2010) J. R. Soc. Interface , vol.7 , Issue.SUPPL. 2
    • Lau, J.C.1
  • 24
    • 34147174257 scopus 로고    scopus 로고
    • Magnetic field effects in Arabidopsis thaliana cryptochrome-1
    • Solov'yov I.A., et al. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys. J. 2007, 92:2711-2726.
    • (2007) Biophys. J. , vol.92 , pp. 2711-2726
    • Solov'yov, I.A.1
  • 25
    • 77954338555 scopus 로고    scopus 로고
    • Acuity of a cryptochrome and vision-based magnetoreception system in birds
    • Solov'yov I.A., et al. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J. 2010, 99:40-49.
    • (2010) Biophys. J. , vol.99 , pp. 40-49
    • Solov'yov, I.A.1
  • 26
    • 0034038064 scopus 로고    scopus 로고
    • A model for photoreceptor-based magnetoreception in birds
    • Ritz T., et al. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 2000, 78:707-718.
    • (2000) Biophys. J. , vol.78 , pp. 707-718
    • Ritz, T.1
  • 27
    • 77953241268 scopus 로고    scopus 로고
    • Cryptochromes - a potential magnetoreceptor: what do we know and what do we want to know?
    • Liedvogel M., Mouritsen H. Cryptochromes - a potential magnetoreceptor: what do we know and what do we want to know?. J. R. Soc. Interface 2010, 7(Suppl. 2):S147-S162.
    • (2010) J. R. Soc. Interface , vol.7 , Issue.SUPPL. 2
    • Liedvogel, M.1    Mouritsen, H.2
  • 28
    • 34047220139 scopus 로고    scopus 로고
    • Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks
    • Yuan Q., et al. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 2007, 24:948-955.
    • (2007) Mol. Biol. Evol. , vol.24 , pp. 948-955
    • Yuan, Q.1
  • 29
    • 28444447141 scopus 로고    scopus 로고
    • The two CRYs of the butterfly
    • Zhu H., et al. The two CRYs of the butterfly. Curr. Biol. 2005, 15:R953-R954.
    • (2005) Curr. Biol. , vol.15
    • Zhu, H.1
  • 30
    • 81855174762 scopus 로고    scopus 로고
    • The monarch butterfly genome yields insights into long-distance migration
    • Zhan S., et al. The monarch butterfly genome yields insights into long-distance migration. Cell 2011, 147:1171-1185.
    • (2011) Cell , vol.147 , pp. 1171-1185
    • Zhan, S.1
  • 31
    • 80052900616 scopus 로고    scopus 로고
    • Molecular genetic analysis of circadian timekeeping in Drosophila
    • Hardin P.E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 2011, 74:141-173.
    • (2011) Adv. Genet. , vol.74 , pp. 141-173
    • Hardin, P.E.1
  • 32
    • 0027493250 scopus 로고
    • HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor
    • Ahmad M., Cashmore A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993, 366:162-166.
    • (1993) Nature , vol.366 , pp. 162-166
    • Ahmad, M.1    Cashmore, A.R.2
  • 33
    • 79955584998 scopus 로고    scopus 로고
    • The cryptochromes: blue light photoreceptors in plants and animals
    • Chaves I., et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 2011, 62:335-364.
    • (2011) Annu. Rev. Plant Biol. , vol.62 , pp. 335-364
    • Chaves, I.1
  • 34
    • 77955496973 scopus 로고    scopus 로고
    • Light-regulated plant growth and development
    • Kami C., et al. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91:29-66.
    • (2010) Curr. Top. Dev. Biol. , vol.91 , pp. 29-66
    • Kami, C.1
  • 35
    • 0037249267 scopus 로고    scopus 로고
    • Identification of a new cryptochrome class. Structure, function, and evolution
    • Brudler R., et al. Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 2003, 11:59-67.
    • (2003) Mol. Cell , vol.11 , pp. 59-67
    • Brudler, R.1
  • 36
    • 77953511833 scopus 로고    scopus 로고
    • Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa
    • Froehlich A.C., et al. Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot. Cell 2010, 9:738-750.
    • (2010) Eukaryot. Cell , vol.9 , pp. 738-750
    • Froehlich, A.C.1
  • 37
    • 84865587964 scopus 로고    scopus 로고
    • Investigation of real-time photorepair activity on DNA via surface plasmon resonance
    • Kizilel R., et al. Investigation of real-time photorepair activity on DNA via surface plasmon resonance. PLoS ONE 2012, 7:e44392.
    • (2012) PLoS ONE , vol.7
    • Kizilel, R.1
  • 38
    • 58549111388 scopus 로고    scopus 로고
    • Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome
    • Pokorny R., et al. Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:21023-21027.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 21023-21027
    • Pokorny, R.1
  • 39
    • 33750713440 scopus 로고    scopus 로고
    • A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity
    • Selby C.P., Sancar A. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17696-17700.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 17696-17700
    • Selby, C.P.1    Sancar, A.2
  • 40
  • 41
    • 66549109071 scopus 로고    scopus 로고
    • Structural biology of DNA photolyases and cryptochromes
    • Muller M., Carell T. Structural biology of DNA photolyases and cryptochromes. Curr. Opin. Struct. Biol. 2009, 19:277-285.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 277-285
    • Muller, M.1    Carell, T.2
  • 42
    • 0038305458 scopus 로고    scopus 로고
    • Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors
    • Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003, 103:2203-2237.
    • (2003) Chem. Rev. , vol.103 , pp. 2203-2237
    • Sancar, A.1
  • 43
    • 60049097721 scopus 로고    scopus 로고
    • Magnetic field effects in chemical systems
    • Rodgers C.T. Magnetic field effects in chemical systems. Pure Appl. Chem. 2009, 81:19-43.
    • (2009) Pure Appl. Chem. , vol.81 , pp. 19-43
    • Rodgers, C.T.1
  • 44
    • 9444240267 scopus 로고
    • Magnetic-field effects in chemical-kinetics and related phenomena
    • Steiner U.E., Ulrich T. Magnetic-field effects in chemical-kinetics and related phenomena. Chem. Rev. 1989, 89:51-147.
    • (1989) Chem. Rev. , vol.89 , pp. 51-147
    • Steiner, U.E.1    Ulrich, T.2
  • 45
    • 84864458731 scopus 로고    scopus 로고
    • Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy
    • Immeln D., et al. Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy. J. Am. Chem. Soc. 2012, 134:12536-12546.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 12536-12546
    • Immeln, D.1
  • 46
    • 55549100984 scopus 로고    scopus 로고
    • Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30ps
    • Lukacs A., et al. Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30ps. J. Am. Chem. Soc. 2008, 130:14394-14395.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 14394-14395
    • Lukacs, A.1
  • 47
    • 84859470589 scopus 로고    scopus 로고
    • Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor
    • Maeda K., et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:4774-4779.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 4774-4779
    • Maeda, K.1
  • 48
    • 70349914561 scopus 로고    scopus 로고
    • Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome
    • Langenbacher T., et al. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome. J. Am. Chem. Soc. 2009, 131:14274-14280.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 14274-14280
    • Langenbacher, T.1
  • 49
    • 55749098499 scopus 로고    scopus 로고
    • Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase
    • Henbest K.B., et al. Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14395-14399.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 14395-14399
    • Henbest, K.B.1
  • 50
    • 77749240321 scopus 로고    scopus 로고
    • Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: toward a detailed understanding of the triple tryptophan electron transfer chain
    • Byrdin M., et al. Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: toward a detailed understanding of the triple tryptophan electron transfer chain. J. Phys. Chem. A 2010, 114:3207-3214.
    • (2010) J. Phys. Chem. A , vol.114 , pp. 3207-3214
    • Byrdin, M.1
  • 51
    • 84864194063 scopus 로고    scopus 로고
    • Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase
    • Yamada D., et al. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase. Biochemistry 2012, 51:5774-5783.
    • (2012) Biochemistry , vol.51 , pp. 5774-5783
    • Yamada, D.1
  • 52
    • 34547116867 scopus 로고    scopus 로고
    • Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly
    • Song S.H., et al. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly. J. Biol. Chem. 2007, 282:17608-17612.
    • (2007) J. Biol. Chem. , vol.282 , pp. 17608-17612
    • Song, S.H.1
  • 53
    • 45249083827 scopus 로고    scopus 로고
    • Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase
    • Kao Y.T., et al. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 2008, 130:7695-7701.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 7695-7701
    • Kao, Y.T.1
  • 54
    • 77950802823 scopus 로고    scopus 로고
    • Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors
    • Brazard J., et al. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors. J. Am. Chem. Soc. 2010, 132:4935-4945.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 4935-4945
    • Brazard, J.1
  • 55
    • 71749093646 scopus 로고    scopus 로고
    • Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana
    • Zirak P., et al. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana. J. Photochem. Photobiol. B 2009, 97:94-108.
    • (2009) J. Photochem. Photobiol. B , vol.97 , pp. 94-108
    • Zirak, P.1
  • 56
    • 34250346126 scopus 로고    scopus 로고
    • A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome
    • Berndt A., et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 2007, 282:13011-13021.
    • (2007) J. Biol. Chem. , vol.282 , pp. 13011-13021
    • Berndt, A.1
  • 57
    • 42549166971 scopus 로고    scopus 로고
    • Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs
    • Liedvogel M., et al. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS ONE 2007, 2:e1106.
    • (2007) PLoS ONE , vol.2
    • Liedvogel, M.1
  • 58
    • 0038024617 scopus 로고    scopus 로고
    • Light-induced electron transfer in a cryptochrome blue-light photoreceptor
    • Giovani B., et al. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 2003, 10:489-490.
    • (2003) Nat. Struct. Biol. , vol.10 , pp. 489-490
    • Giovani, B.1
  • 59
    • 13844256579 scopus 로고    scopus 로고
    • Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase
    • Weber S. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim. Biophys. Acta 2005, 1707:1-23.
    • (2005) Biochim. Biophys. Acta , vol.1707 , pp. 1-23
    • Weber, S.1
  • 60
    • 67649396448 scopus 로고    scopus 로고
    • Magnetic compass of birds is based on a molecule with optimal directional sensitivity
    • Ritz T., et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 2009, 96:3451-3457.
    • (2009) Biophys. J. , vol.96 , pp. 3451-3457
    • Ritz, T.1
  • 61
    • 70349183749 scopus 로고    scopus 로고
    • Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy
    • Hogben H.J., et al. Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem. Phys. Lett. 2009, 480:118-122.
    • (2009) Chem. Phys. Lett. , vol.480 , pp. 118-122
    • Hogben, H.J.1
  • 62
    • 0034214080 scopus 로고    scopus 로고
    • Intraprotein radical transfer during photoactivation of DNA photolyase
    • Aubert C., et al. Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 2000, 405:586-590.
    • (2000) Nature , vol.405 , pp. 586-590
    • Aubert, C.1
  • 63
    • 33644553813 scopus 로고    scopus 로고
    • Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy
    • Kottke T., et al. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 2006, 45:2472-2479.
    • (2006) Biochemistry , vol.45 , pp. 2472-2479
    • Kottke, T.1
  • 64
    • 79953743213 scopus 로고    scopus 로고
    • Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins
    • Immeln D., et al. Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins. J. Phys. Chem. B 2010, 114:17155-17161.
    • (2010) J. Phys. Chem. B , vol.114 , pp. 17155-17161
    • Immeln, D.1
  • 65
    • 77957904119 scopus 로고    scopus 로고
    • Key dynamics of conserved asparagine in a cryptochrome/photolyase family protein by fourier transform infrared spectroscopy
    • Iwata T., et al. Key dynamics of conserved asparagine in a cryptochrome/photolyase family protein by fourier transform infrared spectroscopy. Biochemistry 2010, 49:8882-8891.
    • (2010) Biochemistry , vol.49 , pp. 8882-8891
    • Iwata, T.1
  • 66
    • 73149114186 scopus 로고    scopus 로고
    • Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH
    • Damiani M.J., et al. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH. Biochemistry 2009, 48:11399-11411.
    • (2009) Biochemistry , vol.48 , pp. 11399-11411
    • Damiani, M.J.1
  • 67
    • 79953008997 scopus 로고    scopus 로고
    • Impact of the N5-proximal Asn on the thermodynamic and kinetic stability of the semiquinone radical in photolyase
    • Damiani M.J., et al. Impact of the N5-proximal Asn on the thermodynamic and kinetic stability of the semiquinone radical in photolyase. J. Biol. Chem. 2011, 286:4382-4391.
    • (2011) J. Biol. Chem. , vol.286 , pp. 4382-4391
    • Damiani, M.J.1
  • 68
    • 1942536615 scopus 로고    scopus 로고
    • Intraprotein electron transfer and proton dynamics during photoactivation of DNA photolyase from E. coli: review and new insights from an "inverse" deuterium isotope effect
    • Byrdin M., et al. Intraprotein electron transfer and proton dynamics during photoactivation of DNA photolyase from E. coli: review and new insights from an "inverse" deuterium isotope effect. Biochim. Biophys. Acta 2004, 1655:64-70.
    • (2004) Biochim. Biophys. Acta , vol.1655 , pp. 64-70
    • Byrdin, M.1
  • 69
    • 58249116720 scopus 로고    scopus 로고
    • Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor
    • Biskup T., et al. Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. Angew. Chem. Int. Ed. Engl. 2009, 48:404-407.
    • (2009) Angew. Chem. Int. Ed. Engl. , vol.48 , pp. 404-407
    • Biskup, T.1
  • 70
    • 83555164721 scopus 로고    scopus 로고
    • Structure of full-length Drosophila cryptochrome
    • Zoltowski B.D., et al. Structure of full-length Drosophila cryptochrome. Nature 2011, 480:396-399.
    • (2011) Nature , vol.480 , pp. 396-399
    • Zoltowski, B.D.1
  • 71
    • 84875361453 scopus 로고    scopus 로고
    • Updated structure of Drosophila cryptochrome
    • Levy C., et al. Updated structure of Drosophila cryptochrome. Nature 2013, 495:E3-E4.
    • (2013) Nature , vol.495
    • Levy, C.1
  • 72
    • 84878889999 scopus 로고    scopus 로고
    • Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
    • Czarna A., et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 2013, 153:1394-1405.
    • (2013) Cell , vol.153 , pp. 1394-1405
    • Czarna, A.1
  • 73
    • 84875899177 scopus 로고    scopus 로고
    • SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
    • Xing W., et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 2013, 496:64-68.
    • (2013) Nature , vol.496 , pp. 64-68
    • Xing, W.1
  • 74
    • 84859485621 scopus 로고    scopus 로고
    • Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants
    • Hitomi K., et al. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants. J. Biol. Chem. 2012, 287:12060-12069.
    • (2012) J. Biol. Chem. , vol.287 , pp. 12060-12069
    • Hitomi, K.1
  • 75
    • 66349083857 scopus 로고    scopus 로고
    • Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes
    • Hitomi K., et al. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6962-6967.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 6962-6967
    • Hitomi, K.1
  • 76
    • 62849120822 scopus 로고    scopus 로고
    • What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions
    • Balland V., et al. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions. J. Am. Chem. Soc. 2009, 131:426-427.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 426-427
    • Balland, V.1
  • 77
    • 80455155015 scopus 로고    scopus 로고
    • Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA
    • Kiontke S., et al. Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. EMBO J. 2011, 30:4437-4449.
    • (2011) EMBO J. , vol.30 , pp. 4437-4449
    • Kiontke, S.1
  • 78
    • 84865840972 scopus 로고    scopus 로고
    • Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1
    • Burney S., et al. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angew. Chem. Int. Ed. Engl. 2012, 51:9356-9360.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 9356-9360
    • Burney, S.1
  • 79
    • 50249168217 scopus 로고    scopus 로고
    • Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells
    • Hoang N., et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 2008, 6:e160.
    • (2008) PLoS Biol. , vol.6
    • Hoang, N.1
  • 80
    • 77952101898 scopus 로고    scopus 로고
    • Light-induced activation of class II cyclobutane pyrimidine dimer photolyases
    • Okafuji A., et al. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA Repair (Amst.) 2010, 9:495-505.
    • (2010) DNA Repair (Amst.) , vol.9 , pp. 495-505
    • Okafuji, A.1
  • 81
    • 33846821969 scopus 로고    scopus 로고
    • Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana
    • Ahmad M., et al. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 2007, 225:615-624.
    • (2007) Planta , vol.225 , pp. 615-624
    • Ahmad, M.1
  • 82
    • 70350490789 scopus 로고    scopus 로고
    • Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana
    • Harris S.R., et al. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J. R. Soc. Interface 2009, 6:1193-1205.
    • (2009) J. R. Soc. Interface , vol.6 , pp. 1193-1205
    • Harris, S.R.1
  • 83
    • 50049118298 scopus 로고    scopus 로고
    • Cryptochrome mediates light-dependent magnetosensitivity in Drosophila
    • Gegear R.J., et al. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 2008, 454:1014-1018.
    • (2008) Nature , vol.454 , pp. 1014-1018
    • Gegear, R.J.1
  • 84
    • 65949114846 scopus 로고    scopus 로고
    • Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock
    • Yoshii T., et al. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock. PLoS Biol. 2009, 7:e1000086.
    • (2009) PLoS Biol. , vol.7
    • Yoshii, T.1
  • 85
    • 84865411686 scopus 로고    scopus 로고
    • Human cryptochrome exhibits light-dependent magnetosensitivity
    • Foley L.E., et al. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2011, 2:356.
    • (2011) Nat. Commun. , vol.2 , pp. 356
    • Foley, L.E.1
  • 86
    • 76749083320 scopus 로고    scopus 로고
    • Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism
    • Gegear R.J., et al. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 2010, 463:804-807.
    • (2010) Nature , vol.463 , pp. 804-807
    • Gegear, R.J.1
  • 87
    • 79952301226 scopus 로고    scopus 로고
    • Reaction mechanism of Drosophila cryptochrome
    • Ozturk N., et al. Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:516-521.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 516-521
    • Ozturk, N.1
  • 88
    • 84875536458 scopus 로고    scopus 로고
    • Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex
    • Ozturk N., et al. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:4980-4985.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 4980-4985
    • Ozturk, N.1
  • 89
    • 59349113774 scopus 로고    scopus 로고
    • Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless
    • Peschel N., et al. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 2009, 19:241-247.
    • (2009) Curr. Biol. , vol.19 , pp. 241-247
    • Peschel, N.1
  • 90
    • 33745503975 scopus 로고    scopus 로고
    • JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS
    • Koh K., et al. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 2006, 312:1809-1812.
    • (2006) Science , vol.312 , pp. 1809-1812
    • Koh, K.1
  • 91
    • 79956305206 scopus 로고    scopus 로고
    • Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression
    • Fankhauser C., Ulm R. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Genes Dev. 2011, 25:1004-1009.
    • (2011) Genes Dev. , vol.25 , pp. 1004-1009
    • Fankhauser, C.1    Ulm, R.2
  • 92
    • 84875982380 scopus 로고    scopus 로고
    • Variable electron-transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs
    • Biskup T., et al. Variable electron-transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs. J. Biol. Chem. 2013, 288:9249-9260.
    • (2013) J. Biol. Chem. , vol.288 , pp. 9249-9260
    • Biskup, T.1
  • 93
    • 10044255851 scopus 로고    scopus 로고
    • DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction
    • Kort R., et al. DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction. Acta Crystallogr. D: Biol. Crystallogr. 2004, 60:1205-1213.
    • (2004) Acta Crystallogr. D: Biol. Crystallogr. , vol.60 , pp. 1205-1213
    • Kort, R.1
  • 94
    • 14844355899 scopus 로고    scopus 로고
    • Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor
    • Partch C.L., et al. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 2005, 44:3795-3805.
    • (2005) Biochemistry , vol.44 , pp. 3795-3805
    • Partch, C.L.1
  • 95
    • 84871125571 scopus 로고    scopus 로고
    • Light-dependent structural change of chicken retinal cryptochrome4
    • Watari R., et al. Light-dependent structural change of chicken retinal cryptochrome4. J. Biol. Chem. 2012, 287:42634-42641.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42634-42641
    • Watari, R.1
  • 96
    • 80053340171 scopus 로고    scopus 로고
    • Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome
    • Kondoh M., et al. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J. Mol. Biol. 2011, 413:128-137.
    • (2011) J. Mol. Biol. , vol.413 , pp. 128-137
    • Kondoh, M.1
  • 97
    • 84863012644 scopus 로고    scopus 로고
    • Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response
    • Gu N.N., et al. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response. Mol. Plant 2012, 5:85-97.
    • (2012) Mol. Plant , vol.5 , pp. 85-97
    • Gu, N.N.1
  • 98
    • 84858052911 scopus 로고    scopus 로고
    • A new type of radical-pair-based model for magnetoreception
    • Stoneham A.M., et al. A new type of radical-pair-based model for magnetoreception. Biophys. J. 2012, 102:961-968.
    • (2012) Biophys. J. , vol.102 , pp. 961-968
    • Stoneham, A.M.1
  • 99
    • 11244303621 scopus 로고    scopus 로고
    • Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass
    • Moller A., et al. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 2004, 91:585-588.
    • (2004) Naturwissenschaften , vol.91 , pp. 585-588
    • Moller, A.1
  • 100
    • 78049313173 scopus 로고    scopus 로고
    • Searching for a photocycle of the cryptochrome photoreceptors
    • Liu B., et al. Searching for a photocycle of the cryptochrome photoreceptors. Curr. Opin. Plant Biol. 2010, 13:578-586.
    • (2010) Curr. Opin. Plant Biol. , vol.13 , pp. 578-586
    • Liu, B.1
  • 101
    • 77957891710 scopus 로고    scopus 로고
    • Origin of light-induced spin-correlated radical pairs in cryptochrome
    • Weber S., et al. Origin of light-induced spin-correlated radical pairs in cryptochrome. J. Phys. Chem. B 2010, 114:14745-14754.
    • (2010) J. Phys. Chem. B , vol.114 , pp. 14745-14754
    • Weber, S.1
  • 102
    • 84856910310 scopus 로고    scopus 로고
    • The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors
    • Selby C.P., Sancar A. The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 2012, 51:167-171.
    • (2012) Biochemistry , vol.51 , pp. 167-171
    • Selby, C.P.1    Sancar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.