-
1
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert S.M., Weaver D.R. Coordination of circadian timing in mammals. Nature 2002, 418:935-941.
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
2
-
-
0035904335
-
Rotating night shifts and risk of breast cancer in women participating in the nurses' health study
-
Schernhammer E.S., et al. Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J. Natl. Cancer Inst. 2001, 93:1563-1568.
-
(2001)
J. Natl. Cancer Inst.
, vol.93
, pp. 1563-1568
-
-
Schernhammer, E.S.1
-
3
-
-
0037704257
-
Night-shift work and risk of colorectal cancer in the nurses' health study
-
Schernhammer E.S., et al. Night-shift work and risk of colorectal cancer in the nurses' health study. J. Natl. Cancer Inst. 2003, 95:825-828.
-
(2003)
J. Natl. Cancer Inst.
, vol.95
, pp. 825-828
-
-
Schernhammer, E.S.1
-
4
-
-
0035904292
-
Night shift work, light at night, and risk of breast cancer
-
Davis S., et al. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 2001, 93:1557-1562.
-
(2001)
J. Natl. Cancer Inst.
, vol.93
, pp. 1557-1562
-
-
Davis, S.1
-
5
-
-
33847075354
-
Circadian rhythms: mechanisms and therapeutic implications
-
Levi F., Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 2007, 47:593-628.
-
(2007)
Annu. Rev. Pharmacol. Toxicol.
, vol.47
, pp. 593-628
-
-
Levi, F.1
Schibler, U.2
-
6
-
-
34547662497
-
Circadian clock and breast cancer: a molecular link
-
Sahar S., Sassone-Corsi P. Circadian clock and breast cancer: a molecular link. Cell Cycle 2007, 6:1329-1331.
-
(2007)
Cell Cycle
, vol.6
, pp. 1329-1331
-
-
Sahar, S.1
Sassone-Corsi, P.2
-
7
-
-
0037020198
-
The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo
-
Fu L., et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 111:41-50.
-
(2002)
Cell
, vol.111
, pp. 41-50
-
-
Fu, L.1
-
8
-
-
0141889955
-
Control mechanism of the circadian clock for timing of cell division in vivo
-
Matsuo T., et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003, 302:255-259.
-
(2003)
Science
, vol.302
, pp. 255-259
-
-
Matsuo, T.1
-
9
-
-
52149109334
-
The genetics of mammalian circadian order and disorder: implications for physiology and disease
-
Takahashi J.S., et al. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 2008, 9:764-775.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 764-775
-
-
Takahashi, J.S.1
-
10
-
-
0021164736
-
Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions
-
Sawaki Y., et al. Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neurosci. Res. 1984, 1:67-72.
-
(1984)
Neurosci. Res.
, vol.1
, pp. 67-72
-
-
Sawaki, Y.1
-
11
-
-
0032896113
-
Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters
-
Meyer-Bernstein E.L., et al. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 1999, 140:207-218.
-
(1999)
Endocrinology
, vol.140
, pp. 207-218
-
-
Meyer-Bernstein, E.L.1
-
12
-
-
0025021084
-
Transplanted suprachiasmatic nucleus determines circadian period
-
Ralph M.R., et al. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990, 247:975-978.
-
(1990)
Science
, vol.247
, pp. 975-978
-
-
Ralph, M.R.1
-
13
-
-
0029781519
-
A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms
-
Silver R., et al. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 1996, 382:810-813.
-
(1996)
Nature
, vol.382
, pp. 810-813
-
-
Silver, R.1
-
14
-
-
33745792227
-
Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker
-
Guo H., et al. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 2006, 26:6406-6412.
-
(2006)
J. Neurosci.
, vol.26
, pp. 6406-6412
-
-
Guo, H.1
-
15
-
-
0037446846
-
Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice
-
Sujino M., et al. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol. 2003, 13:664-668.
-
(2003)
Curr. Biol.
, vol.13
, pp. 664-668
-
-
Sujino, M.1
-
17
-
-
0035407215
-
Hypothalamic integration of central and peripheral clocks
-
Buijs R.M., Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2001, 2:521-526.
-
(2001)
Nat. Rev. Neurosci.
, vol.2
, pp. 521-526
-
-
Buijs, R.M.1
Kalsbeek, A.2
-
18
-
-
0034994462
-
SCN efferents to peripheral tissues: implications for biological rhythms
-
Bartness T.J., et al. SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms 2001, 16:196-204.
-
(2001)
J. Biol. Rhythms
, vol.16
, pp. 196-204
-
-
Bartness, T.J.1
-
19
-
-
50649115143
-
Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators
-
Vujovic N., et al. Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295:R355-360.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.295
-
-
Vujovic, N.1
-
20
-
-
34247392476
-
Vagal regulation of respiratory clocks in mice
-
Bando H., et al. Vagal regulation of respiratory clocks in mice. J. Neurosci. 2007, 27:4359-4365.
-
(2007)
J. Neurosci.
, vol.27
, pp. 4359-4365
-
-
Bando, H.1
-
21
-
-
27644457084
-
Hypothalamic regulation of sleep and circadian rhythms
-
Saper C.B., et al. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437:1257-1263.
-
(2005)
Nature
, vol.437
, pp. 1257-1263
-
-
Saper, C.B.1
-
22
-
-
33746113014
-
Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis
-
Ruiter M., et al. Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis. Curr. Diabetes Rev. 2006, 2:213-226.
-
(2006)
Curr. Diabetes Rev.
, vol.2
, pp. 213-226
-
-
Ruiter, M.1
-
23
-
-
0036627597
-
Multiple neural systems controlling food intake and body weight
-
Berthoud H.R. Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 2002, 26:393-428.
-
(2002)
Neurosci. Biobehav. Rev.
, vol.26
, pp. 393-428
-
-
Berthoud, H.R.1
-
24
-
-
41549111112
-
Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver
-
Cailotto C., et al. Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology 2008, 149:1914-1925.
-
(2008)
Endocrinology
, vol.149
, pp. 1914-1925
-
-
Cailotto, C.1
-
25
-
-
36348941114
-
Minireview: Circadian control of metabolism by the suprachiasmatic nuclei
-
Kalsbeek A., et al. Minireview: Circadian control of metabolism by the suprachiasmatic nuclei. Endocrinology 2007, 148:5635-5639.
-
(2007)
Endocrinology
, vol.148
, pp. 5635-5639
-
-
Kalsbeek, A.1
-
26
-
-
0036138898
-
Circadian rhythms in isolated brain regions
-
Abe M., et al. Circadian rhythms in isolated brain regions. J. Neurosci. 2002, 22:350-356.
-
(2002)
J. Neurosci.
, vol.22
, pp. 350-356
-
-
Abe, M.1
-
27
-
-
0037076218
-
Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases
-
Cermakian N., et al. Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Curr. Biol. 2002, 12:844-848.
-
(2002)
Curr. Biol.
, vol.12
, pp. 844-848
-
-
Cermakian, N.1
-
28
-
-
0842327270
-
The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb
-
Granados-Fuentes D., et al. The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb. J. Neurosci. 2004, 24:615-619.
-
(2004)
J. Neurosci.
, vol.24
, pp. 615-619
-
-
Granados-Fuentes, D.1
-
29
-
-
15244351016
-
The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2
-
Lamont E.W., et al. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:4180-4184.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 4180-4184
-
-
Lamont, E.W.1
-
30
-
-
0035919618
-
NPAS2: an analog of clock operative in the mammalian forebrain
-
Reick M., et al. NPAS2: an analog of clock operative in the mammalian forebrain. Science 2001, 293:506-509.
-
(2001)
Science
, vol.293
, pp. 506-509
-
-
Reick, M.1
-
31
-
-
0141509017
-
Peripheral circadian oscillators in mammals: time and food
-
Schibler U., et al. Peripheral circadian oscillators in mammals: time and food. J. Biol. Rhythms 2003, 18:250-260.
-
(2003)
J. Biol. Rhythms
, vol.18
, pp. 250-260
-
-
Schibler, U.1
-
32
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
33
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch K.F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
-
34
-
-
11144353910
-
PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo S.H., et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:5339-5346.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
-
35
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia K.A., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:15172-15177.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
-
36
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
Akhtar R.A., et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 2002, 12:540-550.
-
(2002)
Curr. Biol.
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
-
37
-
-
16744364055
-
Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes
-
Oishi K., et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem. 2003, 278:41519-41527.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 41519-41527
-
-
Oishi, K.1
-
38
-
-
33646561211
-
Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver
-
Oishi K., et al. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 2005, 12:191-202.
-
(2005)
DNA Res.
, vol.12
, pp. 191-202
-
-
Oishi, K.1
-
39
-
-
33847632469
-
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
-
Miller B.H., et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:3342-3347.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 3342-3347
-
-
Miller, B.H.1
-
40
-
-
34548853967
-
Identification of the circadian transcriptome in adult mouse skeletal muscle
-
McCarthy J.J., et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 2007, 31:86-95.
-
(2007)
Physiol. Genomics
, vol.31
, pp. 86-95
-
-
McCarthy, J.J.1
-
41
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N., et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110:251-260.
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
-
42
-
-
4143105727
-
A rhythmic Ror
-
Emery P., Reppert S.M. A rhythmic Ror. Neuron 2004, 43:443-446.
-
(2004)
Neuron
, vol.43
, pp. 443-446
-
-
Emery, P.1
Reppert, S.M.2
-
43
-
-
33847732265
-
Signaling to the circadian clock: plasticity by chromatin remodeling
-
Nakahata Y., et al. Signaling to the circadian clock: plasticity by chromatin remodeling. Curr. Opin. Cell Biol. 2007, 19:230-237.
-
(2007)
Curr. Opin. Cell Biol.
, vol.19
, pp. 230-237
-
-
Nakahata, Y.1
-
44
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M., et al. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
-
45
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray J.P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
-
46
-
-
34249083199
-
Sirtuins in mammals: insights into their biological function
-
Michan S., Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem. J. 2007, 404:1-13.
-
(2007)
Biochem. J.
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
47
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
48
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y., et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
49
-
-
37349110355
-
Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways
-
Rodgers J.T., et al. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2008, 582:46-53.
-
(2008)
FEBS Lett.
, vol.582
, pp. 46-53
-
-
Rodgers, J.T.1
-
50
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama J., et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007, 450:1086-1090.
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
-
51
-
-
1342282943
-
Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
-
Curtis A.M., et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 2004, 279:7091-7097.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7091-7097
-
-
Curtis, A.M.1
-
52
-
-
3042709817
-
Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
-
Naruse Y. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell Biol. 2004, 24:6278-6287.
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 6278-6287
-
-
Naruse, Y.1
-
53
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger J.A., Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 2006, 38:369-374.
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
54
-
-
33745329809
-
The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification
-
Gachon F., et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metabol. 2006, 4:25-36.
-
(2006)
Cell Metabol.
, vol.4
, pp. 25-36
-
-
Gachon, F.1
-
55
-
-
33747157406
-
Nuclear receptor expression links the circadian clock to metabolism
-
Yang X., et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006, 126:801-810.
-
(2006)
Cell
, vol.126
, pp. 801-810
-
-
Yang, X.1
-
56
-
-
0027237512
-
Induction of Rev-ErbA alpha, an orphan receptor encoded on the opposite strand of the alpha-thyroid hormone receptor gene, during adipocyte differentiation
-
Chawla A., Lazar M.A. Induction of Rev-ErbA alpha, an orphan receptor encoded on the opposite strand of the alpha-thyroid hormone receptor gene, during adipocyte differentiation. J. Biol. Chem. 1993, 268:16265-16269.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 16265-16269
-
-
Chawla, A.1
Lazar, M.A.2
-
57
-
-
0141621135
-
The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation
-
Fontaine C., et al. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J. Biol. Chem. 2003, 278:37672-37680.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37672-37680
-
-
Fontaine, C.1
-
58
-
-
49649099595
-
The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity
-
Lau P., et al. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J. Biol. Chem. 2008, 283:18411-18421.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18411-18421
-
-
Lau, P.1
-
59
-
-
36849084107
-
Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta
-
Raghuram S., et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol. 2007, 14:1207-1213.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 1207-1213
-
-
Raghuram, S.1
-
60
-
-
73449094895
-
How nuclear receptors tell time
-
Teboul M., et al. How nuclear receptors tell time. J. Appl. Physiol. 2009, 107:1965-1971.
-
(2009)
J. Appl. Physiol.
, vol.107
, pp. 1965-1971
-
-
Teboul, M.1
-
61
-
-
0034730493
-
Resetting of circadian time in peripheral tissues by glucocorticoid signaling
-
Balsalobre A., et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000, 289:2344-2347.
-
(2000)
Science
, vol.289
, pp. 2344-2347
-
-
Balsalobre, A.1
-
62
-
-
0035967914
-
Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock
-
McNamara P., et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 2001, 105:877-889.
-
(2001)
Cell
, vol.105
, pp. 877-889
-
-
McNamara, P.1
-
63
-
-
58149471234
-
Circadian timing in the lung; a specific role for bronchiolar epithelial cells
-
Gibbs J.E., et al. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 2009, 150:268-276.
-
(2009)
Endocrinology
, vol.150
, pp. 268-276
-
-
Gibbs, J.E.1
-
64
-
-
0030060358
-
Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm
-
Lemberger T., et al. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem. 1996, 271:1764-1769.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 1764-1769
-
-
Lemberger, T.1
-
65
-
-
0032699670
-
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
-
Kersten S., et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 1999, 103:1489-1498.
-
(1999)
J. Clin. Invest.
, vol.103
, pp. 1489-1498
-
-
Kersten, S.1
-
66
-
-
33847025269
-
Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management
-
Straub R.H., Cutolo M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 2007, 56:399-408.
-
(2007)
Arthritis Rheum.
, vol.56
, pp. 399-408
-
-
Straub, R.H.1
Cutolo, M.2
-
67
-
-
33845457996
-
Comparison of 4 AM and 4 PM bronchial responsiveness to hypertonic saline in asthma
-
Ferraz E., et al. Comparison of 4 AM and 4 PM bronchial responsiveness to hypertonic saline in asthma. Lung 2006, 184:341-346.
-
(2006)
Lung
, vol.184
, pp. 341-346
-
-
Ferraz, E.1
-
68
-
-
0038208315
-
Circadian rhythms in RA
-
Cutolo M., et al. Circadian rhythms in RA. Ann. Rheum. Dis. 2003, 62:593-596.
-
(2003)
Ann. Rheum. Dis.
, vol.62
, pp. 593-596
-
-
Cutolo, M.1
-
69
-
-
38949143670
-
Injection of LPS causes transient suppression of biological clock genes in rats
-
Okada K., et al. Injection of LPS causes transient suppression of biological clock genes in rats. J. Surg. Res. 2008, 145:5-12.
-
(2008)
J. Surg. Res.
, vol.145
, pp. 5-12
-
-
Okada, K.1
-
70
-
-
34047129776
-
Acute systemic inflammation transiently synchronizes clock gene expression in equine peripheral blood
-
Murphy B.A., et al. Acute systemic inflammation transiently synchronizes clock gene expression in equine peripheral blood. Brain Behav. Immun. 2007, 21:467-476.
-
(2007)
Brain Behav. Immun.
, vol.21
, pp. 467-476
-
-
Murphy, B.A.1
-
71
-
-
0034748606
-
Physical and inflammatory stressors elevate circadian clock gene mPer1 mRNA levels in the paraventricular nucleus of the mouse
-
Takahashi S., et al. Physical and inflammatory stressors elevate circadian clock gene mPer1 mRNA levels in the paraventricular nucleus of the mouse. Endocrinology 2001, 142:4910-4917.
-
(2001)
Endocrinology
, vol.142
, pp. 4910-4917
-
-
Takahashi, S.1
-
72
-
-
33746625139
-
The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock
-
Liu J., et al. The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect. Immun. 2006, 74:4750-4756.
-
(2006)
Infect. Immun.
, vol.74
, pp. 4750-4756
-
-
Liu, J.1
-
73
-
-
77949358945
-
Circadian disruption, Per3, and human cytokine secretion
-
Guess J., et al. Circadian disruption, Per3, and human cytokine secretion. Integr. Cancer Ther. 2009, 8:329-336.
-
(2009)
Integr. Cancer Ther.
, vol.8
, pp. 329-336
-
-
Guess, J.1
-
74
-
-
57749116200
-
Adverse effects of chronic circadian desynchronization in animals in a " challenging" environment
-
Preuss F., et al. Adverse effects of chronic circadian desynchronization in animals in a " challenging" environment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295:R2034-2040.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.295
-
-
Preuss, F.1
-
75
-
-
34147153482
-
Characterization of the molecular clock in mouse peritoneal macrophages
-
Hayashi M., et al. Characterization of the molecular clock in mouse peritoneal macrophages. Biol. Pharm. Bull. 2007, 30:621-626.
-
(2007)
Biol. Pharm. Bull.
, vol.30
, pp. 621-626
-
-
Hayashi, M.1
-
76
-
-
75849128795
-
A circadian clock in macrophages controls inflammatory immune responses
-
Keller M., et al. A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:21407-21412.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 21407-21412
-
-
Keller, M.1
-
77
-
-
77952544036
-
A role for REV-ERBα in pulmonary inflammation. In Congress of the European Biological Rhythms Society, S14-14
-
Gibbs, J.E. et al. (2009) A role for REV-ERBα in pulmonary inflammation. In Congress of the European Biological Rhythms Society, S14-14.
-
(2009)
-
-
Gibbs, J.E.1
-
78
-
-
66149115196
-
Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines
-
Shen Z., et al. Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296:G1047-1053.
-
(2009)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.296
-
-
Shen, Z.1
-
79
-
-
26244460587
-
PPARalpha downregulates airway inflammation induced by lipopolysaccharide in the mouse
-
Delayre-Orthez C., et al. PPARalpha downregulates airway inflammation induced by lipopolysaccharide in the mouse. Respir. Res. 2005, 6:91.
-
(2005)
Respir. Res.
, vol.6
, pp. 91
-
-
Delayre-Orthez, C.1
-
80
-
-
20844447358
-
Enhanced susceptibility of staggerer (RORalphasg/sg) mice to lipopolysaccharide-induced lung inflammation
-
Stapleton C.M., et al. Enhanced susceptibility of staggerer (RORalphasg/sg) mice to lipopolysaccharide-induced lung inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 289:L144-152.
-
(2005)
Am. J. Physiol. Lung Cell Mol. Physiol.
, vol.289
-
-
Stapleton, C.M.1
-
81
-
-
33845483452
-
Modulatory role for retinoid-related orphan receptor alpha in allergen-induced lung inflammation
-
Jaradat M., et al. Modulatory role for retinoid-related orphan receptor alpha in allergen-induced lung inflammation. Am. J. Respir. Crit. Care Med. 2006, 174:1299-1309.
-
(2006)
Am. J. Respir. Crit. Care Med.
, vol.174
, pp. 1299-1309
-
-
Jaradat, M.1
-
82
-
-
3543104442
-
PPAR-gamma agonists as therapy for diseases involving airway neutrophilia
-
Birrell M.A., et al. PPAR-gamma agonists as therapy for diseases involving airway neutrophilia. Eur. Respir. J. 2004, 24:18-23.
-
(2004)
Eur. Respir. J.
, vol.24
, pp. 18-23
-
-
Birrell, M.A.1
-
83
-
-
48249114100
-
The nuclear receptor Rev-erbalpha is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages
-
Fontaine C., et al. The nuclear receptor Rev-erbalpha is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol. Endocrinol. 2008, 22:1797-1811.
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1797-1811
-
-
Fontaine, C.1
-
84
-
-
0035095662
-
The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response
-
Delerive P., et al. The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep. 2001, 2:42-48.
-
(2001)
EMBO Rep.
, vol.2
, pp. 42-48
-
-
Delerive, P.1
-
85
-
-
33846821853
-
Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes
-
Zhang-Gandhi C.X., Drew P.D. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J. Neuroimmunol. 2007, 183:50-59.
-
(2007)
J. Neuroimmunol.
, vol.183
, pp. 50-59
-
-
Zhang-Gandhi, C.X.1
Drew, P.D.2
-
86
-
-
1542298261
-
Rev-erbalpha upregulates NF-kappaB-responsive genes in vascular smooth muscle cells
-
Migita H., et al. Rev-erbalpha upregulates NF-kappaB-responsive genes in vascular smooth muscle cells. FEBS Lett. 2004, 561:69-74.
-
(2004)
FEBS Lett.
, vol.561
, pp. 69-74
-
-
Migita, H.1
-
87
-
-
36749027782
-
Lifelong circadian and epigenetic drifts in metabolic syndrome
-
Gallou-Kabani C., et al. Lifelong circadian and epigenetic drifts in metabolic syndrome. Epigenetics 2007, 2:137-146.
-
(2007)
Epigenetics
, vol.2
, pp. 137-146
-
-
Gallou-Kabani, C.1
-
88
-
-
0034771257
-
Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people
-
Karlsson B., et al. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup. Environ. Med. 2001, 58:747-752.
-
(2001)
Occup. Environ. Med.
, vol.58
, pp. 747-752
-
-
Karlsson, B.1
-
89
-
-
33745560415
-
Relationship between short sleeping hours and childhood overweight/obesity: results from the 'Quebec en Forme' Project
-
Chaput J.P., et al. Relationship between short sleeping hours and childhood overweight/obesity: results from the 'Quebec en Forme' Project. Int. J. Obesity 2006, 30:1080-1085.
-
(2006)
Int. J. Obesity
, vol.30
, pp. 1080-1085
-
-
Chaput, J.P.1
-
90
-
-
26444483435
-
Inadequate sleep as a risk factor for obesity: analyses of the NHANES I
-
Gangwisch J.E., et al. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep 2005, 28:1289-1296.
-
(2005)
Sleep
, vol.28
, pp. 1289-1296
-
-
Gangwisch, J.E.1
-
91
-
-
58549115733
-
Energy-responsive timekeeping
-
Bechtold D.A. Energy-responsive timekeeping. J. Genet. 2008, 87:447-458.
-
(2008)
J. Genet.
, vol.87
, pp. 447-458
-
-
Bechtold, D.A.1
-
92
-
-
37349078699
-
Sleep and circadian rhythms: key components in the regulation of energy metabolism
-
Laposky A.D., et al. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett. 2008, 582:142-151.
-
(2008)
FEBS Lett.
, vol.582
, pp. 142-151
-
-
Laposky, A.D.1
-
93
-
-
38449103255
-
The clockwork of metabolism
-
Ramsey K.M., et al. The clockwork of metabolism. Annu. Rev. Nutr. 2007, 27:219-240.
-
(2007)
Annu. Rev. Nutr.
, vol.27
, pp. 219-240
-
-
Ramsey, K.M.1
-
94
-
-
33845665236
-
A sense of time: how molecular clocks organize metabolism
-
Kohsaka A., Bass J. A sense of time: how molecular clocks organize metabolism. Trends Endocrinol. Metab. 2007, 18:4-11.
-
(2007)
Trends Endocrinol. Metab.
, vol.18
, pp. 4-11
-
-
Kohsaka, A.1
Bass, J.2
-
95
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen H., Young M.W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 2006, 40:409-448.
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
96
-
-
3343024625
-
Reciprocal regulation of haem biosynthesis and the circadian clock in mammals
-
Kaasik K., Lee C.C. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 2004, 430:467-471.
-
(2004)
Nature
, vol.430
, pp. 467-471
-
-
Kaasik, K.1
Lee, C.C.2
-
97
-
-
0035997367
-
Metabolism and the control of circadian rhythms
-
Rutter J., et al. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 2002, 71:307-331.
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 307-331
-
-
Rutter, J.1
-
98
-
-
33747591416
-
Metabolic cycles as an underlying basis of biological oscillations
-
Tu B.P., McKnight S.L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 2006, 7:696-701.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 696-701
-
-
Tu, B.P.1
McKnight, S.L.2
-
99
-
-
0037006807
-
Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
-
Duffield G.E., et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 2002, 12:551-557.
-
(2002)
Curr. Biol.
, vol.12
, pp. 551-557
-
-
Duffield, G.E.1
-
100
-
-
48249113959
-
Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators
-
Kornmann B., et al. Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. Cold Spring Harb. Symp. Quant Biol. 2007, 72:319-330.
-
(2007)
Cold Spring Harb. Symp. Quant Biol.
, vol.72
, pp. 319-330
-
-
Kornmann, B.1
-
101
-
-
16844363738
-
RNA profiling in circadian biology
-
Walker J.R., Hogenesch J.B. RNA profiling in circadian biology. Meth. Enzymol. 2005, 393:366-376.
-
(2005)
Meth. Enzymol.
, vol.393
, pp. 366-376
-
-
Walker, J.R.1
Hogenesch, J.B.2
-
102
-
-
67651180846
-
Effects of poor and short sleep on glucose metabolism and obesity risk
-
Spiegel K., et al. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5:253-261.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 253-261
-
-
Spiegel, K.1
-
103
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek F.W., et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308:1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
-
104
-
-
38949212500
-
Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling
-
Bechtold D.A., et al. Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294:R344-351.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.294
-
-
Bechtold, D.A.1
-
105
-
-
29344452934
-
Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice
-
Oishi K., et al. Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett. 2006, 580:127-130.
-
(2006)
FEBS Lett.
, vol.580
, pp. 127-130
-
-
Oishi, K.1
-
106
-
-
38349078243
-
Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet
-
Kudo T., et al. Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. Am. J. Physiol. Endocrinol. Metab. 2008, 294:E120-130.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.294
-
-
Kudo, T.1
-
107
-
-
0028215250
-
Circadian food-anticipatory activity: formal models and physiological mechanisms
-
Mistlberger R.E. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 1994, 18:171-195.
-
(1994)
Neurosci. Biobehav. Rev.
, vol.18
, pp. 171-195
-
-
Mistlberger, R.E.1
-
108
-
-
0036674316
-
The " other" circadian system: food as a Zeitgeber
-
Stephan F.K. The " other" circadian system: food as a Zeitgeber. J. Biol. Rhythms 2002, 17:284-292.
-
(2002)
J. Biol. Rhythms
, vol.17
, pp. 284-292
-
-
Stephan, F.K.1
-
109
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan K.A., et al. Entrainment of the circadian clock in the liver by feeding. Science 2001, 291:490-493.
-
(2001)
Science
, vol.291
, pp. 490-493
-
-
Stokkan, K.A.1
-
110
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer F.A., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.1
-
111
-
-
69449099530
-
Stomach ghrelin-secreting cells as food-entrainable circadian clocks
-
LeSauter J., et al. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:13582-13587.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 13582-13587
-
-
LeSauter, J.1
-
112
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
113
-
-
33745203038
-
The biochemistry of sirtuins
-
Sauve A.A., et al. The biochemistry of sirtuins. Annu. Rev. Biochem. 2006, 75:435-465.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 435-465
-
-
Sauve, A.A.1
-
114
-
-
0037113902
-
Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts
-
Hirota T., et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 2002, 277:44244-44251.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44244-44251
-
-
Hirota, T.1
-
115
-
-
21144446106
-
PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone T.C., et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 3:e101.
-
(2005)
PLoS Biol.
, vol.3
-
-
Leone, T.C.1
-
116
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J., et al. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1:361-370.
-
(2005)
Cell Metab.
, vol.1
, pp. 361-370
-
-
Lin, J.1
-
117
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C., et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007, 447:477-481.
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
-
118
-
-
58149105457
-
A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases
-
Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Rec. Pat. Cardiovasc. Drug Disc. 2008, 3:156-164.
-
(2008)
Rec. Pat. Cardiovasc. Drug Disc.
, vol.3
, pp. 156-164
-
-
Pillarisetti, S.1
-
119
-
-
4544362674
-
Mammalian circadian biology: elucidating genome-wide levels of temporal organization
-
Lowrey P.L., Takahashi J.S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004, 5:407-441.
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
120
-
-
33746041826
-
An opposite role for tau in circadian rhythms revealed by mathematical modeling
-
Gallego M., et al. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:10618-10623.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 10618-10623
-
-
Gallego, M.1
-
121
-
-
41549142176
-
Setting clock speed in mammals: the CK1e{open} tau mutation in mice accelerates the circadian pacemaker by selectively destabilizing PERIOD proteins
-
Meng Q.J., et al. Setting clock speed in mammals: the CK1e{open} tau mutation in mice accelerates the circadian pacemaker by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.J.1
-
122
-
-
35648965722
-
Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review
-
Sack R.L., et al. Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 2007, 30:1484-1501.
-
(2007)
Sleep
, vol.30
, pp. 1484-1501
-
-
Sack, R.L.1
-
123
-
-
0032872087
-
Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans
-
Jones C.R., et al. Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat. Med. 1999, 5:1062-1065.
-
(1999)
Nat. Med.
, vol.5
, pp. 1062-1065
-
-
Jones, C.R.1
-
124
-
-
0034945096
-
Familial advanced sleep phase syndrome
-
Reid K.J., et al. Familial advanced sleep phase syndrome. Arch. Neurol. 2001, 58:1089-1094.
-
(2001)
Arch. Neurol.
, vol.58
, pp. 1089-1094
-
-
Reid, K.J.1
-
125
-
-
0035136677
-
An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
-
Toh K.L., et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291:1040-1043.
-
(2001)
Science
, vol.291
, pp. 1040-1043
-
-
Toh, K.L.1
-
126
-
-
15844420887
-
Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome
-
Xu Y., et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640-644.
-
(2005)
Nature
, vol.434
, pp. 640-644
-
-
Xu, Y.1
-
127
-
-
33749319064
-
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS)
-
Vanselow K., et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 2006, 20:2660-2672.
-
(2006)
Genes Dev.
, vol.20
, pp. 2660-2672
-
-
Vanselow, K.1
-
128
-
-
33846005528
-
Modeling of a human circadian mutation yields insights into clock regulation by PER2
-
Xu Y., et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 2007, 128:59-70.
-
(2007)
Cell
, vol.128
, pp. 59-70
-
-
Xu, Y.1
-
129
-
-
0023764577
-
A mutation of the circadian system in golden hamsters
-
Ralph M.R., Menaker M. A mutation of the circadian system in golden hamsters. Science 1988, 241:1225-1227.
-
(1988)
Science
, vol.241
, pp. 1225-1227
-
-
Ralph, M.R.1
Menaker, M.2
-
130
-
-
48249145814
-
The biology of the circadian Ck1epsilon tau mutation in mice and Syrian hamsters: a tale of two species
-
Loudon A.S., et al. The biology of the circadian Ck1epsilon tau mutation in mice and Syrian hamsters: a tale of two species. Cold Spring Harb. Symp. Quant Biol. 2007, 72:261-271.
-
(2007)
Cold Spring Harb. Symp. Quant Biol.
, vol.72
, pp. 261-271
-
-
Loudon, A.S.1
-
131
-
-
67650088244
-
Casein kinase 1 delta regulates the pace of the mammalian circadian clock
-
Etchegaray J.P., et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell. Biol. 2009, 29:3853-3866.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 3853-3866
-
-
Etchegaray, J.P.1
-
132
-
-
67651027271
-
Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period
-
Walton K.M. Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J. Pharmacol. Exp. Ther. 2009, 330:430-439.
-
(2009)
J. Pharmacol. Exp. Ther.
, vol.330
, pp. 430-439
-
-
Walton, K.M.1
|